Search results for: improved sparrow search algorithm
7955 Bag of Words Representation Based on Weighting Useful Visual Words
Authors: Fatma Abdedayem
Abstract:
The most effective and efficient methods in image categorization are almost based on bag-of-words (BOW) which presents image by a histogram of occurrence of visual words. In this paper, we propose a novel extension to this method. Firstly, we extract features in multi-scales by applying a color local descriptor named opponent-SIFT. Secondly, in order to represent image we use Spatial Pyramid Representation (SPR) and an extension to the BOW method which based on weighting visual words. Typically, the visual words are weighted during histogram assignment by computing the ratio of their occurrences in the image to the occurrences in the background. Finally, according to classical BOW retrieval framework, only a few words of the vocabulary is useful for image representation. Therefore, we select the useful weighted visual words that respect the threshold value. Experimentally, the algorithm is tested by using different image classes of PASCAL VOC 2007 and is compared against the classical bag-of-visual-words algorithm.Keywords: BOW, useful visual words, weighted visual words, bag of visual words
Procedia PDF Downloads 4367954 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm
Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.
Abstract:
Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control
Procedia PDF Downloads 1307953 A Conglomerate of Multiple Optical Character Recognition Table Detection and Extraction
Authors: Smita Pallavi, Raj Ratn Pranesh, Sumit Kumar
Abstract:
Information representation as tables is compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used; however, industry still faces challenges in detecting and extracting tables from OCR (Optical Character Recognition) documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition, and procedural coding to identify distinct tables in the same image and map the text to appropriate the corresponding cell in dataframe, which can be stored as comma-separated values, database, excel, and multiple other usable formats.Keywords: table extraction, optical character recognition, image processing, text extraction, morphological transformation
Procedia PDF Downloads 1437952 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design
Authors: Do-Jin Jang, Sung-Ah Kim
Abstract:
A kinetic façade responds to user requirements and environmental conditions. In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.Keywords: biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization
Procedia PDF Downloads 5177951 The Mechanism of Design and Analysis Modeling of Performance of Variable Speed Wind Turbine and Dynamical Control of Wind Turbine Power
Authors: Mohammadreza Heydariazad
Abstract:
Productivity growth of wind energy as a clean source needed to achieve improved strategy in production and transmission and management of wind resources in order to increase quality of power and reduce costs. New technologies based on power converters that cause changing turbine speed to suit the wind speed blowing turbine improve extraction efficiency power from wind. This article introduces variable speed wind turbines and optimization of power, and presented methods to use superconducting inductor in the composition of power converter and is proposed the dc measurement for the wind farm and especially is considered techniques available to them. In fact, this article reviews mechanisms and function, changes of wind speed turbine according to speed control strategies of various types of wind turbines and examines power possible transmission and ac from producing location to suitable location for a strong connection integrating wind farm generators, without additional cost or equipment. It also covers main objectives of the dynamic control of wind turbines, and the methods of exploitation and the ways of using it that includes the unique process of these components. Effective algorithm is presented for power control in order to extract maximum active power and maintains power factor at the desired value.Keywords: wind energy, generator, superconducting inductor, wind turbine power
Procedia PDF Downloads 3277950 Emotional Security in Relation to Students' Emotional Efficiency
Authors: Ibtisam Mahmoud Mohammed Sultan
Abstract:
The present research aimed to identify the level of both emotional and emotional competence among students in Tikrit University aimed to know the assumptions in statistical significance for both variables as gender variables (m-f) and specialty (scientific-humanistic), as research to learn what Relationship between emotional safety and efficiency alanfaalet Tikrit University students. The researcher built emotional security measure (54) as built measure emotional competence (46), as the researcher extract full alsaykomtrih characteristics of both scales. The research sample consisted of (600) students selected by the random way and applying the scales on a basic search sample and processed statistical data using a variety of methods, including statistical test (test T.) and Pearson correlation coefficient, the researcher found a set of results. The following: 1. that the Tikrit University students possess a high level of emotional security. 2. to safely enjoy passionate males more than females. 3. that there is no difference between students of scientific and humanitarian specialization in variable emotional security. 4. that the Tikrit University students enjoy a high level of emotional competence. 5. the female-male outperforming in emotional competence level. 6. the humanitarian specialization students Excel in emotional competence for those of specialty. 7. the existence of a positive correlation between variables. Through search results, the researcher has developed a set of conclusions, proposals, and recommendations.Keywords: relation, emotional security, students, efficiency
