Search results for: calcium salt of palm oil fatty acid
3433 The Effect of Extruded Full-Fat Rapeseed on Productivity and Eggs Quality of Isa Brown Laying Hens
Authors: Vilma Sasyte, Vilma Viliene, Agila Dauksiene, Asta Raceviciute-Stupeliene, Romas Gruzauskas, Saulius Alijosius
Abstract:
The eight-week feeding trial was conducted involving 27-wk-old Isa brown laying hens to study the effect of dry extrusion processing on partial reduction in total glucosinolates content of locally produced rapeseed and on productivity and eggs quality parameters of laying hens. Thirty-six hens were randomly assigned one of three treatments (CONTR, AERS and HERS), each comprising 12, individual caged layers. The main composition of the diets was the same, but extruded soya bean seed were replaced with 2.5% of the extruded rapeseed in the AERS group and 4.5 % in the HERS group. Rapeseed was extruded together with faba beans. Due to extrusion process the glucosinolates content was reduced by 7.83 µmol/g of rapeseed. The results of conducted trial shows, that during all experimental period egg production parameters, such as the average feed intake (6529.17 vs. 6257 g/hen/14 day; P < 0.05) and laying intensity (94.35% vs. 89.29; P < 0.05) were statistically different for HERS and CONTR laying hens respectively. Only the feed conversion ratio to produce 1 kg of eggs, kg in AERS group was by 11 % lower compared to CONTR group (P < 0.05). By analysing the effect of extruded rapeseed on egg mass, the statistical differences between treatments were no determined. The dietary treatments did not affect egg weight, albumen height, haugh units, albumen and yolk pH. However, in the HERS group were get eggs with the more intensive yolk color, higher redness (a) and yellowness (b) values. The inclusion of full-fat extruded rapeseed had no effect on egg shell quality parameters, i.e. shell breaking strength, shell weight with and without coat and shell index, but in the experimental groups were get eggs with the thinner shell (P < 0.05). The internal egg quality analysis showed that with higher content of extruded rapeseed (4.5 %) level in the diet, the total cholesterol in the eggs yolk decreased by 1.92 mg/g in comparison with CONTR group (P < 0.05). Eggs laid by hens fed the diet containing 2.5% and 4.5% had increasing ∑PNRR/∑SRR ratio and decreasing ∑(n-6)/∑(n-3) ratio values of eggs yolk fatty acids than in CONTR group. Eggs of hens fed different amount of extruded rapeseed presented an n-6 : n-3 ratio changed from 5.17 to 4.71. The analysis of the relationship between hypocholesteremia/ hypercholesterolemia fatty acids (H/H), which is based on the functional properties of fatty acids, found that the value of it ratio is significant higher in laying hens fed diets supplemented with 4.5% extruded rapeseed than the CONTR group, demonstrating the positive effects of extruded rapeseed on egg quality. The results of trial confirmed that extruded full fat rapeseed to the 4.5% are suitable to replace soyabean in the compound feed of laying hens.Keywords: egg quality, extruded full-fat rapeseed, laying hens, productivity
Procedia PDF Downloads 2163432 Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling
Authors: G. K. Awari, Vishwajeet V. Ambade, S. W. Rajurkar
Abstract:
The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses.Keywords: fused deposition modelling, polylactic acid, infill density, infill pattern, compressive strength
Procedia PDF Downloads 753431 Aqueous Extract of Argemone Mexicana Roots for Effective Corrosion Inhibition of Mild Steel in HCl Environment
Authors: Gopal Ji, Priyanka Dwivedi, Shanthi Sundaram, Rajiv Prakash
Abstract:
Inhibition effect of aqueous Argemone Mexicana root extract (AMRE) on mild steel corrosion in 1 M HCl has been studied by weight loss, Tafel polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Results indicate that inhibition ability of AMRE increases with the increasing amount of the extract. A maximum corrosion inhibition of 94% is acknowledged at the extract concentration of 400 mg L-1. Polarization curves and impedance spectra reveal that both cathodic and anodic reactions are suppressed due to passive layer formation at metal-acid interface. It is also confirmed by SEM micro graphs and FTIR studies. Furthermore, the effects of acid concentration (1-5 M), immersion time (120 hours) and temperature (30-60˚C) on inhibition potential of AMRE have been investigated by weight loss method and electrochemical techniques. Adsorption mechanism is also proposed on the basis of weight loss results, which shows good agreement with Langmuir isotherm.Keywords: mild steel, polarization, SEM, acid corrosion, EIS, green inhibition
