Search results for: oxygen saturation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1796

Search results for: oxygen saturation

296 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 28
295 Application and Utility of the Rale Score for Assessment of Clinical Severity in Covid-19 Patients

Authors: Naridchaya Aberdour, Joanna Kao, Anne Miller, Timothy Shore, Richard Maher, Zhixin Liu

Abstract:

Background: COVID-19 has and continues to be a strain on healthcare globally, with the number of patients requiring hospitalization exceeding the level of medical support available in many countries. As chest x-rays are the primary respiratory radiological investigation, the Radiological Assessment of Lung Edema (RALE) score was used to quantify the extent of pulmonary infection on baseline imaging. Assessment of RALE score's reproducibility and associations with clinical outcome parameters were then evaluated to determine implications for patient management and prognosis. Methods: A retrospective study was performed with the inclusion of patients testing positive for COVID-19 on nasopharyngeal swab within a single Local Health District in Sydney, Australia and baseline x-ray imaging acquired between January to June 2020. Two independent Radiologists viewed the studies and calculated the RALE scores. Clinical outcome parameters were collected and statistical analysis was performed to assess RALE score reproducibility and possible associations with clinical outcomes. Results: A total of 78 patients met inclusion criteria with the age range of 4 to 91 years old. RALE score concordance between the two independent Radiologists was excellent (interclass correlation coefficient = 0.93, 95% CI = 0.88-0.95, p<0.005). Binomial logistics regression identified a positive correlation with hospital admission (1.87 OR, 95% CI= 1.3-2.6, p<0.005), oxygen requirement (1.48 OR, 95% CI= 1.2-1.8, p<0.005) and invasive ventilation (1.2 OR, 95% CI= 1.0-1.3, p<0.005) for each 1-point increase in RALE score. For each one year increased in age, there was a negative correlation with recovery (0.05 OR, 95% CI= 0.92-1.0, p<0.01). RALE scores above three were positively associated with hospitalization (Youden Index 0.61, sensitivity 0.73, specificity 0.89) and above six were positively associated with ICU admission (Youden Index 0.67, sensitivity 0.91, specificity 0.78). Conclusion: The RALE score can be used as a surrogate to quantify the extent of COVID-19 infection and has an excellent inter-observer agreement. The RALE score could be used to prognosticate and identify patients at high risk of deterioration. Threshold values may also be applied to predict the likelihood of hospital and ICU admission.

Keywords: chest radiography, coronavirus, COVID-19, RALE score

Procedia PDF Downloads 157
294 Exercise Training for Management Hypertensive Patients: A Systematic Review and Meta-Analysis

Authors: Noor F. Ilias, Mazlifah Omar, Hashbullah Ismail

Abstract:

Exercise training has been shown to improve functional capacity and is recommended as a therapy for management of blood pressure. Our purpose was to establish whether different exercise capacity produces different effect size for Cardiorespiratory Fitness (CRF), systolic (SBP) and diastolic (DBP) blood pressure in patients with hypertension. Exercise characteristic is required in order to have optimal benefit from the training, but optimal exercise capacity is still unwarranted. A MEDLINE search (1985 to 2015) was conducted for exercise based rehabilitation trials in hypertensive patients. Thirty-seven studies met the selection criteria. Of these, 31 (83.7%) were aerobic exercise and 6 (16.3%) aerobic with additional resistance exercise, providing a total of 1318 exercise subjects and 819 control, the total of subjects was 2137. We calculated exercise volume and energy expenditure through the description of exercise characteristics. 4 studies (18.2%) were 451kcal - 900 kcal, 12 (54.5%) were 900 kcal – 1350 kcal and 6 (27.3%) >1351kcal per week. Peak oxygen consumption (peak VO2) increased by mean difference of 1.44 ml/kg/min (95% confidence interval [CI]: 1.08 to 1.79 ml/kg/min; p = 0.00001) with weighted mean 21.2% for aerobic exercise compare to aerobic with additional resistance exercise 4.50 ml/kg/min (95% confidence interval [CI]: 3.57 to 5.42 ml/kg/min; p = 0.00001) with weighted mean 14.5%. SBP was clinically reduce for both aerobic and aerobic with resistance training by mean difference of -4.66 mmHg (95% confidence interval [CI]: -5.68 to -3.63 mmHg; p = 0.00001) weighted mean 6% reduction and -5.06 mmHg (95% confidence interval [CI]: -7.32 to -2.8 mmHg; p = 0.0001) weighted mean 5% reduction respectively. Result for DBP was clinically reduce for aerobic by mean difference of -1.62 mmHg (95% confidence interval [CI]: -2.09 to -1.15 mmHg; p = 0.00001) weighted mean 4% reduction and aerobic with resistance training reduce by mean difference of -3.26 mmHg (95% confidence interval [CI]: -4.87 to -1.65 mmHg; p = 0.0001) weighted mean 6% reduction. Optimum exercise capacity for 451 kcal – 900 kcal showed greater improvement in peak VO2 and SBP by 2.76 ml/kg/min (95% confidence interval [CI]: 1.47 to 4.05 ml/kg/min; p = 0.0001) with weighted mean 40.6% and -16.66 mmHg (95% confidence interval [CI]: -21.72 to -11.60 mmHg; p = 0.00001) weighted mean 9.8% respectively. Our data demonstrated that aerobic exercise with total volume of 451 kcal – 900 kcal/ week energy expenditure may elicit greater changes in cardiorespiratory fitness and blood pressure in hypertensive patients. Higher exercise capacity weekly does not seem better result in management hypertensive patients.

Keywords: blood Pressure, exercise, hypertension, peak VO2

Procedia PDF Downloads 260
293 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 51
292 Noninvasive Neurally Adjusted Ventilation versus Nasal Continuous or Intermittent Positive Airway Pressure for Preterm Infants: A Systematic Review and Meta-Analysis

Authors: Mohammed S. Bhader, Abdullah A. Ghaddaf, Anas Alamoudi, Amal Abualola, Renad Kalantan, Noura Alkhulaifi, Ibrahim Halawani, Mohammed Alhindi

Abstract:

Background: Noninvasive neurally adjusted ventilatory assist (NAVA) is a relatively new mode of noninvasive ventilation with promising clinical and patient-ventilator outcomes for preterm infants. The aim of this systematic review was to compare NAVA to nasal continuous or positive airway pressure (NCPAP) or intermittent positive airway pressure (NIPP) for preterm infants. Methods: We searched the online databases Medline, Embase, and CENTRAL. We included randomized controlled trials (RCTs) that compared NAVA to NCPAP or NIPP for preterm infants < 37 weeks gestational age. We sought to evaluate the following outcomes: noninvasive intubation failure rate, desaturation rate, the fraction of inspired oxygen (FiO2), and length of stay in the neonatal intensive care unit (NICU). We used the mean difference (MD) to represent continuous outcomes, while the odds ratio (OR) was used to represent dichotomous outcomes. Results: A total of 11 RCTs that enrolled 429 preterm infants were deemed eligible. NAVA showed similar clinical outcomes to NCPAP or NIPP with respect to noninvasive intubation failure (RR for NAVA versus NCPAP: 0.82, 95% confidence interval (CI): 0.49 to 1.37), desaturation rate (RR for NAVA versus NCPAP: 0.69, 95%CI: 0.36 to 1.29; RR for NAVA versus NIPP: 0.58, 95%CI: 0.08 to 4.25), FiO2 (MD for NAVA versus NCPAP: –0.01, 95%CI: –0.04 to 0.02; MD for NAVA versus NIPP: –7.16, 95%CI: –22.63 to 8.31), and length of stay in the NICU (MD for NAVA versus NCPAP: 1.34, 95%CI: –4.17 to 6.85). Conclusion: NAVA showed similar clinical and ventilator-related outcomes compared to the usual care noninvasive respiratory support measures NCPAP or NIPP for preterm infants.