Procedia PDF Downloads 1207949 Laboratory Investigation on the Waste Road Construction Material Using Conventional and Chemical Additives
Authors: Paulos Meles Yihdego
Abstract:
To address the environmental impact of the cement industry and road building waste, the use of chemical stabilizers in conjunction with recycled asphalt and cement components was investigated. The silica-based chemical stabilizers and their potential effects on the base layer stabilized by cement are discussed in this paper. Strength, moisture compaction interaction, and microstructural characteristics are all examined. According to the outcome, using this stabilizer has improved the mechanical properties. The inclusion of chemical stabilizers in the combination, which is responsible for the mixture's improved strength, raised the intensity of the C-S-H (Calcium Silicate Hydrate) gel, according to a microstructural study. The design was demonstrated to be durable by the little ettringites found in the later phases. The application of this stabilizer ensures a strong, eco-friendly, durable base layer.Keywords: ettringites, microstructure analysis, durability properties, cement stabilized base
Procedia PDF Downloads 617948 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation
Authors: Rizwan Rizwan
Abstract:
This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats
Procedia PDF Downloads 307947 Simulation Data Summarization Based on Spatial Histograms
Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura
Abstract:
In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.Keywords: simulation data, data summarization, spatial histograms, exploration, visualization
Procedia PDF Downloads 1767946 Optimal Energy Management and Environmental Index Optimization of a Microgrid Operating by Renewable and Sustainable Generation Systems
Authors: Nabil Mezhoud
Abstract:
The economic operation of electric energy generating systems is one of the predominant problems in energy systems. Due to the need for better reliability, high energy quality, lower losses, lower cost and a clean environment, the application of renewable and sustainable energy sources, such as wind energy, solar energy, etc., in recent years has become more widespread. In this work, one of a bio-inspired meta-heuristic algorithm inspired by the flashing behavior of fireflies at night called the Firefly Algorithm (FFA) is applied to solve the Optimal Energy Management (OEM) and the environmental index (EI) problems of a micro-grid (MG) operating by Renewable and Sustainable Generation Systems (RSGS). Our main goal is to minimize the nonlinear objective function of an electrical microgrid, taking into account equality and inequality constraints. The FFA approach was examined and tested on a standard MG system composed of different types of RSGS, such as wind turbines (WT), photovoltaic systems (PV), and non-renewable energy, such as fuel cells (FC), micro turbine (MT), diesel generator (DEG) and loads with energy storage systems (ESS). The results are promising and show the effectiveness and robustness of the proposed approach to solve the OEM and the EI problems. The results of the proposed method have been compared and validated with those known references published recently.Keywords: renewable energy sources, energy management, distributed generator, micro-grids, firefly algorithm
Procedia PDF Downloads 767945 Off-Line Parameter Estimation for the Induction Motor Drive System
Authors: Han-Woong Ahn, In-Gun Kim, Hyun-Seok Hong, Dong-Woo Kang, Ju Lee
Abstract:
It is important to accurately identify machine parameters for direct vector control. To obtain the parameter values, traditional methods can be used such as no-load and rotor locked tests. However, there are many differences between values obtained from the traditional tests and actual values. In addition, there are drawbacks that additional equipment and cost are required for the experiment. Therefore, it is hard to temporary operation to estimate induction motor parameters. Therefore, this paper deals with the estimation algorithm of induction motor parameters without a motor operation and the measurement from additional equipment such as sensors and dynamometer. The validity and usefulness of the estimation algorithm considering inverter nonlinearity is verified by comparing the conventional method with the proposed method.Keywords: induction motor, parameter, off-line estimation, inverter nonlinearity
Procedia PDF Downloads 5297944 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System
Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar
Abstract:
The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.Keywords: genetic algorithm, energy, exergy, PVT module, optimization
Procedia PDF Downloads 6057943 High Motivational Salient Face Distractors Slowed Target Detection: Evidence from Behavioral Studies
Authors: Rashmi Gupta
Abstract:
Rewarding stimuli capture attention involuntarily as a result of an association process that develops quickly during value learning, referred to as the reward or value-driven attentional capture. It is essential to compare reward with punishment processing to get a full picture of value-based modulation in visual attention processing. Hence, the present study manipulated both valence/value (reward as well as punishment) and motivational salience (probability of an outcome: high vs. low) together. Series of experiments were conducted, and there were two phases in each experiment. In phase 1, participants were required to learn to associate specific face stimuli with a high or low probability of winning or losing points. In the second phase, these conditioned stimuli then served as a distractor or prime in a speeded letter search task. Faces with high versus low outcome probability, regardless of valence, slowed the search for targets (specifically the left visual field target) and suggesting that the costs to performance on non-emotional cognitive tasks were only driven by motivational salience (high vs. loss) associated with the stimuli rather than the valence (gain vs. loss). It also suggests that the processing of motivationally salient stimuli is right-hemisphere biased. Together, results of these studies strengthen the notion that our visual attention system is more sensitive to affected by motivational saliency rather than valence, which termed here as motivational-driven attentional capture.Keywords: attention, distractors, motivational salience, valence
Procedia PDF Downloads 2207942 A Novel Environmentally Benign Positive Electrode Material with Improved Energy Density for Lithium Ion Batteries
Authors: Wassima El Mofid, Svetlozar Ivanov, Andreas Bund
Abstract:
The increasing requirements for high power and energy lithium ion batteries have led to the development of several classes of positive electrode materials. Among those one promising material is LiNixMnyCo1−x−yO2 due to its high reversible capacity and remarkable cycling performance. Further structural stabilization and improved electrochemical performance of this class of cathode materials can be achieved by cationic substitution to a transition metal such as Al, Mg, Cr, etc. The current study discusses a novel NMC type material obtained by simultaneous cationic substitution of the cobalt which is a toxic element, with aluminum and iron. A compound with the composition LiNi0.6Mn0.2Co0.15Al0.025Fe0.025O2 (NMCAF) was synthesized by the self-combustion method using sucrose as fuel. The material has a layered α-NaFeO2 type structure with a good hexagonal ordering. Rietveld refinement analysis of the XRD patterns revealed a very low cationic mixing compared to the non-substituted material LiNi0.6Mn0,2Co0.2O2 suggesting a structural stabilization. Galvanostatic cycling measurements indicate improved electrochemical performance after the metal substitution. An initial discharge capacity of about 190 mAh.g−1 at slow rate (C/20), and a good cycling stability even at moderately faster rates (C/5 and C) have been observed. The long term cycling displayed a capacity retention of about 90% after 10 cycles.Keywords: cationic substitution, lithium ion batteries, positive electrode material, self-combustion synthesis method
Procedia PDF Downloads 4167941 Search for the Sacred: A conceptual Analysis of Divine Relationship
Authors: Monir Ahmed
Abstract:
The main purpose of this paper is to analyze existing conceptual papers on the divine relationship. The primary objective of the paper is to illustrate cognitive orientation as a determinant of divine relationship. A further aim of the paper is to establish whether spiritual or religious practices, rituals, or acts alone could confirm a relationship with the sacred or the divine. Searching for the sacred or the divine is known to be a novel way of understanding the meaning and purpose of human existence, including the existence of everything around us. Inevitably, searching for the sacred provides an opportunity for human beings to form a relationship with the divine. Research suggests that discovering meaning and purpose through searching for the sacred or forming relationship with the divine enhances psychological well-being and eventually helps individuals to flourish. The search for the sacred and the discovery of the divine relationship thus have become interesting areas of study in Psychology of Religion and Spirituality. The existing conceptual papers on the relationship with the transcendent source, i.e., the divine creator, were systematically reviewed and analyzed. The outcome of the review reveals that the existing understanding of the relationship with the divine source is inadequate and that such understanding is unable to indicate or confirm a relationship with psychological well-being, including spiritual well-being. The importance of cognitive orientation, including cognitive processes as well as ‘creatio ex nihilo’ doctrine in searching for the sacred, is indicated. The author of this paper proposes that cognitive-theological understanding involving faith and belief about the creation and the divine source, the transcendent God is likely to offer a comprehensive understanding of the divine relationship.Keywords: divine, well-being, analysis, cognitive orientation, ‘creatio ex nihilo’ doctrine
