Search results for: discrete feature vector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3144

Search results for: discrete feature vector

1644 Evaluation of Condyle Alterations after Orthognathic Surgery with a Digital Image Processing Technique

Authors: Livia Eisler, Cristiane C. B. Alves, Cristina L. F. Ortolani, Kurt Faltin Jr.

Abstract:

Purpose: This paper proposes a technically simple diagnosis method among orthodontists and maxillofacial surgeons in order to evaluate discrete bone alterations. The methodology consists of a protocol to optimize the diagnosis and minimize the possibility for orthodontic and ortho-surgical retreatment. Materials and Methods: A protocol of image processing and analysis, through ImageJ software and its plugins, was applied to 20 pairs of lateral cephalometric images obtained from cone beam computerized tomographies, before and 1 year after undergoing orthognathic surgery. The optical density of the images was analyzed in the condylar region to determine possible bone alteration after surgical correction. Results: Image density was shown to be altered in all image pairs, especially regarding the condyle contours. According to measures, condyle had a gender-related density reduction for p=0.05 and condylar contours had their alterations registered in mm. Conclusion: A simple, viable and cost-effective technique can be applied to achieve the more detailed image-based diagnosis, not depending on the human eye and therefore, offering more reliable, quantitative results.

Keywords: bone resorption, computer-assisted image processing, orthodontics, orthognathic surgery

Procedia PDF Downloads 161
1643 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation

Authors: Pavel Chmelar, Martin Dobrovolny

Abstract:

Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement, or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.

Keywords: color segmentation, component labelling, laser line detection, automatic mapping, distance measurement, vector map

Procedia PDF Downloads 433
1642 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 74
1641 An Optimal Algorithm for Finding (R, Q) Policy in a Price-Dependent Order Quantity Inventory System with Soft Budget Constraint

Authors: S. Hamid Mirmohammadi, Shahrazad Tamjidzad

Abstract:

This paper is concerned with the single-item continuous review inventory system in which demand is stochastic and discrete. The budget consumed for purchasing the ordered items is not restricted but it incurs extra cost when exceeding specific value. The unit purchasing price depends on the quantity ordered under the all-units discounts cost structure. In many actual systems, the budget as a resource which is occupied by the purchased items is limited and the system is able to confront the resource shortage by charging more costs. Thus, considering the resource shortage costs as a part of system costs, especially when the amount of resource occupied by the purchased item is influenced by quantity discounts, is well motivated by practical concerns. In this paper, an optimization problem is formulated for finding the optimal (R, Q) policy, when the system is influenced by the budget limitation and a discount pricing simultaneously. Properties of the cost function are investigated and then an algorithm based on a one-dimensional search procedure is proposed for finding an optimal (R, Q) policy which minimizes the expected system costs .

Keywords: (R, Q) policy, stochastic demand, backorders, limited resource, quantity discounts

Procedia PDF Downloads 641
1640 Leadership's Controlling via Complexity Investigation in Crisis Scenarios

Authors: Jiří Barta, Oldřich Svoboda, Jiří F. Urbánek

Abstract:

In this paper will be discussed two coin´s sides of crisis scenarios dynamics. On the one's side is negative role of subsidiary scenario branches in its compactness weakening by means unduly chaotic atomizing, having many interactive feedbacks cases, increasing a value of a complexity here. This negative role reflects the complexity of use cases, weakening leader compliancy, which brings something as a ´readiness for controlling capabilities provision´. Leader´s dissatisfaction has zero compliancy, but factual it is a ´crossbar´ (interface in fact) between planning and executing use cases. On the other side of this coin, an advantage of rich scenarios embranchment is possible to see in a support of response awareness, readiness, preparedness, adaptability, creativity and flexibility. Here rich scenarios embranchment contributes to the steadiness and resistance of scenario mission actors. These all will be presented in live power-points ´Blazons´, modelled via DYVELOP (Dynamic Vector Logistics of Processes) on the Conference.

Keywords: leadership, controlling, complexity, DYVELOP, scenarios

Procedia PDF Downloads 405
1639 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique

Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit

Abstract:

In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.