Keywords: preterm infants, noninvasive neurally adjusted ventilatory assist, NIV-NAVA, non-invasive ventilation, nasal continuous or positive airway pressure, NCPAP, intermittent positive airway pressure ventilation, NIPP, respiratory distress syndrome, RDS

Procedia PDF Downloads 80
291 A Strategy Therapy for Retinitis Pigmentosa Induced by Argon Laser in Rabbits by High Dose Adult Stem Cells

Authors: Hager E. Amer, Hany El Saftawy, Laila Rashed, Ahmed M. Ata, Fatma Metwally, Hesham Mettawei, Hossam E. Sayed, Tamer Adel, Kareem M. El Sawah

Abstract:

Aim: The purpose of this study is to regenerate the damaged photoreceptor cells as a result of argon laser as a model of Retinitis Pigmentosa in rabbits' retina by using adult stem cells from rabbits' bone marrow. Background: Retinitis pigmentosa (RP) is a group of inherited disorders that primarily affect photoreceptor and pigment epithelium function. RP leads to loss of the rod outer segment and shorten the photoreceptor layer and expose the photoreceptor cell body to high-pressure levels in oxygen (oxidative stress) leads to apoptosis to the rod and cone cells. In particular, there is no specific treatment for retinitis pigmentosa. Materials and Methods: Forty Two Giant (Rex) rabbits were used in this experiment divided into 3 groups: Group 1: Control (6 rabbits), Group 2: Argon laser radiated as a model of retinitis pigmentosa (12 rabbits), Group 3: Laser radiated and treated by 6 million stem cells (12 rabbits). The last two groups are divided each into two subgroups each subgroup contains 6 rabbits, the ophthalmological examination was performed on rabbits, blood samples and retina samples were taken after 25 days and after 36 days from the laser radiation (10 days and 21 days after stem cells insertion in group 3) to perform the biochemical analysis. Results: Compared to control Group, a decrease of ERG wave amplitude and antioxidant substances (Glutathione) in blood and retina in group 2, and an increase of oxidative stress substances (Nitric oxide, Malonaldehyde, and carponyl protein) and apoptotic substances (Advanced glycation end product and M-metalloproteinase) in blood and retina. Compared to group 2, mostly increases of antioxidant substances and ERG wave amplitude in group 3, and mostly decreases in oxidative stress substances and apoptotic substances. Conclusion: Insertion of 6 million stem cells intravitreous gives good results in regeneration of the damaged photoreceptor cells after 21 days.

Keywords: retinitis pigmentosa, stem cells, argon laser, oxidative stress, apoptosis

Procedia PDF Downloads 175
290 Development of a Mechanical Ventilator Using A Manual Artificial Respiration Unit

Authors: Isomar Lima da Silva, Alcilene Batalha Pontes, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Context: Mechanical ventilators are medical devices that help provide oxygen and ventilation to patients with respiratory difficulties. This equipment consists of a manual breathing unit that can be operated by a doctor or nurse and a mechanical ventilator that controls the airflow and pressure in the patient's respiratory system. This type of ventilator is commonly used in emergencies and intensive care units where it is necessary to provide breathing support to critically ill or injured patients. Objective: In this context, this work aims to develop a reliable and low-cost mechanical ventilator to meet the demand of hospitals in treating people affected by Covid-19 and other severe respiratory diseases, offering a chance of treatment as an alternative to mechanical ventilators currently available in the market. Method: The project presents the development of a low-cost auxiliary ventilator with a controlled ventilatory system assisted by integrated hardware and firmware for respiratory cycle control in non-invasive mechanical ventilation treatments using a manual artificial respiration unit. The hardware includes pressure sensors capable of identifying positive expiratory pressure, peak inspiratory flow, and injected air volume. The embedded system controls the data sent by the sensors. It ensures efficient patient breathing through the operation of the sensors, microcontroller, and actuator, providing patient data information to the healthcare professional (system operator) through the graphical interface and enabling clinical parameter adjustments as needed. Results: The test data of the developed mechanical ventilator presented satisfactory results in terms of performance and reliability, showing that the equipment developed can be a viable alternative to commercial mechanical ventilators currently available, offering a low-cost solution to meet the increasing demand for respiratory support equipment.

Keywords: mechanical fans, breathing, medical equipment, COVID-19, intensive care units

Procedia PDF Downloads 40
289 Portable, Noninvasive and Wireless Near Infrared Spectroscopy Device to Monitor Skeletal Muscle Metabolism during Exercise

Authors: Adkham Paiziev, Fikrat Kerimov

Abstract:

Near Infrared Spectroscopy (NIRS) is one of the biophotonic techniques which can be used to monitor oxygenation and hemodynamics in a variety of human tissues, including skeletal muscle. In the present work, we are offering tissue oximetry (OxyPrem) to measure hemodynamic parameters of skeletal muscles in rest and exercise. Purpose: - To elaborate the new wireless, portable, noninvasive, wearable NIRS device to measure skeletal muscle oxygenation during exercise. - To test this device on brachioradialis muscle of wrestler volunteers by using combined method of arterial occlusion (AO) and NIRS (AO+NIRS). Methods: Oxyprem NIRS device has been used together with AO test. AO test and Isometric brachioradialis muscle contraction experiments have been performed on one group of wrestler volunteers. ‘Accu- Measure’ caliper (USA) to measure skinfold thickness (SFT) has been used. Results: Elaborated device consists on power supply box, a sensor head and installed ‘Tubis’ software for data acquisition and to compute deoxyhemoglobin ([HHb), oxyhemoglobin ([O2Hb]), tissue oxygenation (StO2) and muscle tissue oxygen consumption (mVO2). Sensor head consists on four light sources with three light emitting diodes with nominal wavelengths of 760 nm, 805 nm, and 870 nm, and two detectors. AO and isometric voluntary forearm muscle contraction (IVFMC) on five healthy male subjects (23,2±0.84 in age, 0.43±0.05cm of SFT ) and four female subjects (22.0±1.0 in age and 0.24±0.04 cm SFT) has been measured. mVO2 for control group has been calculated (-0.65%/sec±0.07) for male and -0.69%/±0.19 for female subjects). Tissue oxygenation index for wrestlers in average about 75% whereas for control group StO2 =63%. Second experiment was connected with quality monitoring muscle activity during IVFMC at 10%,30% and 50% of MVC. It has been shown, that the concentration changes of HbO2 and HHb positively correlated to the contraction intensity. Conclusion: We have presented a portable multi-channel wireless NIRS device for real-time monitoring of muscle activity. The miniaturized NIRS sensor and the usage of wireless communication make the whole device have a compact-size, thus can be used in muscle monitoring.

