Search results for: machine resistance training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9502

Search results for: machine resistance training

8002 Machine Learning Invariants to Detect Anomalies in Secure Water Treatment

Authors: Jonathan Heng, Yoong Cheah Huei

Abstract:

A strategic model that does not trigger any false alarms to detect anomalies in Secure Water Treatment (SWaT) test bed is presented. This model uses machine learning invariants formulated from streamlining the general form of Auto-Regressive models with eXogenous input. A creative generalized CUSUM algorithm to integrate the invariants and the detection strategy technique is successfully developed and tested in the SWaT Programmable Logic Controllers (PLCs). Three steps to fine-tune parameters, b and τ in the generalized algorithm are stated and an example used to demonstrate the tuning process is discussed. This approach can swiftly and effectively detect various scopes of cyber-attacks such as multiple points single stage and multiple points multiple stages in SWaT. This technique can be applied in water treatment plants and other cyber physical systems like power and gas plants too.

Keywords: machine learning invariants, generalized CUSUM algorithm with invariants and detection strategy, scope of cyber attacks, strategic model, tuning parameters

Procedia PDF Downloads 179
8001 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment

Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay

Abstract:

Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.

Keywords: machine learning, system performance, performance metrics, IoT, edge

Procedia PDF Downloads 193
8000 Longevity of Soybean Seeds Submitted to Different Mechanized Harvesting Conditions

Authors: Rute Faria, Digo Moraes, Amanda Santos, Dione Morais, Maria Sartori

Abstract:

Seed vigor is a fundamental component for the good performance of the entire soybean production process. Seeds with mechanical damage at harvest time will be more susceptible to fungal and insect attack during storage, which will invariably reduce their vigor to the field, compromising uniformity and final stand performance. Harvesters, even the most modern ones, when not properly regulated or operated, can cause irreversible damages to the seeds, compromising even their commercialization. Therefore, the control of an efficient harvest is necessary in order to guarantee a good quality final product. In this work, the damage caused by two different harvesters (one rented, and another one) was evaluated, traveling in two speeds (4 and 8 km / h). The design was completely randomized in 2 x 2 factorial, with four replications. To evaluate the physiological quality seed germination and vigor tests were carried out over a period of six months. A multivariate analysis of Principal Components (PCA) and clustering allowed us to verify that the leased machine had better performance in the incidence of immediate damages in the seeds, but after a storage period of 6 months the vigor of these seeds reduced more than own machine evidencing that such a machine would bring more damages to the seeds.

Keywords: Glycine max (L.), cluster analysis, PCA, vigor

Procedia PDF Downloads 254
7999 Investigation on the Fire Resistance of Ultra-High Performance Concrete with Natural Fibers

Authors: Dong Zhang, Kang Hai Tan, Aravind Dasari

Abstract:

Increasing concern on environmental sustainability and waste management has driven the construction and building sector towards renewable materials. In this work, we have explored the usage of natural fibers as an alternative to synthetic fibers like polypropylene (PP) in ultra-high performance concrete (UHPC). PP fibers are incorporated into concrete to resist explosive thermal spalling of UHPC during a fire exposure scenario. Experimental studies on the effect of natural fiber on the mechanical properties and spalling resistance of UHCP were conducted. The residual mechanical properties of UHPC with natural fibers were tested after heating to different temperatures. Spalling behavior of UHPC with natural fibers is also assessed by heating the samples according to ISO 834 fire curve. A range of analytical, physical and microscopic characterization techniques was also used on the concrete samples before and after being subjected to elevated temperature to investigate the phase and microstructural change of the sample. The findings show that natural fibers are able to improve fire resistance of UHPC. Adding natural fibers can prevent UHPC from spalling at high temperature. This study provides an alternative, which is at low cost and environmentally friendly, to prevent spalling of UHPC.