Keywords: image processing technique, feature detections, surface registrations, capturing multi-view images, Production costs and Manufacturing processes

Procedia PDF Downloads 251
1638 Highly Conductive Polycrystalline Metallic Ring in a Magnetic Field

Authors: Isao Tomita

Abstract:

Electrical conduction in a quasi-one-dimensional polycrystalline metallic ring with a long electron phase coherence length realized at low temperature is investigated. In this situation, the wave nature of electrons is important in the ring, where the electrical current I can be induced by a vector potential that arises from a static magnetic field applied perpendicularly to the ring’s area. It is shown that if the average grain size of the polycrystalline ring becomes large (or comparable to the Fermi wavelength), the electrical current I increases to ~I0, where I0 is a current in a disorder-free ring. The cause of this increasing effect is examined, and this takes place if the electron localization length in the polycrystalline potential increases with increasing grain size, which gives rise to coherent connection of tails of a localized electron wave function in the ring and thus provides highly coherent electrical conduction.

Keywords: electrical conduction, electron phase coherence, polycrystalline metal, magnetic field

Procedia PDF Downloads 389
1637 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 418
1636 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.

Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics

Procedia PDF Downloads 165
1635 Functional Mortality of Anopheles stephensi, the Urban Malaria Vector as Induced by the Sublethal Exposure to Deltamethrin

Authors: P. Aarumugam, N. Krishnamoorthy, K. Gunasekaran

Abstract:

The mosquitoes with loss of minimum three legs especially the hind legs have the negative impact on the survival hood of mosquitoes. Three days old unfed adult female laboratory strain was selected in each generation against sublethal dosages (0.004%, 0.005%, 0.007% and 0.01%) of deltamethrin upto 40 generations. Impregnated papers with acetone were used for control. Every fourth generation, survived mosquitoes were observed for functional mortality. Hind legs lost were significantly (P< 0.05) higher in treated than the controls up to generation 24, thereafter no significant lost. In contrary, no significant forelegs lost among exposed mosquitoes. Middle legs lost were also not significant in the exposed mosquitoes except first generation (F1). The field strain (Chennai) did not show any significant loss of legs (fore or mid or hind) compared to the control. The selection pressure on mosquito population influences strong natural selection to develop various adaptive mechanisms.

Keywords: Anopheles stephensi, deltamethrin, functional mortality, synthetic pyrethroids

Procedia PDF Downloads 398
1634 High Efficiency Electrolyte Lithium Battery and RF Characterization

Authors: Wei Quan, Liu Chao, Mohammed N. Afsar

Abstract:

The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by radio-frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40 oC to +150 oC and can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by capacitance bridge and inwave guide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity.

Keywords: polymer electrolyte, dielectric permittivity, lithium battery, ionic relaxation, microwave measurement

Procedia PDF Downloads 479
1633 Examining Macroeconomics Determinants of Inflation Rate in Somalia

Authors: Farhia Hassan Mohamed

Abstract:

This study examined the macroeconomic factors that affect the inflation Rate in Somalia using quarterly time series data from 1991q1 to 2017q4 retired from World Development Indicators and SESRIC. It employed the vector error correction model (VECM) and Granger Causality method to measure the long-run and short-run causality of the GDP, inflation exchange rate, and unemployment. The study confirmed that there is one cointegration equation between GDP, exchange rate, inflation, and unemployment in Somalia. However, the VECM model's result indicates a long-run relationship among variables. The VEC Granger causality/Block Exogeneity Wald test result confirmed that all covariates are statistically significant at 5% and are Granger's cause of inflation in the short term. Finally, the impulse response result showed that inflation responds negatively to the shocks from the exchange rate and unemployment rate and positively to GDP and itself. Drawing from the empirical findings, the study makes several policy recommendations for both the monetary and Government sides.

Keywords: CPI, OP, exchange rate, inflation ADF, Johansen, PP, VECM, impulse, ECT

Procedia PDF Downloads 49
1632 Nonparametric Copula Approximations

Authors: Serge Provost, Yishan Zang

Abstract:

Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness.

Keywords: copulas, Bernstein polynomial approximation, least-squares polynomial approximation, kernel density estimation, density approximation

Procedia PDF Downloads 75
1631 Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete

Authors: Abdulkarim Mohammed Iliyasu, Mahmud Abba Tahir

Abstract:

Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 0C and 20 0C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage.

Keywords: concrete, conductance, deterioration, freezing and thawing

Procedia PDF Downloads 417
1630 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images

Authors: Shahriar Farzam, Maryam Rastgarpour

Abstract:

Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).