Keywords: skeletal muscle, oxygenation, instrumentation, near infrared spectroscopy

Procedia PDF Downloads 251
288 Human TP53 Three Dimentional (3D) Core Domain Hot Spot Mutations at Codon, 36, 72 and 240 are Associated with Oral Squamous Cell Carcinoma

Authors: Saima Saleem, Zubair Abbasi, Abdul Hameed, Mansoor Ahmed Khan, Navid Rashid Qureshi, Abid Azhar

Abstract:

Oral Squamous Cell Carcinoma (OSCC) is the leading cause of death in the developing countries like Pakistan. This problem aggravates because of the excessive use of available chewing products. In spite of widespread information on their use and purported legislations against their use the Pakistani markets are classical examples of selling chewable carcinogenic mutagens. Reported studies indicated that these products are rich in reactive oxygen species (ROS) and polyphenols. TP53 gene is involved in the suppression of tumor. It has been reported that somatic mutations caused by TP53 gene are the foundation of the cancer. This study aims to find the loss of TP53 functions due to mutation/polymorphism caused by genomic alteration and interaction with tobacco and its related ingredients. Total 260 tissues and blood specimens were collected from OSCC patients and compared with age and sex matched controls. Mutations in exons 2-11 of TP53 were examined by PCR-SSCP. Samples showing mobility shift were directly sequenced. Two mutations were found in exon 4 at nucleotide position 108 and 215 and one in exon 7 at nucleotide position 719 of the coding sequences in patient’s tumor samples. These results show that substitution of proline with arginine at codon 72 and serine with threonine at codon 240 of p53 protein. These polymorphic changes, found in tumor samples of OSCC, could be involved in loss of heterozygocity and apoptotic activity in the binding domain of TP53. The model of the mutated TP53 gene elaborated a nonfunctional unfolded p53 protein, suggesting an important role of these mutations in p53 protein inactivation and malfunction. This nonfunctional 3D model also indicates that exogenous tobacco related carcinogens may act as DNA-damaging agents affecting the structure of DNA. The interpretations could be helpful in establishing the pathways responsible for tumor formation in OSCC patients.

Keywords: TP53 mutation/polymorphism, OSCC, PCR-SSCP, direct DNA sequencing, 3D structure

Procedia PDF Downloads 346
287 Landslide Hazard Assessment Using Physically Based Mathematical Models in Agricultural Terraces at Douro Valley in North of Portugal

Authors: C. Bateira, J. Fernandes, A. Costa

Abstract:

The Douro Demarked Region (DDR) is a production Porto wine region. On the NE of Portugal, the strong incision of the Douro valley developed very steep slopes, organized with agriculture terraces, have experienced an intense and deep transformation in order to implement the mechanization of the work. The old terrace system, based on stone vertical wall support structure, replaced by terraces with earth embankments experienced a huge terrace instability. This terrace instability has important economic and financial consequences on the agriculture enterprises. This paper presents and develops cartographic tools to access the embankment instability and identify the area prone to instability. The priority on this evaluation is related to the use of physically based mathematical models and develop a validation process based on an inventory of the past embankment instability. We used the shallow landslide stability model (SHALSTAB) based on physical parameters such us cohesion (c’), friction angle(ф), hydraulic conductivity, soil depth, soil specific weight (ϱ), slope angle (α) and contributing areas by Multiple Flow Direction Method (MFD). A terraced area can be analysed by this models unless we have very detailed information representative of the terrain morphology. The slope angle and the contributing areas depend on that. We can achieve that propose using digital elevation models (DEM) with great resolution (pixel with 40cm side), resulting from a set of photographs taken by a flight at 100m high with pixel resolution of 12cm. The slope angle results from this DEM. In the other hand, the MFD contributing area models the internal flow and is an important element to define the spatial variation of the soil saturation. That internal flow is based on the DEM. That is supported by the statement that the interflow, although not coincident with the superficial flow, have important similitude with it. Electrical resistivity monitoring values which related with the MFD contributing areas build from a DEM of 1m resolution and revealed a consistent correlation. That analysis, performed on the area, showed a good correlation with R2 of 0,72 and 0,76 at 1,5m and 2m depth, respectively. Considering that, a DEM with 1m resolution was the base to model the real internal flow. Thus, we assumed that the contributing area of 1m resolution modelled by MFD is representative of the internal flow of the area. In order to solve this problem we used a set of generalized DEMs to build the contributing areas used in the SHALSTAB. Those DEMs, with several resolutions (1m and 5m), were built from a set of photographs with 50cm resolution taken by a flight with 5km high. Using this maps combination, we modelled several final maps of terrace instability and performed a validation process with the contingency matrix. The best final instability map resembles the slope map from a DEM of 40cm resolution and a MFD map from a DEM of 1m resolution with a True Positive Rate (TPR) of 0,97, a False Positive Rate of 0,47, Accuracy (ACC) of 0,53, Precision (PVC) of 0,0004 and a TPR/FPR ratio of 2,06.

Keywords: agricultural terraces, cartography, landslides, SHALSTAB, vineyards

Procedia PDF Downloads 154
286 Status of Physical, Chemical and Biological Attributes of Isheri, Ogun River, in Relation to the Surrounding Anthropogenic Activities of Kara Abattoir, South West Nigeria

Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, A. O. Ewumi, J. Dairo, I. A. Akinnubi, S. O. Otubusin

Abstract:

A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.

Keywords: water parameters, Isheri Ogun river, anthropogenic activities, Kara abattoir

Procedia PDF Downloads 507
285 Gammarus: Asellus Ratio as an Index of Organic Pollution: A Case Study in Markeaton, Kedleston Hall, and Allestree Park Lakes Derby, UK

Authors: Usman Bawa

Abstract:

Macro-invertebrates have been used to monitor organic pollution in rivers and streams. Several biotic indices based on macro-invertebrates have been developed over the years including the Biological Monitoring Working Party (BMWP). A new biotic index, the Gammarus:Asellus ratio has been recently proposed as an index of organic pollution. This study tested the validity of the Gammarus:Asellus ratio as an index of organic pollution, by examining the relationship between the Gammarus:Asellus ratio and physical-chemical parameters, and other biotic indices such as BMWP and, Average Score Per Taxon (ASPT) from lakes and streams at Markeaton Park, Allestree Park, and Kedleston Hall, Derbyshire. Macro invertebrates were sampled using the standard five-minute kick sampling techniques physical and chemical environmental variables were obtained based on standard sampling techniques. Eighteen sites were sampled, six sites from Markeaton Park (three sites across the stream and three sites across the lake). Six sites each were also sampled from Allestree Park and Kedleston Hall lakes. The Gammarus:Asellus ratio showed an opposite significant positive correlations with parameters indicative of organic pollution such as the level of nitrates, phosphates, and calcium and also revealed a negatively significant correlations with other biotic indices (BMWP/ASPT). The BMWP score correlated positively significantly with some water quality parameters such as dissolved oxygen and flow rate, but revealed no correlations with other chemical environmental variables. The BMWP score was significantly higher in the stream than the lake in Markeaton Park, also The ASPT scores appear to be significantly higher in the upper Lakes than the middle and lower lakes. This study has further strengthened the use of BMWP/ASPT score as an index of organic pollution. But, additional application is required to validate the use of Gammarus:Asellus as a rapid bio monitoring tool.