Procedia PDF Downloads 4963430 Elimination of Contaminants of Emerging Concerns by Peracetic Acid and Advanced Oxidation Process
Authors: Abdul Rahim Al Umairi, Mohamed Gamal El-Din
Abstract:
The removal of the selected contaminants of emerging concerns (CECs) presented under related environmental conditions by Peracetic Acid (PAA) and PAA-UV photolysis processes was examined in this study. A mixture of (CECs) (pesticides and pharmaceutical compounds) was prepared inclean water and treated with different doses of PAA (3.2, 6.4, and 9.6 mg/L) under different pH values (5.2, 7.2, and 9.2). The results revealed that the reactivity of the selected CECs with PAA was classified into three groups: Group 1 poorly reactive (removal <25%), Group2 moderately reactive (removal 25% to 50%), and Group 3 highly reactive (> 50%). Group1 includes atrazine (ATZ) and fluconazole (FCL), Group2 includes carbamazepine (CBZ), sulfamethoxazole (SMX), trimethoprim (TMP), mecoprop (MCPP), diazinon (DZN) and Group 3 includes perfluorooctanoic acid (PFOA) and clindamycin (CLN). The pH was found to affect the CECs' degradation differently, for Group 1 and Group 3, better removal was achieved in the acidand alkaline medium. In contrast, for Group 2 pH effects were not well pronounced. PAA-UV photolysis processes were explored to degrade the recalcitrant indicators compounds: ATZ (Group1) and SMX(Group2). PAA-UV process showed no improvement in the removal of ATZ. In contrast, PAA-UV removed SMX drastically with a pseudo decay rate constant of 0.014 cm2/mJ compared to 0.002 cm2/mJ by UV alone. The contribution of hydroxyl radical to the degradation process using the PAA-UV process was found to be negligible. This study illustratedPAA's capability on the degradation of the CECs presented in relative environmental conditions and unveiled the potential of using PAA-UV processes as advanced oxidation processes.Keywords: advanced oxidation process, contaminants of emerging concerns, peracetic acid, hydroxyl radical
Procedia PDF Downloads 1333429 GGE-Biplot Analysis of Nano-Titanium Dioxide and Nano-Silica Effects on Sunflower
Authors: Naser Sabaghnia, Mohsen Janmohammadi, Mehdi Mohebodini
Abstract:
Present investigation is performed to evaluate the effects of foliar application of salicylic acid, glycine betaine, ascorbic acid, nano-silica, and nano-titanium dioxide on sunflower. Results showed that the first two principal components were sufficient to create a two-dimensional treatment by trait biplot, and such biplot accounted percentages of 49% and 19%, respectively of the interaction between traits and treatments. The vertex treatments of polygon were ascorbic acid, glycine betaine, nano-TiO2, and control indicated that high performance in some important traits consists of number of days to seed maturity, number of seeds per head, number heads per single plant, hundred seed weight, seed length, seed yield performance, and oil content. Treatments suitable for obtaining the high seed yield were identified in the vector-view function of biplot and displayed nano-silica and nano titanium dioxide as the best treatments suitable for obtaining of high seed yield.Keywords: drought stress, nano-silicon dioxide, oil content, TiO2 nanoparticles
Procedia PDF Downloads 3383428 Study of Cathodic Protection for Trunk Pipeline of Al-Garraf Oil Field
Authors: Maysoon Khalil Askar
Abstract:
The delineation of possible areas of corrosion along the external face of an underground oil pipeline in Trunk line of Al- Garraf oil field was investigated using the horizontal electrical resistivity profiling technique and study the contribution of pH, Moisture Content in Soil and Presence chlorides, sulfates and total dissolve salts in soil and water. The test sites represent a physical and chemical properties of soils. The hydrogen-ion concentration of soil and groundwater range from 7.2 to 9.6, and the resistivity values of the soil along the pipeline were obtained using the YH302B model resistivity meter having values between 1588 and 720 Ohm-cm. the chloride concentration in soil and groundwater is high (more than 1000 ppm), total soulable salt is more than 5000 ppm, and sulphate range from 0.17% and 0.98% in soil and more than 600 ppm in groundwater. The soil is poor aeration, the soil texture is fine (clay and silt soil), the water content is high (the groundwater is close to surface), the chloride and sulphate is high in the soil and groundwater, the total soulable salt is high in ground water and finally the soil electric resistivity is low that the soil is very corrosive and there is the possibility of the pipeline failure. These methods applied in the study are quick, economic and efficient for detecting along buried pipelines which need to be protected. Routine electrical geophysical investigations along buried oil pipelines should be undertaken for the early detection and prevention of pipeline failure with its attendant environmental, human and economic consequences.Keywords: soil resistivity, corrosion, cathodic protection, chloride concentration, water content