Procedia PDF Downloads 1507940 Combined Tarsal Coalition Resection and Arthroereisis in Treatment of Symptomatic Rigid Flat Foot in Pediatric Population
Authors: Michael Zaidman, Naum Simanovsky
Abstract:
Introduction. Symptomatic tarsal coalition with rigid flat foot often demands operative solution. An isolated coalition resection does not guarantee pain relief; correction of co-existing foot deformity may be required. The objective of the study was to analyze the results of combination of tarsal coalition resection and arthroereisis. Patients and methods. We retrospectively reviewed medical records and radiographs of children operatively treated in our institution for symptomatic calcaneonavicular or talocalcaneal coalition between the years 2019 and 2022. Eight patients (twelve feet), 4 boys and 4 girls with mean age 11.2 years, were included in the study. In six patients (10 feet) calcaneonavicular coalition was diagnosed, two patients (two feet) sustained talonavicular coalition. To quantify degrees of foot deformity, we used calcaneal pitch angle, lateral talar-first metatarsal (Meary's) angle, and talonavicular coverage angle. The clinical results were assessed using the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Score. Results. The mean follow-up was 28 month. The preoperative mean talonavicular coverage angle was 17,75º as compared with postoperative mean angle of 5.4º. The calcaneal pitch angle improved from mean 6,8º to 16,4º. The mean preoperative Meary’s angle of -11.3º improved to mean 2.8º. The preoperative mean AOFAS score improved from 54.7 to 93.1 points post-operatively. In nine of twelve feet, overall clinical outcome judged by AOFAS scale was excellent (90-100 points), in three feet was good (80-90 points). Six patients (ten feet) obviously improved their subtalar range of motion. Conclusion. For symptomatic stiff or rigid flat feet associated with tarsal coalition, the combination of coalition resection and arthroereisis leads to normalization of radiographic parameters, clinical and functional improvement with good patient’s satisfaction and likely to be more effective than the isolated procedures.Keywords: rigid flat foot, tarsal coalition resection, arthroereisis, outcome
Procedia PDF Downloads 647939 Workforce Optimization: Fair Workload Balance and Near-Optimal Task Execution Order
Authors: Alvaro Javier Ortega
Abstract:
A large number of companies face the challenge of matching highly-skilled professionals to high-end positions by human resource deployment professionals. However, when the professional list and tasks to be matched are larger than a few dozens, this process result is far from optimal and takes a long time to be made. Therefore, an automated assignment algorithm for this workforce management problem is needed. The majority of companies are divided into several sectors or departments, where trained employees with different experience levels deal with a large number of tasks daily. Also, the execution order of all tasks is of mater consequence, due to some of these tasks just can be run it if the result of another task is provided. Thus, a wrong execution order leads to large waiting times between consecutive tasks. The desired goal is, therefore, creating accurate matches and a near-optimal execution order that maximizes the number of tasks performed and minimizes the idle time of the expensive skilled employees. The problem described before can be model as a mixed-integer non-linear programming (MINLP) as it will be shown in detail through this paper. A large number of MINLP algorithms have been proposed in the literature. Here, genetic algorithm solutions are considered and a comparison between two different mutation approaches is presented. The simulated results considering different complexity levels of assignment decisions show the appropriateness of the proposed model.Keywords: employees, genetic algorithm, industry management, workforce
Procedia PDF Downloads 1687938 Research on Pollutant Characterization and Timing Decomposition in Beijing During the 2018-2022
Authors: Gao Fangting
Abstract:
With the accelerated pace of industrialization and urbanization, the economic level has been significantly improved, and at the same time, the air quality situation has also become a focus of attention, which not only affects people's health but also has certain impacts on the economy and ecology. As the capital city of China, the air quality situation in Beijing has attracted much attention. In this paper, based on the day-by-day PM2.5, PM10, CO, NO₂, SO₂ and O₃ conditions in Beijing from 2018 to 2022, the characterization of pollutants is launched, and the seasonal decomposition and prediction of the main pollutants, PM2.5, PM10 and O3, are performed in STL. The results of the study show that (1) the overall air quality of Beijing has significantly improved from 2018 to 2022, and the main pollutants are PM2.5, PM10, and O₃; (2) the seasonal intensities of the main pollutants are higher, and they are influenced by seasonal factors; and (3) it is predicted that the O₃ concentration will have a trend of slowly increasing from 2023 to 2026, and the PM10 and PM2.5 pollution situation slowly improves.Keywords: air pollutants, Beijing, characteristic analysis, STL