Keywords: Asellus, biotic index, Gammarus, macro invertebrates, organic pollution

Procedia PDF Downloads 318
284 Nitrification and Denitrification Kinetic Parameters of a Mature Sanitary Landfill Leachate

Authors: Tânia F. C. V. Silva, Eloísa S. S. Vieira, João Pinto da Costa, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

Sanitary landfill leachates are characterized as a complex mixture of diverse organic and inorganic contaminants, which are usually removed by combining different treatment processes. Due to its simplicity, reliability, high cost-effectiveness and high nitrogen content (mostly under the ammonium form) inherent in this type of effluent, the activated sludge biological process is almost always applied in leachate treatment plants (LTPs). The purpose of this work is to assess the effect of the main nitrification and denitrification variables on the nitrogen's biological removal, from mature leachates. The leachate samples were collected after an aerated lagoon, at a LTP nearby Porto, presenting a high amount of dissolved organic carbon (1.0-1.3 g DOC/L) and ammonium nitrogen (1.1-1.7 g NH4+-N/L). The experiments were carried out in a 1-L lab-scale batch reactor, equipped with a pH, temperature and dissolved oxygen (DO) control system, in order to determine the reaction kinetic constants at unchanging conditions. The nitrification reaction rate was evaluated while varying the (i) operating temperature (15, 20, 25 and 30ºC), (ii) DO concentration interval (0.5-1.0, 1.0-2.0 and 2.0-4.0 mg/L) and (iii) solution pH (not controlled, 7.5-8.5 and 6.5-7.5). At the beginning of most assays, it was verified that the ammonium stripping occurred simultaneously to the nitrification, reaching up to 37% removal of total dissolved nitrogen. The denitrification kinetic constants and the methanol consumptions were calculated for different values of (i) volatile suspended solids (VSS) content (25, 50 and 100 mL of centrifuged sludge in 1 L solution), (ii) pH interval (6.5-7.0, 7.5-8.0 and 8.5-9.0) and (iii) temperature (15, 20, 25 and 30ºC), using effluent previously nitrified. The maximum nitrification rate obtained was 38±2 mg NH4+-N/h/g VSS (25ºC, 0.5-1.0 mg O2/L, pH not controlled), consuming 4.4±0.3 mg CaCO3/mg NH4+-N. The highest denitrification rate achieved was 19±1 mg (NO2--N+NO3--N)/h/g VSS (30ºC, 50 mL of sludge and pH between 7.5 and 8.0), with a C/N consumption ratio of 1.1±0.1 mg CH3OH/mg (NO2--N+NO3--N) and an overall alkalinity production of 3.7±0.3 mg CaCO3/mg (NO2--N+NO3--N). The denitrification process showed to be sensitive to all studied parameters, while the nitrification reaction did not suffered significant change when DO content was changed.

Keywords: mature sanitary landfill leachate, nitrogen removal, nitrification and denitrification parameters, lab-scale activated sludge biological reactor

Procedia PDF Downloads 249
283 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use

Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz

Abstract:

Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.

Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering

Procedia PDF Downloads 478
282 Crystallization Based Resolution of Enantiomeric and Diastereomeric Derivatives of myo-Inositol

Authors: Nivedita T. Patil, M. T. Patil, M. S. Shashidhar, R. G. Gonnade

Abstract:

Cyclitols are cycloalkane polyols which have raise attention since they have numerous biological and pharmaceutical properties. Among these, inositols are important cyclitols, which constitute a group of naturally occurring polyhydric alcohols. Myo, scyllo, allo, neo, D-chiro- are naturally occurring structural isomer of inositol while other four isomers (L-chiro, allo, epi-, and cis-inositol) are derived from myo-inositol by chemical synthesis. Myo-inositol, most abundant isomer, plays an important role in signal transduction process and for the treatment of type 2 diabetes, bacterial infections, stimulation of menstruation, ovulation in polycystic ovary syndrome, improvement of osteogenesis, and in treatment of neurological disorders. Considering the vast application of the derivatives, it becomes important to supply these compounds for further studies in quantitative amounts, but the synthesis of suitably protected chiral inositol derivatives is the key intermediates in most of the synthesis which is difficult. Chiral inositol derivatives could also be of interest to synthetic organic chemists as they could serve as potential starting materials for the synthesis of several natural products and their analogs. Thus, obtaining chiral myo-inositol derivatives in a more eco-friendly way is need for current inositol chemistry. Thus, the resolution of nonracemates by preferential crystallization of enantiomers has not been reported as a method for inositol derivatives. We are optimistic that this work might lead to the development of the two tosylate enantiomers as synthetic chiral pool molecules for organic synthesis. Resolution of racemic 4-O-benzyl 6-O-tosyl myo-inositol 1, 3, 5 orthoformate was successfully achieved on multigram scale by preferential crystallization, which is more scalable, eco-friendly method of separation than other reported methods. The separation of the conglomeric mixture of tosylate was achieved by suspending the mixture in ethyl acetate till the level of saturation is obtained. To this saturated clear solution was added seed crystal of the desired enantiomers. The filtration of the precipitated seed was carried out at its filtration window to get enantiomerically enriched tosylate, and the process was repeated alternatively. These enantiomerically enriched samples were recrystallized to get tosylate as pure enantiomers. The configuration of the resolved enantiomers was determined by converting it to previously reported dibenzyl ether myo-inositol, which is an important precursor for mono- and tetraphosphates. We have also developed a convenient and practical method for the preparation of enantiomeric 4-O and 6-O-allyl myo-inositol orthoesters by resolution of diastereomeric allyl dicamphante orthoesters on multigram scale. These allyl ethers can be converted to other chiral protected myo-inositol derivatives using routine synthetic transformations. The chiral allyl ethers can be obtained in gram quantities, and the methods are amenable to further scale-up due to the simple procedures involved. We believe that the work described enhances the pace of research to understand the intricacies of the myo-inositol cycle as the methods described provide efficient access to enantiomeric phosphoinositols, cyclitols, and their derivatives from the abundantly available myo-inositol as a starting material.

Keywords: cyclitols, diastereomers, enantiomers, myo-inositol, preferential crystallization, signal transduction

Procedia PDF Downloads 118
281 Backwash Optimization for Drinking Water Treatment Biological Filters

Authors: Sarra K. Ikhlef, Onita Basu

Abstract:

Natural organic matter (NOM) removal efficiency using drinking water treatment biological filters can be highly influenced by backwashing conditions. Backwashing has the ability to remove the accumulated biomass and particles in order to regenerate the biological filters' removal capacity and prevent excessive headloss buildup. A lab scale system consisting of 3 biological filters was used in this study to examine the implications of different backwash strategies on biological filtration performance. The backwash procedures were evaluated based on their impacts on dissolved organic carbon (DOC) removals, biological filters’ biomass, backwash water volume usage, and particle removal. Results showed that under nutrient limited conditions, the simultaneous use of air and water under collapse pulsing conditions lead to a DOC removal of 22% which was significantly higher (p>0.05) than the 12% removal observed under water only backwash conditions. Employing a bed expansion of 20% under nutrient supplemented conditions compared to a 30% reference bed expansion while using the same amount of water volume lead to similar DOC removals. On the other hand, utilizing a higher bed expansion (40%) lead to significantly lower DOC removals (23%). Also, a backwash strategy that reduced the backwash water volume usage by about 20% resulted in similar DOC removals observed with the reference backwash. The backwash procedures investigated in this study showed no consistent impact on biological filters' biomass concentrations as measured by the phospholipids and the adenosine tri-phosphate (ATP) methods. Moreover, none of these two analyses showed a direct correlation with DOC removal. On the other hand, dissolved oxygen (DO) uptake showed a direct correlation with DOC removals. The addition of the extended terminal subfluidization wash (ETSW) demonstrated no apparent impact on DOC removals. ETSW also successfully eliminated the filter ripening sequence (FRS). As a result, the additional water usage resulting from implementing ETSW was compensated by water savings after restart. Results from this study provide insight to researchers and water treatment utilities on how to better optimize the backwashing procedure for the goal of optimizing the overall biological filtration process.