Keywords: high temperature, natural fiber, spalling, ultra-high performance concrete

Procedia PDF Downloads 175
7998 Multiple Negative-Differential Resistance Regions Based on AlN/GaN Resonant Tunneling Structures by the Vertical Growth of Molecular Beam Epitaxy

Authors: Yao Jiajia, Wu Guanlin, LIU Fang, Xue Junshuai, Zhang Jincheng, Hao Yue

Abstract:

Resonant tunneling diodes (RTDs) based on GaN have been extensively studied. However, no results of multiple logic states achieved by RTDs were reported by the methods of epitaxy in the GaN materials. In this paper, the multiple negative-differential resistance regions by combining two discrete double-barrier RTDs in series have been first demonstrated. Plasma-assisted molecular beam epitaxy (PA-MBE) was used to grow structures consisting of two vertical RTDs. The substrate was a GaN-on-sapphire template. Each resonant tunneling structure was composed of a double barrier of AlN and a single well of GaN with undoped 4-nm space layers of GaN on each side. The AlN barriers were 1.5 nm thick, and the GaN well was 2 nm thick. The resonant tunneling structures were separated from each other by 30-nm thick n+ GaN layers. The bottom and top layers of the structures, grown neighboring to the spacer layers that consist of 200-nm-thick n+ GaN. These devices with two tunneling structures exhibited uniform peaks and valleys current and also had two negative differential resistance NDR regions equally spaced in bias voltage. The current-voltage (I-V) characteristics of resonant tunneling structures with diameters of 1 and 2 μm were analyzed in this study. These structures exhibit three stable operating points, which are investigated in detail. This research demonstrates that using molecular beam epitaxy MBE to vertically grow multiple resonant tunneling structures is a promising method for achieving multiple negative differential resistance regions and stable logic states. These findings have significant implications for the development of digital circuits capable of multi-value logic, which can be achieved with a small number of devices.

Keywords: GaN, AlN, RTDs, MBE, logic state

Procedia PDF Downloads 90
7997 A Hybrid Model of Goal, Integer and Constraint Programming for Single Machine Scheduling Problem with Sequence Dependent Setup Times: A Case Study in Aerospace Industry

Authors: Didem Can

Abstract:

Scheduling problems are one of the most fundamental issues of production systems. Many different approaches and models have been developed according to the production processes of the parts and the main purpose of the problem. In this study, one of the bottleneck stations of a company serving in the aerospace industry is analyzed and considered as a single machine scheduling problem with sequence-dependent setup times. The objective of the problem is assigning a large number of similar parts to the same shift -to reduce chemical waste- while minimizing the number of tardy jobs. The goal programming method will be used to achieve two different objectives simultaneously. The assignment of parts to the shift will be expressed using the integer programming method. Finally, the constraint programming method will be used as it provides a way to find a result in a short time by avoiding worse resulting feasible solutions with the defined variables set. The model to be established will be tested and evaluated with real data in the application part.

Keywords: constraint programming, goal programming, integer programming, sequence-dependent setup, single machine scheduling

Procedia PDF Downloads 235
7996 The Effect of Hydroxyl Ethyl Cellulose (HEC) and Hydrophobically-Modified Alkali Soluble Emulsions (HASE) on the Properties and Quality of Water Based Paints

Authors: Haleden Chiririwa, Sandile S. Gwebu

Abstract:

The coatings industry is a million dollar business, and it is easy and inexpensive to set-up but it is growing very slowly in developing countries, and this study developed a paint formulation which gives better quality and good application properties. The effect of rheology modifiers, i.e. non-ionic polymers hydrophobically-modified ethoxylated urethanes (HEUR), anionic polymers hydrophobically-modified alkali soluble emulsions (HASE) and hydroxyl ethyl cellulose (HEC) on the quality and properties of water-based paints have been investigated. HEC provides the in-can viscosity and increases open working time while HASE improves application properties like spatter resistance and brush loading and HEUR provides excellent scrub resistance. Four paint recipes were prepared using four different thickeners HEC, HASE (carbopol) and Cellulose nitrate. The fourth formulation was thickened with a combination of HASE and HEC, this aimed at improving quality and at the same time reducing cost. The four samples were tested for quality tests such viscosity, sag resistance, volatile matter, tinter effect, drying times, hiding power, scrub resistance and stability on storage. Environmental factors were incorporated in the attempt to formulate an economic and green product. Hydroxyl ethyl cellulose and cellulose nitrate gave high quality and good properties of the paint. HEC and Cellulose nitrate showed stability on storage whereas carbopol thickener was very unstable.