Procedia PDF Downloads 4383427 Hydrogels Beads of Alginate/Seaweed Powder for Plants Nutrition
Authors: Brenda O. Mazzola, Adriel Larsen, Romina P. Ollier, Leandro N. Ludueña, Vera A. Alvarez, Jimena S. Gonzalez
Abstract:
Seaweed is a natural renewable resource with great potential that is not being used by the domestic industry. Here, it was used a kind of invasive algae U. Pinnatifida that causes serious ecological damage on the Argentinian coasts. Alginate is one of the most widely used materials for encapsulation, and has the advantage that is a natural polysaccharide derived from a marine plant. It can form thermally stable hydrogel in the presence of calcium cation. In addition, the hydrogel can be easily produced into particulate form by using simple and gentle method. The aim of this work was to obtain and to characterize novel compounds (alginate/seaweed powder) for the soil nutrition. Alginate water solutions were prepared by concentrations of 20, 30, 40 and 50 g/L, in those solutions 10g/L of seaweed powder was added. Then the dispersions were transferred from a beaker to the atomizer by a peristaltic pump (with 0.05 to 0.1 L/h flow). A tank was filled with 1 L of calcium chloride solution (4 g/L), and the solution was agitated with a magnetic stirrer. The beads were analyzed by means TGA, FTIR and swelling determinations. In addition, the improvements in the soil were qualitative measured. It was obtained beads with different diameters depend on the initial concentration and the flow used. A better dispersions of seaweed and optimal diameter for the plant nutrition applications were obtained for 40g/L concentration and 0.1 L/h flow. The beads show thermal stability and high swelling degree. It can be successfully obtained alginate beads with seaweed powder with a novelty application as plant nutrient.Keywords: biodegradable, characterization, hydrogel, plant nutrition, seaweed
Procedia PDF Downloads 2843426 Salinity Effects on Germination of Malaysian Rice Varieties and Weedy Rice Biotypes
Authors: M. Kamal Uddin, H. Mohd Dandan, Ame H. Alidin
Abstract:
Germination and seedling growth of plant species are reduced in saline due to an external osmotic potential. An experiment was conducted at the laboratory, Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, to compare the salt effect on seed germination and growth of weedy rice and cultivated rice. Seeds (10 in each) were placed in petri dishes. Five salinity levels 0 (distilled water), 4, 8, 12 and 16 dSm-1 (NaCl) were applied. The number of germinated seeds was recorded daily. The final germination percentage, germination index (GI), seedling vigour index (SVI) mean germination time (MGT), shoot and root dry weight were estimated. At highest salinity (16 dSm-1) germination percentage was higher (100%) in weedy rice awn and weedy rice compact. Lowest germination percentage was in MR219 and TQR-8 (50-60%). Mean germination time (MGT) was found higher in all weedy rice biotypes compared to cultivated rice. At highest salinity (16dSm-1) weedy rice open produced the highest MGT (9.92) followed by weedy rice compact (9.73) while lowest MGT was in MR219 (9.48). At highest salinity (16dSm-1) germination index was higher in weedy rice awn (11.71) and compact type (9.62). Lowest germination index was in MR219 (5.90) and TQR-8 (8.94). At the highest salinity (16 dSm−1), seedling vigor index was highest in weedy rice awn (6.06) followed by weedy rice compact (5.26); while lowest was in MR219 (2.11) followed by MR269 (3.82).On the basis of Germination index, seedling vigor index and growth related results it could be concluded that weedy rice awn, compact and open biotypes were more salt tolerant compared to other cultivated rice MR219, MR269, and TQR-8.Keywords: germination, salinity, rice and weedy rice, sustainable agriculture
Procedia PDF Downloads 4933425 Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors
Authors: Sesethu G. Njokweni, Marelize Botes, Emile W. H. Van Zyl
Abstract:
An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation.Keywords: agricultural wastes, carboxylate platform, rumen microbiome, volatile fatty acids
Procedia PDF Downloads 1313424 Molecular Characterization and Arsenic Mobilization Properties of a Novel Strain IIIJ3-1 Isolated from Arsenic Contaminated Aquifers of Brahmaputra River Basin, India