Keywords: biological filtration, backwashing, collapse pulsing, ETSW

Procedia PDF Downloads 249
280 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature

Authors: B. Vinod, L. Jsudev

Abstract:

Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 320
279 Synthesis and Characterization of Mixed ligand complexes of Bipyridyl and Glycine with Different Counter Anions as Functional Antioxidant Enzyme Mimics

Authors: Mohamed M. Ibrahim, Gaber A. M. Mersal, Salih Al-Juaid, Samir A. El-Shazly

Abstract:

A series of mixed ligand complexes, viz., [Cu(BPy)(Gly)X]Y {X = Cl (1), Y = 0; X = 0, Y = ClO4- (2); X = H2O, Y = NO3- (3); X = H2O, Y = CH3COO- (4); and [Cu(BPy)(Gly)-(H2O)]2(SO4) (5) have been synthesized. Their structures and properties were characterized by elemental analysis, thermal analaysis, IR, UV–vis, and ESR spectroscopy, as well as electrochemical measurements including cyclic voltammetry, electrical molar conductivity, and magnetic moment measurements. Complexes 1 and 2 formed slightly distorted square-pyramidal coordination geometries of CuN3OCl and CuN3O2, respectively in which the N,O-donor glycine and N,N-donor bipyridyl bind at the basal plane with chloride ion or water as the axial ligand. Complex 3 shows square planar CuN3O coordination geometry, which exhibits chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The superoxide dismutase and catalase-like activities of all complexes were tested and were found to be promising candidates as durable electron-transfer catalyst being close to the efficiency of the mimicking enzymes displaying either catalase or tyrosinase activity to serve for complete reactive oxygen species (ROS) detoxification, both with respect to superoxide radicals and related peroxides. The DNA binding interaction with super coiled pGEM-T plasmid DNA was investigated by using spectral (absorption and emission) titration and electrochemical techniques. The results revealed that DNA intercalate with complexes 1 and 2 through the groove binding mode. The calculated intrinsic binding constant (Kb) of 1 and 2 were 4.71 and 2.429 × 105 M−1, respectively. Gel electrophoresis study reveals the fact that both complexes cleave super coiled pGEM-T plasmid DNA to nicked and linear forms in the absence of any additives. On the other hand, the interaction of both complexes with DNA, the quasi-reversible CuII/CuI redox couple slightly improves its reversibility with considerable decrease in current intensity. All the experimental results indicate that the bipyridyl mixed copper(II) complex (1) intercalate more effectively into the DNA base pairs.

Keywords: enzyme mimics, mixed ligand complexes, X-ray structures, antioxidant, DNA-binding, DNA cleavage

Procedia PDF Downloads 521
278 Optimal-Based Structural Vibration Attenuation Using Nonlinear Tuned Vibration Absorbers

Authors: Pawel Martynowicz

Abstract:

Vibrations are a crucial problem for slender structures such as towers, masts, chimneys, wind turbines, bridges, high buildings, etc., that is why most of them are equipped with vibration attenuation or fatigue reduction solutions. In this work, a slender structure (i.e., wind turbine tower-nacelle model) equipped with nonlinear, semiactive tuned vibration absorber(s) is analyzed. For this study purposes, magnetorheological (MR) dampers are used as semiactive actuators. Several optimal-based approaches to structural vibration attenuation are investigated against the standard ‘ground-hook’ law and passive tuned vibration absorber(s) implementations. The common approach to optimal control of nonlinear systems is offline computation of the optimal solution, however, so determined open loop control suffers from lack of robustness to uncertainties (e.g., unmodelled dynamics, perturbations of external forces or initial conditions), and thus perturbation control techniques are often used. However, proper linearization may be an issue for highly nonlinear systems with implicit relations between state, co-state, and control. The main contribution of the author is the development as well as numerical and experimental verification of the Pontriagin maximum-principle-based vibration control concepts that produce directly actuator control input (not the demanded force), thus force tracking algorithm that results in control inaccuracy is entirely omitted. These concepts, including one-step optimal control, quasi-optimal control, and optimal-based modified ‘ground-hook’ law, can be directly implemented in online and real-time feedback control for periodic (or semi-periodic) disturbances with invariant or time-varying parameters, as well as for non-periodic, transient or random disturbances, what is a limitation for some other known solutions. No offline calculation, excitations/disturbances assumption or vibration frequency determination is necessary, moreover, all of the nonlinear actuator (MR damper) force constraints, i.e., no active forces, lower and upper saturation limits, hysteresis-type dynamics, etc., are embedded in the control technique, thus the solution is optimal or suboptimal for the assumed actuator, respecting its limitations. Depending on the selected method variant, a moderate or decisive reduction in the computational load is possible compared to other methods of nonlinear optimal control, while assuring the quality and robustness of the vibration reduction system, as well as considering multi-pronged operational aspects, such as possible minimization of the amplitude of the deflection and acceleration of the vibrating structure, its potential and/or kinetic energy, required actuator force, control input (e.g. electric current in the MR damper coil) and/or stroke amplitude. The developed solutions are characterized by high vibration reduction efficiency – the obtained maximum values of the dynamic amplification factor are close to 2.0, while for the best of the passive systems, these values exceed 3.5.

Keywords: magnetorheological damper, nonlinear tuned vibration absorber, optimal control, real-time structural vibration attenuation, wind turbines

Procedia PDF Downloads 101
277 Survival of Micro-Encapsulated Probiotic Lactic Acid Bacteria in Mutton Nuggets and Their Assessments in Simulated Gastro-Intestinal Conditions

Authors: Rehana Akhter, Sajad A. Rather, F. A. Masoodi, Adil Gani, S. M. Wani

Abstract:

During recent years probiotic food products receive market interest as health-promoting, functional foods, which are believed to contribute health benefits. In order to deliver the health benefits by probiotic bacteria, it has been recommended that they must be present at a minimum level of 106 CFU/g to 107 CFU/g at point of delivery or be eaten in sufficient amounts to yield a daily intake of 108 CFU. However a major challenge in relation to the application of probiotic cultures in food matrix is the maintenance of viability during processing which might lead to important losses in viability as probiotic cultures are very often thermally labile and sensitive to acidity, oxygen or other food constituents for example, salts. In this study Lactobacillus plantarum and Lactobacillus casei were encapsulated in calcium alginate beads with the objective of enhancing their survivability and preventing exposure to the adverse conditions of the gastrointestinal tract and where then inoculated in mutton nuggets. Micro encapsulated Lactobacillus plantarum and Lactobacillus casei were resistant to simulated gastric conditions (pH 2, 2h) and bile solution (3%, 2 h) resulting in significantly (p ≤ 0.05) improved survivability when compared with free cell counterparts. A high encapsulation yield was found due to the encapsulation procedure. After incubation at low pH-values, micro encapsulation yielded higher survival rates compared to non-encapsulated probiotic cells. The viable cell numbers of encapsulated Lactobacillus plantarum and Lactobacillus casei were 107-108 CFU/g higher compared to free cells after 90 min incubation at pH 2.5. The viable encapsulated cells were inoculated into mutton nuggets at the rate of 108 to 1010 CFU/g. The micro encapsulated Lactobacillus plantarum and Lactobacillus casei achieved higher survival counts (105-107 CFU/g) than the free cell counterparts (102-104 CFU/g). Thus micro encapsulation offers an effective means of delivery of viable probiotic bacterial cells to the colon and maintaining their survival during simulated gastric, intestinal juice and processing conditions during nugget preparation.