Keywords: properties, thickeners, rheology modifiers, water based paints

Procedia PDF Downloads 267
7995 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 249
7994 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 85
7993 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 115
7992 Synthesis and Characterization of Renewable Resource Based Green Epoxy Coating

Authors: Sukanya Pradhan, Smita Mohanty, S. K Nayak

Abstract:

Plant oils are a great renewable source for being a reliable starting material to access new products with a wide spectrum of structural and functional variations. Even though petroleum products might also render the same, but it would also impose a high risk factor of environmental and health hazard. Since epoxidized vegetable oils are easily available, eco-compatible, non-toxic and renewable, hence these have drawn much of the attentions in the polymer industrial sector especially for the development of eco-friendly coating materials. In this study a waterborne epoxy coating was prepared from epoxidized soyabean oil by using triethanolamine. Because of its hydrophobic nature, it was a tough and tedius task to make it hydrophilic. The hydrophobic biobased epoxy was modified into waterborne epoxy by the help of a plant based anhydride as curing agent. Physico-mechanical, chemical resistance tests and thermal analysis of the green coating material were carried out which showed good physic-mechanical, chemical resistance properties as well as environment friendly. The complete characterization of the final material was done in terms of scratch hardness, gloss test, impact resistance, adhesion and bend test.

Keywords: epoxidized soybean oil, waterborne, curing agent, green coating

Procedia PDF Downloads 540
7991 An Enhanced Support Vector Machine Based Approach for Sentiment Classification of Arabic Tweets of Different Dialects

Authors: Gehad S. Kaseb, Mona F. Ahmed

Abstract:

Arabic Sentiment Analysis (SA) is one of the most common research fields with many open areas. Few studies apply SA to Arabic dialects. This paper proposes different pre-processing steps and a modified methodology to improve the accuracy using normal Support Vector Machine (SVM) classification. The paper works on two datasets, Arabic Sentiment Tweets Dataset (ASTD) and Extended Arabic Tweets Sentiment Dataset (Extended-AATSD), which are publicly available for academic use. The results show that the classification accuracy approaches 86%.

Keywords: Arabic, classification, sentiment analysis, tweets

Procedia PDF Downloads 146
7990 Mobile Mediated Learning and Teachers Education in Less Resourced Region

Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharana

Abstract:

Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.

Keywords: computer assisted learning, intelligent tutoring system, learner centered design, mobile mediated learning and teacher education

Procedia PDF Downloads 289
7989 The Evaluation of the Cognitive Training Program for Older Adults with Mild Cognitive Impairment: Protocol of a Randomized Controlled Study

Authors: Hui-Ling Yang, Kuei-Ru Chou

Abstract:

Background: Studies show that cognitive training can effectively delay cognitive failure. However, there are several gaps in the previous studies of cognitive training in mild cognitive impairment: 1) previous studies enrolled mostly healthy older adults, with few recruiting older adults with cognitive impairment; 2) they also had limited generalizability and lacked long-term follow-up data and measurements of the activities of daily living functional impact. Moreover, only 37% were randomized controlled trials (RCT). 3) Limited cognitive training has been specifically developed for mild cognitive impairment. Objective: This study sought to investigate the changes in cognitive function, activities of daily living and degree of depressive symptoms in older adults with mild cognitive impairment after cognitive training. Methods: This double-blind randomized controlled study has a 2-arm parallel group design. Study subjects are older adults diagnosed with mild cognitive impairment in residential care facilities. 124 subjects will be randomized by the permuted block randomization, into intervention group (Cognitive training, CT), or active control group (Passive information activities, PIA). Therapeutic adherence, sample attrition rate, medication compliance and adverse events will be monitored during the study period, and missing data analyzed using intent-to-treat analysis (ITT). Results: Training sessions of the CT group are 45 minutes/day, 3 days/week, for 12 weeks (36 sessions each). The training of active control group is the same as CT group (45min/day, 3days/week, for 12 weeks, for a total of 36 sessions). The primary outcome is cognitive function, using the Mini-Mental Status Examination (MMSE); the secondary outcome indicators are: 1) activities of daily living, using the Lawton’s Instrumental Activities of Daily Living (IADLs) and 2) degree of depressive symptoms, using the Geriatric Depression Scale-Short form (GDS-SF). Latent growth curve modeling will be used in the repeated measures statistical analysis to estimate the trajectory of improvement by examining the rate and pattern of change in cognitive functions, activities of daily living and degree of depressive symptoms for intervention efficacy over time, and the effects will be evaluated immediate post-test, 3 months, 6 months and one year after the last session. Conclusions: We constructed a rigorous CT program adhering to the Consolidated Standards of Reporting Trials (CONSORT) reporting guidelines. We expect to determine the improvement in cognitive function, activities of daily living and degree of depressive symptoms of older adults with mild cognitive impairment after using the CT.