Authors: Soma Ghosh, Balaram Mohapatra, Pinaki Sar, Abhijeet Mukherjee
Abstract:
Microbial role in arsenic (As) mobilization in the groundwater aquifers of Brahmaputra river basin (BRB) in India, severely threatened by high concentrations of As, remains largely unknown. The present study, therefore, is a molecular and ecophysiological characterization of an indigenous bacterium strain IIIJ3-1 isolated from As contaminated groundwater of BRB and application of this strain in several microcosm set ups differing in their organic carbon (OC) source and terminal electron acceptors (TEA), to understand its role in As dissolution under aerobic and anaerobic conditions. Strain IIIJ3-1 was found to be a new facultative anaerobic, gram-positive, endospore-forming strain capable of arsenite (As3+) oxidation and dissimilatory arsenate (As5+) reduction. The bacterium exhibited low genomic (G+C)% content (45 mol%). Although, its 16S rRNA gene sequence revealed a maximum similarity of 99% with Bacillus cereus ATCC 14579(T) but the DNA-DNA relatedness of their genomic DNAs was only 49.9%, which remains well below the value recommended to delimit different species. Abundance of fatty acids iC17:0, iC15:0 and menaquinone (MK) 7 though corroborates its taxonomic affiliation with B. cereus sensu-lato group, presence of hydroxy fatty acids (HFAs), C18:2, MK5 and MK6 marked its uniqueness. Besides being highly As resistant (MTC=10mM As3+, 350mM As5+), metabolically diverse, efficient aerobic As3+ oxidizer; it exhibited near complete dissimilatory reduction of As5+ (1 mM). Utilization of various carbon sources with As5+ as TEA revealed lactate to serve as the best electron donor. Aerobic biotransformation assay yielded a lower Km for As3+ oxidation than As5+ reduction. Arsenic homeostasis was found to be conferred by the presence of arr, arsB, aioB, and acr3(1) genes. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis of this bacterium revealed reduction in cell size upon exposure to As and formation of As-rich electron opaque dots following growth with As3+. Incubation of this strain with sediment (sterilised) collected from BRB aquifers under varying OC, TEA and redox conditions revealed that the strain caused highest As mobilization from solid to aqueous phase under anaerobic condition with lactate and nitrate as electron donor and acceptor, respectively. Co-release of highest concentrations of oxalic acid, a well known bioweathering agent, considerable fold increase in viable cell counts and SEM-EDX and X-ray diffraction analysis of the sediment after incubation under this condition indicated that As release is consequent to microbial bioweathering of the minerals. Co-release of other elements statistically proves decoupled release of As with Fe and Zn. Principle component analysis also revealed prominent role of nitrate under aerobic and/or anaerobic condition in As release by strain IIIJ3-1. This study, therefore, is the first to isolate, characterize and reveal As mobilization property of a strain belonging to the Bacillus cereus sensu lato group isolated from highly As contaminated aquifers of Brahmaputra River Basin.Keywords: anaerobic microcosm, arsenic rich electron opaque dots, Arsenic release, Bacillus strain IIIJ3-1
Procedia PDF Downloads 1283423 Evaluation of Labelling Conditions, Quality Control, and Biodistribution Study of 99mTc- D-Aminolevulinic Acid (5-ALA)
Authors: Kalimullah Khan, Samina Roohi, Mohammad Rafi, Rizwana Zahoor
Abstract:
Labeling of 5-Aminolevulinic acid (5-ALA) with 99 mTc was achieved by using tin chloride dihydrate (Sncl2.2H2O) as reducing agent. Radiochemical purity and labeling efficiency was determined by Whattman paper No.3 and instant thin layer chromatographic strips impregnated with silica gel (ITLC/SG). Labeling efficiency was dependent on many parameters such as amount of ligand, reducing agent, pH, and incubation time. Therefore, optimum conditions for maximum labeling were selected. Stability of 99 mTc- 5-ALA was also checked in fresh human serum. Tissue bio-distribution of 99 mTc-5-ALA was evaluated in Spargue Dawley rats. 5-ALA was 98% labeled with 99 mTc under optimum conditions, i.e. 100µg of 5-ALA, pH: 4, 10µg of Sncl2.2H2O and 30 minutes incubation at room temperature. 99 mTc labelled 5- ALA remained stable for 24 hours in human serum. Bio-distribution study (%ID/gm) in rats revealed that maximum accumulation of 99 mTc-5-ALA was in liver, spleen, stomach and intestine after half hour, 4 hours, and 24 hours. Significant activity in bladder and urine indicated urinary mode of excretion.Keywords: 99mTc-ALA, aminolevulinic acid, quality control, radiopharmaceuticals