Keywords: survival, Lactobacillus plantarum, Lactobacillus casei, micro-encapsulation, nugget

Procedia PDF Downloads 260
276 The Effects of Lithofacies on Oil Enrichment in Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin, China

Authors: Guoheng Liu, Zhilong Huang

Abstract:

For more than the past ten years, oil and gas production from marine shale such as the Barnett shale. In addition, in recent years, major breakthroughs have also been made in lacustrine shale gas exploration, such as the Yanchang Formation of the Ordos Basin in China. Lucaogou Formation shale, which is also lacustrine shale, has also yielded a high production in recent years, for wells such as M1, M6, and ML2, yielding a daily oil production of 5.6 tons, 37.4 tons and 13.56 tons, respectively. Lithologic identification and classification of reservoirs are the base and keys to oil and gas exploration. Lithology and lithofacies obviously control the distribution of oil and gas in lithological reservoirs, so it is of great significance to describe characteristics of lithology and lithofacies of reservoirs finely. Lithofacies is an intrinsic property of rock formed under certain conditions of sedimentation. Fine-grained sedimentary rocks such as shale formed under different sedimentary conditions display great particularity and distinctiveness. Hence, to our best knowledge, no constant and unified criteria and methods exist for fine-grained sedimentary rocks regarding lithofacies definition and classification. Consequently, multi-parameters and multi-disciplines are necessary. A series of qualitative descriptions and quantitative analysis were used to figure out the lithofacies characteristics and its effect on oil accumulation of Lucaogou formation fine-grained sedimentary rocks in Santanghu basin. The qualitative description includes core description, petrographic thin section observation, fluorescent thin-section observation, cathode luminescence observation and scanning electron microscope observation. The quantitative analyses include X-ray diffraction, total organic content analysis, ROCK-EVAL.II Methodology, soxhlet extraction, porosity and permeability analysis and oil saturation analysis. Three types of lithofacies were mainly well-developed in this study area, which is organic-rich massive shale lithofacies, organic-rich laminated and cloddy hybrid sedimentary lithofacies and organic-lean massive carbonate lithofacies. Organic-rich massive shale lithofacies mainly include massive shale and tuffaceous shale, of which quartz and clay minerals are the major components. Organic-rich laminated and cloddy hybrid sedimentary lithofacies contain lamina and cloddy structure. Rocks from this lithofacies chiefly consist of dolomite and quartz. Organic-lean massive carbonate lithofacies mainly contains massive bedding fine-grained carbonate rocks, of which fine-grained dolomite accounts for the main part. Organic-rich massive shale lithofacies contain the highest content of free hydrocarbon and solid organic matter. Moreover, more pores were developed in organic-rich massive shale lithofacies. Organic-lean massive carbonate lithofacies contain the lowest content solid organic matter and develop the least amount of pores. Organic-rich laminated and cloddy hybrid sedimentary lithofacies develop the largest number of cracks and fractures. To sum up, organic-rich massive shale lithofacies is the most favorable type of lithofacies. Organic-lean massive carbonate lithofacies is impossible for large scale oil accumulation.

Keywords: lithofacies classification, tuffaceous shale, oil enrichment, Lucaogou formation

Procedia PDF Downloads 183
275 Performance and Specific Emissions of an SI Engine Using Anhydrous Ethanol–Gasoline Blends in the City of Bogota

Authors: Alexander García Mariaca, Rodrigo Morillo Castaño, Juan Rolón Ríos

Abstract:

The government of Colombia has promoted the use of biofuels in the last 20 years through laws and resolutions, which regulate their use, with the objective to improve the atmospheric air quality and to promote Colombian agricultural industry. However, despite the use of blends of biofuels with fossil fuels, the air quality in large cities does not get better, this deterioration in the air is mainly caused by mobile sources that working with spark ignition internal combustion engines (SI-ICE), operating with a mixture in volume of 90 % gasoline and 10 % ethanol called E10, that for the case of Bogota represent 84 % of the fleet. Another problem is that Colombia has big cities located above 2200 masl and there are no accurate studies on the impact that the E10 mixture could cause in the emissions and performance of SI-ICE. This study aims to establish the optimal blend between gasoline ethanol in which an SI engine operates more efficiently in urban centres located at 2600 masl. The test was developed on SI engine four-stroke, single cylinder, naturally aspirated and with carburettor for the fuel supply using blends of gasoline and anhydrous ethanol in different ratios E10, E15, E20, E40, E60, E85 and E100. These tests were conducted in the city of Bogota, which is located at 2600 masl, with the engine operating at 3600 rpm and at 25, 50, 75 and 100% of load. The results show that the performance variables as engine brake torque, brake power and brake thermal efficiency decrease, while brake specific fuel consumption increases with the rise in the percentage of ethanol in the mixture. On the other hand, the specific emissions of CO2 and NOx present increases while specific emissions of CO and HC decreases compared to those produced by gasoline. From the tests, it is concluded that the SI-ICE worked more efficiently with the E40 mixture, where was obtained an increases of the brake power of 8.81 % and a reduction on brake specific fuel consumption of 2.5 %, coupled with a reduction in the specific emissions of CO2, HC and CO in 9.72, 52.88 and 76.66 % respectively compared to the results obtained with the E10 blend. This behaviour is because the E40 mixture provides the appropriate amount of the oxygen for the combustion process, which leads to better utilization of available energy in this process, thus generating a comparable power output to the E10 mixing and producing lower emissions CO and HC with the other test blends. Nevertheless, the emission of NOx increases in 106.25 %.