Keywords: mild cognitive impairment, cognitive training, randomized controlled study

Procedia PDF Downloads 447
7988 Dental Education in Brazil: A Systematic Literature Review

Authors: Fabiane Alves Farias Guimarães, Rodrigo Otávio Moretti-Pires, Ana Lúcia Schaefer Ferreira de Mello

Abstract:

Introduction: Considering the last changes in Brazilian Health and Higher Educational Systems, the production of scientific knowledge regarding dental education and training has been increasing. The National Curriculum Guidelines for undergraduate courses in Dentistry established in 2002 the principles and procedures to perform a more generalist dental professional profile. Objectives: To perform a systematic review of the Brazilian scientific literature about dental education and training. Methods: The systematic review was conducted considering the Lilacs - Latin American Literature in Health Sciences and SciELO - Scientific Electronic Library Online data bases, using the combination of key words dentistry, education, teaching or training. It was select original research articles, published between 2010 and 2013, in Portuguese. Results: Based on the selection criteria, it was found 23 articles. In order to organize the outcomes, the analysis was separated in three themes: Ethical aspects of education (3 articles), integrating dental service with training (10 articles) and Dental education and the Brazilian curriculum guidelines (10 articles). Most of the studies were published between 2011 and 2012 (35% each) and were held in public universities. The studied populations included dental students, teachers, universities directors, health managers and dentists. The qualitative methodological approach was predominant. Conclusion: It was possible to identify a transience time in Brazilian undergraduate courses in Dentistry after curricular changes. The produced literature shows some advances, as the incorporation of ethical values on dental education and the inclusion of new practices environments for students by integrating education and training in diversified dental services scenarios.

Keywords: Teaching, Dental Students, Human resources in dentistry

Procedia PDF Downloads 531
7987 Improving the Compaction Properties and Shear Resistance of Sand Reinforced with COVID-19 Waste Mask Fibers

Authors: Samah Said, Muhsin Elie Rahhal

Abstract:

Due to the COVID-19 pandemic, disposable plastic-based face masks were excessively used worldwide. Therefore, the production and consumption rates of these masks were significantly brought up, which led to severe environmental problems. The main purpose of this research is to test the possibility of reinforcing soil deposits with mask fibers to reuse pandemic-generated waste materials. When testing the compaction properties, the sand was reinforced with a fiber content that increased from 0% to 0.5%, with successive small increments of 0.1%. The optimum content of 0.1% remarkably increased the maximum dry density of the soil and dropped its optimum moisture content. Add to that, it was noticed that 15 mm and rectangular chips were, respectively, the optimum fiber length and shape to maximize the improvement of the sand compaction properties. Regarding the shear strength, fiber contents of 0.1%, 0.25%, and 0.5% were adopted. The direct shear tests have shown that the highest enhancement was observed for the optimum fiber content of 0.25%. Similarly to compaction tests, 15 mm and rectangular chips were respectively the optimum fiber length and shape to extremely enhance the shear resistance of the tested sand.