Procedia PDF Downloads 3853422 Preliminary Evaluation of Echinacea Species by UV-VIS Spectroscopy Fingerprinting of Phenolic Compounds
Authors: Elena Ionescu, Elena Iacob, Marie-Louise Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca
Abstract:
Echinacea species (Asteraceae) has received a global attention because it is widely used for treatment of cold, flu and upper respiratory tract infections. Echinacea species contain a great variety of chemical components that contribute to their activity. The most important components responsible for the biological activity are those with high molecular-weight such as polysaccharides, polyacetylenes, highly unsaturated alkamides and caffeic acid derivatives. The principal factors that may influence the chemical composition of Echinacea include the species and the part of plant used (aerial parts or roots ). In recent years the market for Echinacea has grown rapidly and also the cases of adultery/replacement especially for Echinacea root. The identification of presence or absence of same biomarkers provide information for safe use of Echinacea species in food supplements industry. The aim of the study was the preliminary evaluation and fingerprinting by UV-VISIBLE spectroscopy of biomarkers in terms of content in phenolic derivatives of some Echinacea species (E. purpurea, E. angustifolia and E. pallida) for identification and authentication of the species. The steps of the study were: (1) samples (extracts) preparation from Echinacea species (non-hydrolyzed and hydrolyzed ethanol extracts); (2) samples preparation of reference substances (polyphenol acids: caftaric acid, caffeic acid, chlorogenic acid, ferulic acid; flavonoids: rutoside, hyperoside, isoquercitrin and their aglycones: quercitri, quercetol, luteolin, kaempferol and apigenin); (3) identification of specific absorption at wavelengths between 700-200 nm; (4) identify the phenolic compounds from Echinacea species based on spectral characteristics and the specific absorption; each class of compounds corresponds to a maximum absorption in the UV spectrum. The phytochemical compounds were identified at specific wavelengths between 700-200 nm. The absorption intensities were measured. The obtained results proved that ethanolic extract showed absorption peaks attributed to: phenolic compounds (free phenolic acids and phenolic acids derivatives) registrated between 220-280 nm, unsymmetrical chemical structure compounds (caffeic acid, chlorogenic acid, ferulic acid) with maximum absorption peak and absorption "shoulder" that may be due to substitution of hydroxyl or methoxy group, flavonoid compounds (in free form or glycosides) between 330-360 nm, due to the double bond in position 2,3 and carbonyl group in position 4 flavonols. UV spectra showed two major peaks of absorption (quercetin glycoside, rutin, etc.). The results obtained by UV-VIS spectroscopy has revealed the presence of phenolic derivatives such as cicoric acid (240 nm), caftaric acid (329 nm), caffeic acid (240 nm), rutoside (205 nm), quercetin (255 nm), luteolin (235 nm) in all three species of Echinacea. The echinacoside is absent. This profile mentioned above and the absence of phenolic compound echinacoside leads to the conclusion that species harvested as Echinacea angustifolia and Echinacea pallida are Echinacea purpurea also; It can be said that preliminary fingerprinting of Echinacea species through correspondence with the phenolic derivatives profile can be achieved by UV-VIS spectroscopic investigation, which is an adequate technique for preliminary identification and authentication of Echinacea in medicinal herbs.Keywords: Echinacea species, Fingerprinting, Phenolic compounds, UV-VIS spectroscopy
Procedia PDF Downloads 2613421 Phyllantus nuriri Protect against Fe2+ and SNP Induced Oxidative Damage in Mitochondrial Rich Fractions of Rats Brain
Authors: Olusola Olalekan Elekofehinti, Isaac Gbadura Adanlawo, Joao Batista Teixeira Rocha
Abstract:
We evaluated the potential neuroprotective effect of Phyllantus nuriri against Fe2+ and SNP induced oxidative stress in mitochondria of rats brain. Cellular viability was assessed by MTT reduction, reactive oxygen species (ROS) generation was measured using the probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Glutathione content was measured using dithionitrobenzoic acid (DTNB). Fe2+ (10µM) and SNP (5µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, this occurred in parallel with increased glutathione oxidation, ROS production and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with methanolic extract of Phyllantus nuriri (10-100 µg/ml) reduced the disruption of mitochondrial activity, gluthathione oxidation, ROS production as well as the increase