Keywords: curvelet transform, CBCT, image enhancement, image denoising

Procedia PDF Downloads 300
1629 Measuring e-Business Activities of SMEs in Yemen

Authors: Ahmed Abdullah, Lyndon Murphy, Brychan Thomas

Abstract:

Increasingly, in developed and developing countries, small and medium-sized enterprises (SMEs) are becoming more important to national economies due to their strategic significance in developing different industrial sectors Worldwide. SMEs play a major role in an economy by significantly contributing to the enhancement of the countries’ gross domestic product and its labor force by creating more job opportunities and developing skilled labor. Rapid development has been witnessed in the World within different aspects of life, especially the technological revolution such as e-business. This has become a feature of this era requiring us to ‘keep-up’ in our daily society, losing the traditional pattern of our daily lives and combining scientific methodology of an analytical and experimental nature. In the past few years the emergence of e-business and e-commerce in the world has been carefully surveyed. There is widespread use of the internet in every aspect and phase of business.

Keywords: e-business, e-business activities, SMEs, e-adoption ladder

Procedia PDF Downloads 532
1628 Small Molecule Inhibitors of TREM2/Gal3 Interaction as Therapies for Alzheimer's Disease

Authors: Moustafa Gabr

Abstract:

Galectin-3 has been identified as a critical player in driving the neuroinflammatory responses in Alzheimer's disease (AD). A key feature of this function of galectin-3 is associated with its interaction with the triggering receptor expressed on myeloid cells-2 (TREM2). Herein, we report a high-throughput screening (HTS) platform that can be used for the identification of inhibitors of TREM2 and galectin-3 interaction. We have utilized this HTS assay to screen a focused library of compounds optimized for central nervous system (CNS)-related diseases. MG-257 was identified from this screen as the first example of a small molecule that can attenuate TREM2 signaling based on its high affinity to galectin-3 (endogenous ligand of TREM2). Remarkably, MG-257 reduced the levels of proinflammatory cytokines in activated microglial cells, which highlights its ability to inhibit the neuroinflammatory response associated with AD.

Keywords: medicinal chemistry, Alzheimer's disease, drug discovery, therapeutics

Procedia PDF Downloads 12
1627 Study of Temperature Difference and Current Distribution in Parallel-Connected Cells at Low Temperature

Authors: Sara Kamalisiahroudi, Jun Huang, Zhe Li, Jianbo Zhang

Abstract:

Two types of commercial cylindrical lithium ion batteries (Panasonic 3.4 Ah NCR-18650B and Samsung 2.9 Ah INR-18650), were investigated experimentally. The capacities of these samples were individually measured using constant current-constant voltage (CC-CV) method at different ambient temperatures (-10 ℃, 0 ℃, 25 ℃). Their internal resistance was determined by electrochemical impedance spectroscopy (EIS) and pulse discharge methods. The cells with different configurations of parallel connection NCR-NCR, INR-INR and NCR-INR were charged/discharged at the aforementioned ambient temperatures. The results showed that the difference of internal resistance between cells much more evident at low temperatures. Furthermore, the parallel connection of NCR-NCR exhibits the most uniform temperature distribution in cells at -10 ℃, this feature is quite favorable for the safety of the battery pack.

Keywords: batteries in parallel connection, internal resistance, low temperature, temperature difference, current distribution

Procedia PDF Downloads 480
1626 Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications

Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi

Abstract:

China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.

Keywords: GF-2 images, feature extraction-rectification, nearest neighbour object based classification, segmentation algorithms, neural network classification, multilayer perceptron

Procedia PDF Downloads 390
1625 Design and Characterization of a Smart Composite Fabric for Knee Brace

Authors: Rohith J. K., Amir Nazemi, Abbas S. Milani

Abstract:

In Paralympic sports, athletes often depend on some form of equipment to enable competitive sporting, where most of this equipment would only allow passive physiological supports and discrete physiological measurements. Active feedback physiological support and continuous detection of performance indicators, without time or space constraints, would be beneficial in more effective training and performance measures of Paralympic athletes. Moreover, occasionally the athletes suffer from fatigue and muscular stains due to improper monitoring systems. The latter challenges can be overcome by using Smart Composites technology when manufacturing, e.g., knee brace and other sports wearables utilities, where the sensors can be fused together into the fabric and an assisted system actively support the athlete. This paper shows how different sensing functionality may be created by intrinsic and extrinsic modifications onto different types of composite fabrics, depending on the level of integration and the employed functional elements. Results demonstrate that fabric sensors can be well-tailored to measure muscular strain and be used in the fabrication of a smart knee brace as a sample potential application. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with such smart fabric technologies prove to be customizable and versatile.