Procedia PDF Downloads 217937 The Efficacy of Clobazam for Landau-Kleffner Syndrome
Authors: Nino Gogatishvili, Davit Kvernadze, Giorgi Japharidze
Abstract:
Background and aims: Landau Kleffner syndrome (LKS) is a rare disorder with epileptic seizures and acquired aphasia. It usually starts in initially healthy children. The first symptoms are language regression and behavioral disturbances, and the sleep EEG reveals abnormal epileptiform activity. The aim was to discuss the efficacy of Clobazam for Landau Kleffner syndrome. Case report: We report a case of an 11-year-old boy with an uneventful pregnancy and delivery. He began to walk at 11 months and speak with simple phrases at the age of 2,5 years. At the age of 18 months, he had febrile convulsions; at the age of 5 years, the parents noticed language regression, stuttering, and serious behavioral dysfunction, including hyperactivity, temper outbursts. The epileptic seizure was not noticed. MRI was without any abnormality. Neuropsychological testing revealed verbal auditory agnosia. Sleep EEG showed abundant left fronto-temporal spikes, reaching over 85% during non-rapid eye movement sleep (non-REM sleep). Treatment was started with Clobazam. After ten weeks, EEG was improved. Stuttering and behavior also improved. Results: Since the start of Clobazam treatment, stuttering and behavior improved. Now, he is 11 years old, without antiseizure medication. Sleep EEG shows fronto-temporal spikes on the left side, over 10-49 % of non-REM sleep, bioccipital spikes, and slow-wave discharges and spike-waves. Conclusions: This case provides further support for the efficacy of Clobazam in patients with LKS.Keywords: Landau-Kleffner syndrome, antiseizure medication, stuttering, aphasia
Procedia PDF Downloads 667936 Implementation of Algorithm K-Means for Grouping District/City in Central Java Based on Macro Economic Indicators
Authors: Nur Aziza Luxfiati
Abstract:
Clustering is partitioning data sets into sub-sets or groups in such a way that elements certain properties have shared property settings with a high level of similarity within one group and a low level of similarity between groups. . The K-Means algorithm is one of thealgorithmsclustering as a grouping tool that is most widely used in scientific and industrial applications because the basic idea of the kalgorithm is-means very simple. In this research, applying the technique of clustering using the k-means algorithm as a method of solving the problem of national development imbalances between regions in Central Java Province based on macroeconomic indicators. The data sample used is secondary data obtained from the Central Java Provincial Statistics Agency regarding macroeconomic indicator data which is part of the publication of the 2019 National Socio-Economic Survey (Susenas) data. score and determine the number of clusters (k) using the elbow method. After the clustering process is carried out, the validation is tested using themethodsBetween-Class Variation (BCV) and Within-Class Variation (WCV). The results showed that detection outlier using z-score normalization showed no outliers. In addition, the results of the clustering test obtained a ratio value that was not high, namely 0.011%. There are two district/city clusters in Central Java Province which have economic similarities based on the variables used, namely the first cluster with a high economic level consisting of 13 districts/cities and theclustersecondwith a low economic level consisting of 22 districts/cities. And in the cluster second, namely, between low economies, the authors grouped districts/cities based on similarities to macroeconomic indicators such as 20 districts of Gross Regional Domestic Product, with a Poverty Depth Index of 19 districts, with 5 districts in Human Development, and as many as Open Unemployment Rate. 10 districts.Keywords: clustering, K-Means algorithm, macroeconomic indicators, inequality, national development
Procedia PDF Downloads 1587935 An Efficient Subcarrier Scheduling Algorithm for Downlink OFDMA-Based Wireless Broadband Networks
Authors: Hassen Hamouda, Mohamed Ouwais Kabaou, Med Salim Bouhlel
Abstract:
The growth of wireless technology made opportunistic scheduling a widespread theme in recent research. Providing high system throughput without reducing fairness allocation is becoming a very challenging task. A suitable policy for resource allocation among users is of crucial importance. This study focuses on scheduling multiple streaming flows on the downlink of a WiMAX system based on orthogonal frequency division multiple access (OFDMA). In this paper, we take the first step in formulating and analyzing this problem scrupulously. As a result, we proposed a new scheduling scheme based on Round Robin (RR) Algorithm. Because of its non-opportunistic process, RR does not take in account radio conditions and consequently it affect both system throughput and multi-users diversity. Our contribution called MORRA (Modified Round Robin Opportunistic Algorithm) consists to propose a solution to this issue. MORRA not only exploits the concept of opportunistic scheduler but also takes into account other parameters in the allocation process. The first parameter is called courtesy coefficient (CC) and the second is called Buffer Occupancy (BO). Performance evaluation shows that this well-balanced scheme outperforms both RR and MaxSNR schedulers and demonstrate that choosing between system throughput and fairness is not required.Keywords: OFDMA, opportunistic scheduling, fairness hierarchy, courtesy coefficient, buffer occupancy