in TBARS levels caused by both Fe2+ and SNP in a dose dependent manner. HPLC analysis of the extract revealed the presence of gallic acid (20.54±0.01), caffeic acid (7.93±0.02), rutin (25.31±0.05), quercetin (31.28±0.03) and kaemferol (14.36±0.01). This result suggests that these phytochemicals account for the protective actions of Phyllantus nuriri against Fe2+ and SNP -induced oxidative stress. Our results show that Phyllantus nuriri consist important bioactive molecules in the search for an improved therapy against the deleterious effects of Fe2+, an intrinsic producer of reactive oxygen species (ROS), that leads to neuronal oxidative stress and neurodegeneration.Keywords: Phyllantus niruri, neuroprotection, oxidative stress, mitochondria, synaptosome
Procedia PDF Downloads 3613420 Identification of Suitable Sites for Rainwater Harvesting in Salt Water Intruded Area by Using Geospatial Techniques in Jafrabad, Amreli District, India
Authors: Pandurang Balwant, Ashutosh Mishra, Jyothi V., Abhay Soni, Padmakar C., Rafat Quamar, Ramesh J.
Abstract:
The sea water intrusion in the coastal aquifers has become one of the major environmental concerns. Although, it is a natural phenomenon but, it can be induced with anthropogenic activities like excessive exploitation of groundwater, seacoast mining, etc. The geological and hydrogeological conditions including groundwater heads and groundwater pumping pattern in the coastal areas also influence the magnitude of seawater intrusion. However, this problem can be remediated by taking some preventive measures like rainwater harvesting and artificial recharge. The present study is an attempt to identify suitable sites for rainwater harvesting in salt intrusion affected area near coastal aquifer of Jafrabad town, Amreli district, Gujrat, India. The physico-chemical water quality results show that out of 25 groundwater samples collected from the study area most of samples were found to contain high concentration of Total Dissolved Solids (TDS) with major fractions of Na and Cl ions. The Cl/HCO3 ratio was also found greater than 1 which indicates the salt water contamination in the study area. The geophysical survey was conducted at nine sites within the study area to explore the extent of contamination of sea water. From the inverted resistivity sections, low resistivity zone (<3 Ohm m) associated with seawater contamination were demarcated in North block pit and south block pit of NCJW mines, Mitiyala village Lotpur and Lunsapur village at the depth of 33 m, 12 m, 40 m, 37 m, 24 m respectively. Geospatial techniques in combination of Analytical Hierarchy Process (AHP) considering hydrogeological factors, geographical features, drainage pattern, water quality and geophysical results for the study area were exploited to identify potential zones for the Rainwater Harvesting. Rainwater harvesting suitability model was developed in ArcGIS 10.1 software and Rainwater harvesting suitability map for the study area was generated. AHP in combination of the weighted overlay analysis is an appropriate method to identify rainwater harvesting potential zones. The suitability map can be further utilized as a guidance map for the development of rainwater harvesting infrastructures in the study area for either artificial groundwater recharge facilities or for direct use of harvested rainwater.Keywords: analytical hierarchy process, groundwater quality, rainwater harvesting, seawater intrusion
Procedia PDF Downloads 1753419 Analysis of Eating Habits of Working People in Shopping Centers on a 12-Hour Basis
Authors: A. Sadowska, R. Polaniak, P. Boczarski, E. Grochowska-Niedworok
Abstract:
Working in a shopping center 12 hours a day as a shop assistant is a very demanding and stressful job, which is still underestimated. Proper eating habits, including recommended fruits, vegetables, products rich in fiber, omega-3 fatty acids, and proper hydration, can contribute to improvement in health and make shop assistants more resistant to stress. The aim of this study was to analyze the eating habits of shop assistants working in shopping centers 12 hours a day. Participant 101 sellers from Poland filled out authorial surveys. Nearly 50% of participants consumed the recommended number of 4 to 5 meals per day. There was a slight dependence between the number of meals consumed per day and the time that employers allowed for employee mealtimes. Respondents declared that they engaged in snacking, and they generally chose fruit, chocolates, and other sweets. Survey results indicated a low liquid intake, which was about 1,05 liters daily. Mineral water was chosen most often (63%) by participants. Participant fish consumption was very low in