Keywords: emissions, ethanol, gasoline, engine, performance

Procedia PDF Downloads 306
274 Testing Two Actors Contextual Interaction Theory in a Multi Actors Context: Case of COVID-19 Disease Prevention and Control Policy

Authors: Muhammad Fayyaz Nazir, Ellen Wayenberg, Shahzadaah Faahed Qureshi

Abstract:

Introduction: The study is based on the Contextual Interaction Theory (CIT) constructs to explore the role of policy actors in implementing the COVID-19 Disease Prevention and Control (DP&C) Policy. The study analyzes the role of healthcare workers' contextual factors, such as cognition, motives, and resources, and their interactions in implementing Social Distancing (SD). In this way, we test a two actors policy implementation theory, i.e., the CIT in a three-actor context. Methods: Data was collected through document analysis and semi-structured interviews. For a qualitative study design, interviews were conducted with questions on cognition, motives, and resources from the healthcare workers involved in implementing SD in the local context in Multan – Pakistan. The possible interactions resulting from contextual factors of the policy actors – healthcare workers were identified through framework analysis protocol guided by CIT and supported by trustworthiness criterion and data saturation. Results: This inquiry resulted in theory application, addition, and enrichment. The theoretical application in the three actor's contexts illustrates the different levels of motives, cognition, and resources of healthcare workers – senior administrators, managers, and healthcare professionals. The senior administrators working in National Command and Operations Center (NCOC), Provincial Technical Committees (PTCs), and Districts Covid Teams (DCTs) were playing their role with high motivation. They were fully informed about the policy and moderately resourceful. The policy implementors: healthcare managers working on implementing the SD within their respective hospitals were playing their role with high motivation and were fully informed about the policy. However, they lacked the required resources to implement SD. The target medical and allied healthcare professionals were moderately motivated but lack of resources and information. The interaction resulted in cooperation and the need for learning to manage the future healthcare crisis. However, the lack of resources created opposition to the implementation of SD. Objectives of the Study: The study aimed to apply a two actors theory in a multi actors context. We take this as an opportunity to qualitatively test the theory in a novel situation of the Covid-19 pandemic and make way for its quantitative application by designing a survey instrument so that implementation researchers can apply CIT through multivariate analyses or higher-order statistical modeling. Conclusion: Applying two actors' implementation theory in exploring a complex case of healthcare intervention in three actors context is a unique work that has never been done before, up to the best of our knowledge. So, the work will contribute to the policy implementation studies by applying, extending, and enriching an implementation theory in a novel case of the Covi-19 pandemic, ultimately fulfilling the gap in implementation literature. Policy institutions and other low or middle-income countries can learn from this research and improve SD implementation by working on the variables with weak significance levels.

Keywords: COVID-19, disease prevention and control policy, implementation, policy actors, social distancing

Procedia PDF Downloads 36
273 A Hedonic Valuation Approach to Valuing Combined Sewer Overflow Reductions

Authors: Matt S. Van Deren, Michael Papenfus

Abstract:

Seattle is one of the hundreds of cities in the United States that relies on a combined sewer system to collect and convey municipal wastewater. By design, these systems convey all wastewater, including industrial and commercial wastewater, human sewage, and stormwater runoff, through a single network of pipes. Serious problems arise for combined sewer systems during heavy precipitation events when treatment plants and storage facilities are unable to accommodate the influx of wastewater needing treatment, causing the sewer system to overflow into local waterways through sewer outfalls. CSOs (Combined Sewer Overflows) pose a serious threat to human and environmental health. Principal pollutants found in CSO discharge include microbial pathogens, comprising of bacteria, viruses, parasites, oxygen-depleting substances, suspended solids, chemicals or chemical mixtures, and excess nutrients, primarily nitrogen and phosphorus. While concentrations of these pollutants can vary between overflow events, CSOs have the potential to spread disease and waterborne illnesses, contaminate drinking water supplies, disrupt aquatic life, and effect a waterbody’s designated use. This paper estimates the economic impact of CSOs on residential property values. Using residential property sales data from Seattle, Washington, this paper employs a hedonic valuation model that controls for housing and neighborhood characteristics, as well as spatial and temporal effects, to predict a consumer’s willingness to pay for improved water quality near their homes. Initial results indicate that a 100,000-gallon decrease in the average annual overflow discharged from a sewer outfall within 300 meters of a home is associated with a 0.053% increase in the property’s sale price. For the average home in the sample, the price increase is estimated to be $18,860.23. These findings reveal some of the important economic benefits of improving water quality by reducing the frequency and severity of combined sewer overflows.

Keywords: benefits, hedonic, Seattle, sewer

Procedia PDF Downloads 148
272 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 120
271 Active Packaging Films Based on Chitosan Incorporated with Thyme Essential Oil and Cross Linkers and Its Effect on the Quality Shelf Life of Food

Authors: Aiman Zehra, Sajad Mohd Wani

Abstract:

Packaging has a vital role as it contains and protects the food that moves from the supply chain to the consumer. Chitosan (CH) has been extensively used in food packaging applications among the plentiful natural macromolecules, including all the polysaccharide class, owing to its easy film-forming capacity, biodegradability, better oxygen and water vapour barrier ability and good mechanical strength. Compared to synthetic films, the films produced from chitosan present poor barrier and mechanical properties. To overcome its deficient qualities, a number of modification procedures are required to enhance the mechanical and physical properties. Various additives such as plasticizers (e.g., glycerol and sorbitol), crosslinkers (e.g.,CaCl₂, ZnO), fillers (nanoclay), and antimicrobial agents (e.g. thyme essential oil) have been used to improve the mechanical, thermal, morphological, antimicrobial properties and emulsifying agents for the stability and elasticity of chitosan-based biodegradable films. Different novel biocomposite films based on chitosan incorporated with thyme essential oil and different additives (ZnO, CaCl₂, NC, and PEG) were successfully prepared and used as packaging material for carrot candy. The chitosan film incorporated with crosslinkers was capable of forming a protective barrier on the surface of the candy to maintain moisture content, water activity, TSS, total sugars, and titratable acidity. ZnO +PEG +NC +CaCl₂ remarkably promotes a synergistic effect on the barrier properties of the film. The combined use of ZnO +PEG +NC +CaCl₂ in CH-TO films was more effective in preventing the moisture gain in candies. The lowest a𝓌 (0.624) was also observed for the candies stored in treatment. The color values L*, a*, b* of the candies were also retained in the film containing all the additives during the 6th month of storage. The value for L*, a*, and b* observed for T was 42.72, 9.89, and 10.84, respectively. The candies packaged in film retained TSS and acidity. The packaging film significantly p≤0.05 conserved sensory qualities and inhibited microbial activity during storage. Carrot candy was found microbiologically safe for human consumption even after six months of storage in all the packaging materials.

Keywords: chitosan, biodegradable films, antimicrobial activity, thyme essential oil, crosslinkers

Procedia PDF Downloads 72
270 Direct Laser Fabrication and Characterization of Cu-Al-Ni Shape Memory Alloy for Seismic Damping Applications

Authors: Gonzalo Reyes, Magdalena Walczak, Esteban Ramos-Moore, Jorge Ramos-Grez

Abstract:

Metal additive manufacture technologies have gained strong support and acceptance as a promising and alternative method to manufacture high performance complex geometry products. The main purpose of the present work is to study the microstructure and phase transformation temperatures of Cu-Al-Ni shape memory alloys fabricated from a direct laser additive process using metallic powders as precursors. The potential application is to manufacture self-centering seismic dampers for earthquake protection of buildings out of a copper based alloy by an additive process. In this process, the Cu-Al-Ni alloy is melted, inside of a high temperature and vacuum chamber with the aid of a high power fiber laser under inert atmosphere. The laser provides the energy to melt the alloy powder layer. The process allows fabricating fully dense, oxygen-free Cu-Al-Ni specimens using different laser power levels, laser powder interaction times, furnace ambient temperatures, and cooling rates as well as modifying concentration of the alloying elements. Two sets of specimens were fabricated with a nominal composition of Cu-13Al-3Ni and Cu-13Al-4Ni in wt.%, however, semi-quantitative chemical analysis using EDX examination showed that the specimens’ resulting composition was closer to Cu-12Al-5Ni and Cu-11Al-8Ni, respectively. In spite of that fact, it is expected that the specimens should still possess shape memory behavior. To confirm this hypothesis, phase transformation temperatures will be measured using DSC technique, to look for martensitic and austenitic phase transformations at 150°C. So far, metallographic analysis of the specimens showed defined martensitic microstructures. Moreover, XRD technique revealed diffraction peaks corresponding to (0 0 18) and (1 2 8) planes, which are too associated with the presence of martensitic phase. We conclude that it would be possible to obtain fully dense Cu-Al-Ni alloys having shape memory effect behavior by direct laser fabrication process, and to advance into fabrication of self centering seismic dampers by a controllable metal additive manufacturing process.