Keywords: COVID-19, mask fibers, compaction properties, soil reinforcement, shear resistance

Procedia PDF Downloads 95
7986 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 70
7985 Investigation on the Functional Expectation and Professional Support Needs of Special Education Resource Center

Authors: Hongxia Wang, Yanjie Wang, Xiuqin Wang, Linlin Mo, Shuangshuang Niu

Abstract:

Special Education Resource Center (SERC) is the localized product in the development of inclusive education in People’s Republic of China, which provides professional support and service for the students with special education needs(SEN) and their parents, teachers as well as inclusive schools. The study investigated 155 administrators, resource teachers and inclusive education teachers from primary and secondary schools in Beijing. The results indicate that: (1) The surveyed teachers put highest expectation of SERC on specialized guidance and teacher training , instead of research and administration function; (2) Each dimension of professional support needs gets higher scores, in which individual guidance gets highest score, followed by instruction guidance, psychological counseling, proposing suggestions, informational support and teacher training; (3) locality and training experience of surveyed teachers significantly influence their expectations and support needs of SERC.

Keywords: special education resource center (SERC) , functional expectation, professional support needs, support system

Procedia PDF Downloads 377
7984 Automatic Teller Machine System Security by Using Mobile SMS Code

Authors: Husnain Mushtaq, Mary Anjum, Muhammad Aleem

Abstract:

The main objective of this paper is used to develop a high security in Automatic Teller Machine (ATM). In these system bankers will collect the mobile numbers from the customers and then provide a code on their mobile number. In most country existing ATM machine use the magnetic card reader. The customer is identifying by inserting an ATM card with magnetic card that hold unique information such as card number and some security limitations. By entering a personal identification number, first the customer is authenticated then will access bank account in order to make cash withdraw or other services provided by the bank. Cases of card fraud are another problem once the user’s bank card is missing and the password is stolen, or simply steal a customer’s card & PIN the criminal will draw all cash in very short time, which will being great financial losses in customer, this type of fraud has increase worldwide. So to resolve this problem we are going to provide the solution using “Mobile SMS code” and ATM “PIN code” in order to improve the verify the security of customers using ATM system and confidence in the banking area.

Keywords: PIN, inquiry, biometric, magnetic strip, iris recognition, face recognition

Procedia PDF Downloads 361
7983 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique

Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani

Abstract:

Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.

Keywords: regression, machine learning, scan radiation, robot

Procedia PDF Downloads 76
7982 Early Prediction of Disposable Addresses in Ethereum Blockchain

Authors: Ahmad Saleem

Abstract:

Ethereum is the second largest crypto currency in blockchain ecosystem. Along with standard transactions, it supports smart contracts and NFT’s. Current research trends are focused on analyzing the overall structure of the network its growth and behavior. Ethereum addresses are anonymous and can be created on fly. The nature of Ethereum network and addresses make it hard to predict their behavior. The activity period of an ethereum address is not much analyzed. Using machine learning we can make early prediction about the disposability of the address. In this paper we analyzed the lifetime of the addresses. We also identified and predicted the disposable addresses using machine learning models and compared the results.

Keywords: blockchain, Ethereum, cryptocurrency, prediction

Procedia PDF Downloads 96
7981 Family Satisfaction with Neuro-Linguistic Care for Patients with Alzheimer’s Disease

Authors: Sara Sahraoui

Abstract:

This research studied the effect of Alzheimer's disease (AD) on language information processing in subjects with Alzheimer’s disease (AD) who were bilingual (French and dialectical Arabic). The results show a disorder of certain semantic aspects of their mother tongue (L1). On the other hand, grammatical levels appeared to be relatively unaffected in oral speech in L1 but were disturbed in the second language (L2). In consequence, we constructed a cognitive-language stimulation protocol for bilingual patients (PSCLAB) to respond to this disorder. The efficacy of this protocol in terms of rehabilitation was assessed in 30 such patients through discourse analysis carried out before and after initiating the protocol. The results show that cognitive/language training using the PSCLAB appears to improve the language behaviour of bilingual patients with AD. However, this survey study aims to verify the satisfaction of patients’ relatives with the results of cognitive language training by PSCLAB. We developed a brief instrument to measure the satisfaction of family members. The results report that the patient's relatives are satisfied with the results of cognitive training by PSCLAB.