Procedia PDF Downloads 3007934 A Survey on Genetic Algorithm for Intrusion Detection System
Authors: Prikhil Agrawal, N. Priyanka
Abstract:
With the increase of millions of users on Internet day by day, it is very essential to maintain highly reliable and secured data communication between various corporations. Although there are various traditional security imparting techniques such as antivirus software, password protection, data encryption, biometrics and firewall etc. But still network security has become the main issue in various leading companies. So IDSs have become an essential component in terms of security, as it can detect various network attacks and respond quickly to such occurrences. IDSs are used to detect unauthorized access to a computer system. This paper describes various intrusion detection techniques using GA approach. The intrusion detection problem has become a challenging task due to the conception of miscellaneous computer networks under various vulnerabilities. Thus the damage caused to various organizations by malicious intrusions can be mitigated and even be deterred by using this powerful tool.Keywords: genetic algorithm (GA), intrusion detection system (IDS), dataset, network security
Procedia PDF Downloads 2977933 Quality Fabric Optimization Using Genetic Algorithms
Authors: Halimi Mohamed Taher, Kordoghli Bassem, Ben Hassen Mohamed, Sakli Faouzi
Abstract:
Textile industry has been an important part of many developing countries economies such as Tunisia. This industry is confronted with a challenging and increasing competitive environment. Good quality management in production process is the key factor for retaining existence especially in raw material exploitation. The present work aims to develop an intelligent system for fabric inspection. In the first step, we have studied the method used for fabric control which takes into account the default length and localization in woven. In the second step, we have used a method based on the fuzzy logic to minimize the Demerit point indicator with appropriate total rollers length, so that the quality problem becomes multi-objective. In order to optimize the total fabric quality, we have applied the genetic algorithm (GA).Keywords: fabric control, Fuzzy logic, genetic algorithm, quality management
Procedia PDF Downloads 5917932 Supervised Learning for Cyber Threat Intelligence
Authors: Jihen Bennaceur, Wissem Zouaghi, Ali Mabrouk
Abstract:
The major aim of cyber threat intelligence (CTI) is to provide sophisticated knowledge about cybersecurity threats to ensure internal and external safeguards against modern cyberattacks. Inaccurate, incomplete, outdated, and invaluable threat intelligence is the main problem. Therefore, data analysis based on AI algorithms is one of the emergent solutions to overcome the threat of information-sharing issues. In this paper, we propose a supervised machine learning-based algorithm to improve threat information sharing by providing a sophisticated classification of cyber threats and data. Extensive simulations investigate the accuracy, precision, recall, f1-score, and support overall to validate the designed algorithm and to compare it with several supervised machine learning algorithms.Keywords: threat information sharing, supervised learning, data classification, performance evaluation
Procedia PDF Downloads 1487931 A Systematic Review: Prevalence and Risk Factors of Low Back Pain among Waste Collection Workers
Authors: Benedicta Asante, Brenna Bath, Olugbenga Adebayo, Catherine Trask
Abstract:
Background: Waste Collection Workers’ (WCWs) activities contribute greatly to the recycling sector and are an important component of the waste management industry. As the recycling sector evolves, reports of injuries and fatal accidents in the industry demand notice particularly common and debilitating musculoskeletal disorders such as low back pain (LBP). WCWs are likely exposed to diverse work-related hazards that could contribute to LBP. However, to our knowledge there has never been a systematic review or other synthesis of LBP findings within this workforce. The aim of this systematic review was to determine the prevalence and risk factors of LBP among WCWs. Method: A comprehensive search was conducted in Ovid Medline, EMBASE, and Global Health e-publications with search term categories ‘low back pain’ and ‘waste collection workers’. Articles were screened at title, abstract, and full-text stages by two reviewers. Data were extracted on study design, sampling strategy, socio-demographic, geographical region, and exposure definition, definition