Keywords: smart composites, sensors, smart fabrics, knee brace

Procedia PDF Downloads 179
1624 Index of Suitability for Culex pipiens sl. Mosquitoes in Portugal Mainland

Authors: Maria C. Proença, Maria T. Rebelo, Marília Antunes, Maria J. Alves, Hugo Osório, Sofia Cunha, REVIVE team

Abstract:

The environment of the mosquitoes complex Culex pipiens sl. in Portugal mainland is evaluated based in its abundance, using a data set georeferenced, collected during seven years (2006-2012) from May to October. The suitability of the different regions can be delineated using the relative abundance areas; the suitablility index is directly proportional to disease transmission risk and allows focusing mitigation measures in order to avoid outbreaks of vector-borne diseases. The interest in the Culex pipiens complex is justified by its medical importance: the females bite all warm-blooded vertebrates and are involved in the circulation of several arbovirus of concern to human health, like West Nile virus, iridoviruses, rheoviruses and parvoviruses. The abundance of Culex pipiens mosquitoes were documented systematically all over the territory by the local health services, in a long duration program running since 2006. The environmental factors used to characterize the vector habitat are land use/land cover, distance to cartographed water bodies, altitude and latitude. Focus will be on the mosquito females, which gonotrophic cycle mate-bloodmeal-oviposition is responsible for the virus transmission; its abundance is the key for the planning of non-aggressive prophylactic countermeasures that may eradicate the transmission risk and simultaneously avoid chemical ambient degradation. Meteorological parameters such as: air relative humidity, air temperature (minima, maxima and mean daily temperatures) and daily total rainfall were gathered from the weather stations network for the same dates and crossed with the standardized females’ abundance in a geographic information system (GIS). Mean capture and percentage of above average captures related to each variable are used as criteria to compute a threshold for each meteorological parameter; the difference of the mean capture above/below the threshold was statistically assessed. The meteorological parameters measured at the net of weather stations all over the country are averaged by month and interpolated to produce raster maps that can be segmented according to the meaningful thresholds for each parameter. The intersection of the maps of all the parameters obtained for each month show the evolution of the suitable meteorological conditions through the mosquito season, considered as May to October, although the first and last month are less relevant. In parallel, mean and above average captures were related to the physiographic parameters – the land use/land cover classes most relevant in each month, the altitudes preferred and the most frequent distance to water bodies, a factor closely related with the mosquito biology. The maps produced with these results were crossed with the meteorological maps previously segmented, in order to get an index of suitability for the complex Culex pipiens evaluated all over the country, and its evolution from the beginning to the end of the mosquitoes season.

Keywords: suitability index, Culex pipiens, habitat evolution, GIS model

Procedia PDF Downloads 577
1623 DeClEx-Processing Pipeline for Tumor Classification

Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba

Abstract:

Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.

Keywords: machine learning, healthcare, classification, explainability

Procedia PDF Downloads 58
1622 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square

Procedia PDF Downloads 384
1621 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies

Authors: Yuanjin Liu

Abstract:

Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.

Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model

Procedia PDF Downloads 74
1620 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 539
1619 Critical Activity Effect on Project Duration in Precedence Diagram Method

Authors: Salman Ali Nisar, Koshi Suzuki

Abstract:

Precedence Diagram Method (PDM) with its additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activities provides more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in PDM network will have anomalous effect on critical path. Researchers have proposed some classification of critical activity effects. In this paper, we do further study on classifications of critical activity effect and provide more information in detailed. Furthermore, we determine the maximum amount of time for each class of critical activity effect by which the project managers can control the dynamic feature (shortening/lengthening) of critical activities and project duration more efficiently.