Keywords: Cu-Al-Ni alloys, direct laser fabrication, shape memory alloy, self-centering seismic dampers

Procedia PDF Downloads 496
269 Evaluation of Azo Dye Toxicity Using Some Haematological and Histopathological Alterations in Fish Catla Catla

Authors: Jagruti Barot

Abstract:

The textile industry plays a major role in the economy of India and on the other side of the coin it is the major source for water pollution. As azo dyes is the largest dye class they are extensively used in many fields such as textile industry, leather tanning industry, paper production, food, colour photography, pharmaceuticals and medicine, cosmetic, hair colourings, wood staining, agricultural, biological and chemical research etc. In addition to these, they can have acute and/or chronic effects on organisms depending on their concentration and length of exposure when they discharged as effluent in the environment. The aim of this study was to assess the genotoxic and histotoxic potentials of environmentally relevant concentrations of RR 120 on Catla catla, important edible freshwater fingerlings. For this, healthy Catla catla fingerlings were procured from the Government Fish Farm and acclimatized in 100 L capacity and continuously aerated glass aquarium in laboratory for 15 days. According to APHA some physic-chemical parameters were measured and maintained such as temperature, pH, dissolve oxygen, alkalinity, total hardness. Water along with excreta had been changed every 24 hrs. All fingerlings were fed artificial food palates once a day @ body weight. After 15 days fingerlings were grouped in 5 (10 in each) and exposed to various concentrations of RR 120 (Control, 10, 20, 30 and 40 mg/L) and samples (peripheral blood and gills, kidney) were collected and analyzed at 96 hrs. of interval. All results were compared with the control. Micronuclei (MN), nuclear buds (NB), fragmented-apoptotic (FA) and bi-nucleated (BN) cells in blood cells and in tissues (gills and kidney cells) were observed. Prominent histopathological alterations were noticed in gills such as aneurism, hyperplasia, degenerated central axis, lifting of gill epithelium, curved secondary gill lamellae etc. Similarly kidney showed some detrimental changes like shrunken glomeruli with increased periglomerular space, degenerated renal tubules etc. Both haematological and histopathological changes clearly reveal the toxic potential of RR 120. This work concludes that water pollution assessment can be done by these two biomarkers which provide baseline to the further chromosomal or molecular work.

Keywords: micronuclei, genotoxicity, RR 120, Catla catla

Procedia PDF Downloads 187
268 Ultra-Fast Growth of ZnO Nanorods from Aqueous Solution: Technology and Applications

Authors: Bartlomiej S. Witkowski, Lukasz Wachnicki, Sylwia Gieraltowska, Rafal Pietruszka, Marek Godlewski

Abstract:

Zinc oxide is extensively studied II-VI semiconductor with a direct energy gap of about 3.37 eV at room temperature and high transparency in visible light spectral region. Due to these properties, ZnO is an attractive material for applications in photovoltaic, electronic and optoelectronic devices. ZnO nanorods, due to a well-developed surface, have potential of applications in sensor technology and photovoltaics. In this work we present a new inexpensive method of the ultra-fast growth of ZnO nanorods from the aqueous solution. This environment friendly and fully reproducible method allows growth of nanorods in few minutes time on various substrates, without any catalyst or complexing agent. Growth temperature does not exceed 50ºC and growth can be performed at atmospheric pressure. The method is characterized by simplicity and allows regulation of size of the ZnO nanorods in a large extent. Moreover the method is also very safe, it requires organic, non-toxic and low-price precursors. The growth can be performed on almost any type of substrate through the homo-nucleation as well as hetero-nucleation. Moreover, received nanorods are characterized by a very high quality - they are monocrystalline as confirmed by XRD and transmission electron microscopy. Importantly oxygen vacancies are not found in the photoluminescence measurements. First results for obtained by us ZnO nanorods in sensor applications are very promising. Resistance UV sensor, based on ZnO nanorods grown on a quartz substrates shows high sensitivity of 20 mW/m2 (2 μW/cm2) for point contacts, especially that the results are obtained for the nanorods array, not for a single nanorod. UV light (below 400 nm of wavelength) generates electron-hole pairs, which results in a removal from the surfaces of the water vapor and hydroxyl groups. This reduces the depletion layer in nanorods, and thus lowers the resistance of the structure. The so-obtained sensor works at room temperature and does not need the annealing to reset to initial state. Details of the technology and the first sensors results will be presented. The obtained ZnO nanorods are also applied in simple-architecture photovoltaic cells (efficiency over 12%) in conjunction with low-price Si substrates and high-sensitive photoresistors. Details informations about technology and applications will be presented.

Keywords: hydrothermal method, photoresistor, photovoltaic cells, ZnO nanorods

Procedia PDF Downloads 414
267 Variation of Litter Chemistry under Intensified Drought: Consequences on Flammability

Authors: E. Ormeno, C. Gutigny, J. Ruffault, J. Madrigal, M. Guijarro, C. Lecareux, C. Ballini

Abstract:

Mediterranean plant species feature numerous metabolic and morpho-physiological responses crucial to survive under both, typical Mediterranean drought conditions and future aggravated drought expected by climate change. Whether these adaptive responses will, in turn, increase the ecosystem perturbation in terms of fire hazard, is an issue that needs to be addressed. The aim of this study was to test whether recurrent and aggravated drought in the Mediterranean area favors the accumulation of waxes in leaf litter, with an eventual increase of litter flammability. The study was conducted in 2017 in a garrigue in Southern France dominated by Quercus coccifera, where two drought treatments were used: a treatment with recurrent aggravated drought consisting of ten rain exclusion structures which withdraw part of the annual precipitation since January 2012, and a natural drought treatment where Q. coccifera stands are free of such structures and thus grow under natural precipitation. Waxes were extracted with organic solvent and analyzed by GC-MS and litter flammability was assessed through measurements of the ignition delay, flame residence time and flame intensity (flame height) using an epiradiator as well as the heat of combustion using an oxygen bomb calorimeter. Results show that after 5 years of rain restriction, wax content in the cuticle of leaf litter increases significantly compared to shrubs growing under natural precipitation, in accordance with the theoretical knowledge which expects increases of cuticle waxes in green leaves in order to limit water evapotranspiration. Wax concentrations were also linearly and positively correlated to litter flammability, a correlation that lies on the high flammability own to the long-chain alkanes (C25-C31) found in leaf litter waxes. This innovative investigation shows that climate change is likely to favor ecosystem fire hazard through accumulation of highly flammable waxes in litter. It also adds valuable information about the types of metabolites that are associated with increasing litter flammability, since so far, within the leaf metabolic profile, only terpene-like compounds had been related to plant flammability.

Keywords: cuticular waxes, drought, flammability, litter

Procedia PDF Downloads 147