of LBP, risk factors, response rate, statistical techniques, and LBP prevalence. Risk of bias (ROB) was assessed based on Hoy Damien’s ROB scale. Results: The search of three databases generated 79 studies. Thirty-two studies met the study inclusion criteria for both title and abstract; thirteen full-text articles met the study criteria at the full-text stage. Seven articles (54%) reported prevalence within 12 months of LBP between 42-82% among WCW. The major risk factors for LBP among WCW included: awkward posture; lifting; pulling; pushing; repetitive motions; work duration; and physical loads. Summary data and syntheses of findings was presented in trend-lines and tables to establish the several prevalence periods based on age and region distribution. Public health implications: LBP is a major occupational hazard among WCWs. In light of these risks and future growth in this industry, further research should focus on more detail ergonomic exposure assessment and LBP prevention efforts.Keywords: low back pain, scavenger, waste collection workers, waste pickers
Procedia PDF Downloads 3277930 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach
Authors: Shital Suresh Borse, Vijayalaxmi Kadroli
Abstract:
E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN
Procedia PDF Downloads 1137929 IACOP - Route Optimization in Wireless Networks Using Improved Ant Colony Optimization Protocol
Authors: S. Vasundra, D. Venkatesh
Abstract:
Wireless networks have gone through an extraordinary growth in the past few years, and will keep on playing a crucial role in future data communication. The present wireless networks aim to make communication possible anywhere and anytime. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Since an ad hoc network may consist of a large number of mobile hosts, this imposes a significant challenge on the design of an effective and efficient routing protocol that can work well in an environment with frequent topological changes. This paper proposes improved ant colony optimization (IACO) technique. It also maintains load balancing in wireless networks. The simulation results show that the proposed IACO performs better than existing routing techniques.Keywords: wireless networks, ant colony optimization, load balancing, architecture
Procedia PDF Downloads 4217928 Monthly Labor Forces Surveys Portray Smooth Labor Markets and Bias Fixed Effects Estimation: Evidence from Israel’s Transition from Quarterly to Monthly Surveys
Authors: Haggay Etkes
Abstract:
This study provides evidence for the impact of monthly interviews conducted for the Israeli Labor Force Surveys (LFSs) on estimated flows between labor force (LF) statuses and on coefficients in fixed-effects estimations. The study uses the natural experiment of parallel interviews for the quarterly and the monthly LFSs in Israel in 2011 for demonstrating that the Labor Force Participation (LFP) rate of Jewish persons who participated in the monthly LFS increased between interviews, while in the quarterly LFS it decreased. Interestingly, the estimated impact on the LFP rate of self-reporting individuals is 2.6–3.5 percentage points while the impact on the LFP rate of individuals whose data was reported by another member of their household (a proxy), is lower and statistically insignificant. The relative increase of the LFP rate in the monthly survey is a result of a lower rate of exit from the LF and a somewhat higher rate of entry into the LF relative to these flows in the quarterly survey. These differing flows have a bearing on labor search models as the monthly survey portrays a labor market with less friction and a “steady state” LFP rate that is 5.9 percentage points higher than the quarterly survey. The study also demonstrates that monthly interviews affect a specific group (45–64 year-olds); thus the sign of coefficient of age as an explanatory variable in fixed-effects regressions on LFP is negative in the monthly survey and positive in the quarterly survey.Keywords: measurement error, surveys, search, LFSs
Procedia PDF Downloads 2707927 Using Scale Invariant Feature Transform Features to Recognize Characters in Natural Scene Images
Authors: Belaynesh Chekol, Numan Çelebi
Abstract:
The main purpose of this work is to recognize individual characters extracted from natural scene images using scale invariant feature transform (SIFT) features as an input to K-nearest neighbor (KNN); a classification learner algorithm. For this task, 1,068 and 78 images of English alphabet characters taken from Chars74k data set is used to train and test the classifier respectively. For each character image, We have generated describing features by using SIFT algorithm. This set of features is fed to the learner so that it can recognize and label new images of English characters. Two types of KNN (fine KNN and weighted KNN) were trained and the resulted classification accuracy is 56.9% and 56.5% respectively. The training time taken was the same for both fine and weighted KNN.Keywords: character recognition, KNN, natural scene image, SIFT
Procedia PDF Downloads 2817926 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling
Authors: Kisan Sarda, Bhavika Shingote
Abstract:
This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation
Procedia PDF Downloads 381