Keywords: construction project management, critical path method, project scheduling, precedence diagram method

Procedia PDF Downloads 512
1618 Evidence of Conditional and Unconditional Cooperation in a Public Goods Game: Experimental Evidence from Mali

Authors: Maria Laura Alzua, Maria Adelaida Lopera

Abstract:

This paper measures the relative importance of conditional cooperation and unconditional cooperation in a large public goods experiment conducted in Mali. We use expectations about total public goods provision to estimate a structural choice model with heterogeneous preferences. While unconditional cooperation can be captured by common preferences shared by all participants, conditional cooperation is much more heterogeneous and depends on unobserved individual factors. This structural model, in combination with two experimental treatments, suggests that leadership and group communication incentivize public goods provision through different channels. First, We find that participation of local leaders effectively changes individual choices through unconditional cooperation. A simulation exercise predicts that even in the most pessimistic scenario in which all participants expect zero public good provision, 60% would still choose to cooperate. Second, allowing participants to communicate fosters conditional cooperation. The simulations suggest that expectations are responsible for around 24% of the observed public good provision and that group communication does not necessarily ameliorate public good provision. In fact, communication may even worsen the outcome when expectations are low.

Keywords: conditional cooperation, discrete choice model, expectations, public goods game, random coefficients model

Procedia PDF Downloads 307
1617 Ion-Acoustic Double Layers in a Non-Thermal Electronegative Magnetized Plasma

Authors: J. K. Chawla, S. K. Jain, M. K. Mishra

Abstract:

Ion-acoustic double layers have been studied in magnetized plasma. The modified Korteweg-de Vries (m-KdV) equation using reductive perturbation method is derived. It is found that for the selected set of parameters, the system supports rarefactive double layers depending upon the value of nonthermal parameters. It is also found that the magnetization affects only the width of the double layer. For a given set of parameter values, increases in the magnetization and the obliqueness angle (θ) between wave vector and magnetic field, affect the width of the double layers, however the amplitude of the double layers have no effect. An increase in the values of nonthermal parameter decreases the amplitude of the rarefactive double layer. The effect of the ion temperature ratio on the amplitude and width of the double layers are also discussed in detail.

Keywords: ion-acoustic double layers, magnetized electronegative plasma, reductive perturbation method, the modified Korteweg-de Vries (KdV) equation

Procedia PDF Downloads 610
1616 Fluctuations in Radical Approaches to State Ownership of the Means of Production Over the Twentieth Century

Authors: Tom Turner

Abstract:

The recent financial crisis in 2008 and the growing inequality in developed industrial societies would appear to present significant challenges to capitalism and the free market. Yet there have been few substantial mainstream political or economic challenges to the dominant capitalist and market paradigm to-date. There is no dearth of critical and theoretical (academic) analyses regarding the prevailing systems failures. Yet despite the growing inequality in the developed industrial societies and the financial crisis in 2008 few commentators have advocated the comprehensive socialization or state ownership of the means of production to our knowledge – a core principle of radical Marxism in the 19th and early part of the 20th century. Undoubtedly the experience in the Soviet Union and satellite countries in the 20th century has cast a dark shadow over the notion of centrally controlled economies and state ownership of the means of production. In this paper, we explore the history of a doctrine advocating the socialization or state ownership of the means of production that was central to Marxism and socialism generally. Indeed this doctrine provoked an intense and often acrimonious debate especially for left-wing parties throughout the 20th century. The debate within the political economy tradition has historically tended to divide into a radical and a revisionist approach to changing or reforming capitalism. The radical perspective views the conflict of interest between capital and labor as a persistent and insoluble feature of a capitalist society and advocates the public or state ownership of the means of production. Alternatively, the revisionist perspective focuses on issues of distribution rather than production and emphasizes the possibility of compromise between capital and labor in capitalist societies. Over the 20th century, the radical perspective has faded and even the social democratic revisionist tradition has declined in recent years. We conclude with the major challenges that confront both the radical and revisionist perspectives in the development of viable policy agendas in mature developed democratic societies. Additionally, we consider whether state ownership of the means of production still has relevance in the 21st century and to what extent state ownership is off the agenda as a political issue in the political mainstream in developed industrial societies. A central argument in the paper is that state ownership of the means of production is unlikely to feature as either a practical or theoretical solution to the problems of capitalism post the financial crisis among mainstream political parties of the left. Although the focus here is solely on the shifting views of the radical and revisionist socialist perspectives in the western European tradition the analysis has relevance for the wider socialist movement.

Keywords: sate ownership, ownership means of production, radicals, revisionists

Procedia PDF Downloads 122
1615 Random Subspace Ensemble of CMAC Classifiers

Authors: Somaiyeh Dehghan, Mohammad Reza Kheirkhahan Haghighi

Abstract:

The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance.

Keywords: classification, random subspace, ensemble, CMAC neural network

Procedia PDF Downloads 332