Keywords: satisfaction, Alzheimer's disease, rehabilitation, levels language

Procedia PDF Downloads 77
7980 Cladode features in Opuntia ficus-indica resistant cultivars to Dactylopius coccus Costa

Authors: Yemane Kahsay Berhe

Abstract:

The multipurpose cactus pear plant with great potential as a source of food and livestock feed faced a threat from Dactylopius spp in different countries. Specifically, D. coccus is an important pest damaging significant areas in Tigray-Ethiopia. Using pest-resistant cultivars is an important element of an integrated pest management strategy, and studying the mechanisms of resistance is vital. It can be chemical or physical, such as oxalate crystals and other cladode characteristics. Cladode features of six cultivars (three O. ficus-indica, two O. cochenillifera, and one O. robusta) were examined for resistance to D. coccus in a completely randomized design (CRD) with three replications. ‘Rojo Pelón’ (O. ficus-indica), ‘Robusta’ (O. robusta), and ‘Bioplástico’ (O. cochinillifera) are resistant cultivars; and ‘Atlixco’ and ‘Chicomostoc’ (O. ficus-indica) and ‘Nopalea’ (O. cochinillifera) are susceptible. Cultivars showed a significant difference in cladode weight in g, cladode length, cladode width, and cladode thickness in cm, where cladode thickness was higher in ‘Rojo Pelón’ followed by ‘Robusta’. Calcium oxalates number per mm was higher in ‘Bioplástico’ (20.7+2.08) followed by ‘Robusta’ (18.9+2.31) and ‘Rojo Pelón’ (15.9+0.34); and similarly, epidermis thickness found higher in ‘Bioplástico’ (0.21+0.032) and ‘Robusta’ (0.19+0.014), but similar with ‘Rojo Pelón’ (0.18+0.026). However, cuticle thickness didn’t show a difference among cultivars. Cladode thickness, calcium oxalates number, and epidermis thickness had positive correlations with resistance. These results demonstrate that calcium oxalates number and epidermis thickness might positively affect D. coccus resistance in O. ficus-indica. This feeding-barring role and the insect-plant interaction need to be studied.

Keywords: cactus pear, resiatnce, druses, epidermis thickness

Procedia PDF Downloads 71
7979 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 221
7978 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity

Authors: Shaan Khosla, Jon Krohn

Abstract:

In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.

Keywords: AI, machine learning, NLP, recruiting

Procedia PDF Downloads 83
7977 Indoor Temperature Estimation with FIR Filter Using R-C Network Model

Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn

Abstract:

In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter

Procedia PDF Downloads 445
7976 Studies on Virulence Factors Analysis in Streptococcus agalactiae from the Clinical Isolates

Authors: Natesan Balasubramanian, Palpandi Pounpandi, Venkatraman Thamil Priya, Vellasamy Shanmugaiah, Karubbiah Balakrishnan, Mandayam Anandam Thirunarayan

Abstract:

Streptococcus agalactiae is commonly known as Group B Streptococcus (GBS) and it is the most common cause of life-threatening bacterial infection. GBS first considered as a veterinary pathogen causing mastitis in cattle later becomes a human pathogen for severe neonatal infections. In this present study, a total of 20 new clinical isolates of S. agalactiae were collected from male (6) and female patient (14) with different age group. The isolates were from Urinary tract infection (UTI), blood, pus and eye ulcer. All the 20 S. agalactiae isolates has clear hemolysis properties on blood agar medium and were identified by serogrouping and MALTI-TOF-MS analysis. Antibiotic susceptibility/resistance test was performed for 20 S. agalactiae isolates, further phenotypic resistance pattern was observed for tetracycline, vancomycin, ampicillin and penicillin. Genotypically we found two antibiotic resistance genes such as Betalactem antibiotic resistance gene (Tem) (70%) and tetracycline resistance gene Tet(O) 15% in our isolates. Six virulence factors encoding genes were performed by PCR in twenty GBS isolates, cfb gene (100%), followed by, cylE(90.47%), lmp(85.7%), bca(71.42%), rib (38%) and low frequency in bac gene (4.76%) were determined. Most of the S. agalactiae isolates produced strong biofilm in the polystyrene surface (hydrophobic), and low-level biofilm formation was found in glass tube (hydrophilic) surface. lytR is secreted protein and localized in bacterial cell wall, extra cellular membrane, and cytoplasm. In silico docking studies were performed for lytR protein with four antibiofilm compounds, including a peptide (PR39) with the docking study showed peptide has strong interaction followed by ellagic acid and interaction length is 2.95, 2.97 and 2.95 A°. In ligand EGCGO10 and O11 two atoms intract with lytR (Leu271), with binding bond affinity length is 3.24 and 3.14. The aminoacid Leu 271 is act as an impartant aminoacid, since ellagic acid and EGCG interact with same aminoacid.

Keywords: antibiotics, biofilms, clinical isolates, S. agalactiae, virulence

Procedia PDF Downloads 106
7975 Research and Development of Lightweight Repair Mortars with Focus on Their Resistance to High Temperatures

Authors: Tomáš Melichar, Jiří Bydžovský, Vít Černý

Abstract:

In this article our research focused on study of basic physical and mechanical parameters of polymer-cement repair materials is presented. Namely the influence of applied aggregates in combination with active admixture is specially considered. New formulas which were exposed in ambient with temperature even to 1000°C were suggested. Subsequently densities and strength characteristics including their changes were evaluated. Selected samples were analyzed using electron microscope. The positive influence of porous aggregates based on sintered ash was definitely demonstrated. Further it was found than in terms of thermal resistance the effective micro silica amount represents 5% to 7.5% of cement weight.

Keywords: aggregate, ash, high, lightweight, microsilica, mortar, polymer-cement, repair, temperature

Procedia PDF Downloads 425
7974 Analysis of Latest Fitness Trends in India

Authors: Amita Rana

Abstract:

From the ancient to modern times, the nature of fitness activities has varied. We can choose any form of exercise that is suitable for our particular need. Watchers of fitness trends say that the road to better health is paved with new possibilities along with some old ones that are poised to make a comeback. Educated, certified and experienced fitness professionals; strength training; fitness programmes for older adults; exercise and weight loss; children and obesity; personal training; core training; group personal training; Zumba and other dance workouts; functional fitness; yoga; comprehensive health promotion programmes at worksite; boot-camp; outdoor activities; reaching new markets; spinning; sport-specific training; worker incentive programmes; wellness coaching; and physician referrals are among the fitness trends included in worldwide surveys. However, trends related to fitness in India could be the same or different. Hence, the present paper makes an attempt to analyze the latest fitness trends in India. A total of eighteen (18) surveys were shortlisted on the basis of their relevance to the present topic of study and were arranged in descending order of their chronology. Content analysis was done after the preliminary set of data collection, which formed the basis of a group of data. Further, frequency and percentage were used to statistically represent the data. It can be concluded from the analysis of data regarding recent fitness trends in India that yoga dominates the fitness activity list, followed by numerous other activities including running, Zumba and sh’bam, boot camp, boxing, kickboxing, cycling, swimming, TRX, ass-pocalypse, ballet, biking, bokwa fitness, dance-iso-bic, masala bhangra, outdoor activities, pilates, planks, push-ups, sofa workouts, stairs Workouts, tabata training, and twerking. The body weight/ gym-specified/ strength training as well as high intensity interval training dominate the preferred workouts; followed by mixed work-outs, cross training work-outs, express work-outs, functional fitness, natural body movements, personalized training, and stay-at-home workouts. General areas that featured in the latest fitness trends in India demonstrates that the fitness is making an impact on all sections of the society be it children, women, older adults, senior citizens, worksite fitness. Fitness is becoming the lifestyle of the masses. People are doing exercise for weight-loss, combining diet with exercising; prefer sweating, making groups participate in fitness activities and wellness programmes. Technology is another area which has a high impact on the lives of people. They are using wearable technology for workout tracking and following numerous mobile friendly apps.

Keywords: fitness, India, survey, trend

Procedia PDF Downloads 312
7973 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 51