comparison with the norms, which can pose a risk of developing omega-3 fatty acids deficiency. Shop assistants stated that a change in their eating habits was necessary. Study findings suggest a moderate dependence between being on a diet and counting calories and macronutrients contained in meals. The number of meals eaten per day is correlated with the number of meals eaten at the worksite. The percentage of snacking by shop assistants was so high that it suggested a need for more nutrition education. The topic of eating habits among shop assistants should be examined using a larger group of participants. It is necessary to note a connection between nutrition and health problems.Keywords: eating habits, work during 12 hours a day, shopping center, nutrition
Procedia PDF Downloads 1263418 SARS-CoV-2: Prediction of Critical Charged Amino Acid Mutations
Authors: Atlal El-Assaad
Abstract:
Viruses change with time through mutations and result in new variants that may persist or disappear. A Mutation refers to an actual change in the virus genetic sequence, and a variant is a viral genome that may contain one or more mutations. Critical mutations may cause the virus to be more transmissible, with high disease severity, and more vulnerable to diagnostics, therapeutics, and vaccines. Thus, variants carrying such mutations may increase the risk to human health and are considered variants of concern (VOC). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - the contagious in humans, positive-sense single-stranded RNA virus that caused coronavirus disease 2019 (COVID-19) - has been studied thoroughly, and several variants were revealed across the world with their corresponding mutations. SARS-CoV-2 has four structural proteins, known as the S (spike), E (envelope), M (membrane), and N (nucleocapsid) proteins, but prior study and vaccines development focused on genetic mutations in the S protein due to its vital role in allowing the virus to attach and fuse with the membrane of a host cell. Specifically, subunit S1 catalyzes attachment, whereas subunit S2 mediates fusion. In this perspective, we studied all charged amino acid mutations of the SARS-CoV-2 viral spike protein S1 when bound to Antibody CC12.1 in a crystal structure and assessed the effect of different mutations. We generated all missense mutants of SARS-CoV-2 protein amino acids (AAs) within the SARS-CoV-2:CC12.1 complex model. To generate the family of mutants in each complex, we mutated every charged amino acid with all other charged amino acids (Lysine (K), Arginine (R), Glutamic Acid (E), and Aspartic Acid (D)) and studied the new binding of the complex after each mutation. We applied Poisson-Boltzmann electrostatic calculations feeding into free energy calculations to determine the effect of each mutation on binding. After analyzing our data, we identified charged amino acids keys for binding. Furthermore, we validated those findings against published experimental genetic data. Our results are the first to propose in silico potential life-threatening mutations of SARS-CoV-2 beyond the present mutations found in the five common variants found worldwide.Keywords: SARS-CoV-2, variant, ionic amino acid, protein-protein interactions, missense mutation, AESOP
Procedia PDF Downloads 1143417 The Impact of Maternal Micronutrient Levels on Risk of Offspring Neural Tube Defects in Egypt
Authors: Eman M. El-Sayed, Sahar A. Abdelaziz, Maha M. Saber Abd El Latif
Abstract:
Neural tube defects (NTD) are important causes of infant mortality. Poor nutrition was essential factor for central nervous system deformation. Mothers gave NTD offspring had abnormal serum levels of micronutrients. The present research was designed to study the effect of maternal micronutrient levels and oxidative stress on the incidence of NTD in offspring. The study included forty mothers; twenty of them of 30.9+7.28 years had conceived fetuses with NTD were considered as cases; and twenty mothers of 28.2 + 7.82 years with healthy neonates. We determined serum vitamin B12 and folic acid by using radioimmunoassays. Also, serum zinc was assessed using atomic absorption spectrophotometry. While serum copper and iron were measured colorimetrically and serum ceruloplasmin was analyzed by radialimmunodiffusion. Cases showed significantly lower levels of folic acid, vitamin B12 and zinc (P< 0.0005, 0.01, 0.01 respectively) than that of the control. Concentrations of copper, ceruloplasmin, and iron were markedly increased in cases as compared to controls (P < 0.01, 0.01, and 0.05 respectively). In conclusion, the current study clearly indicated the etiology of NTD cannot be explained with one strict etiologic mechanism, on the contrary, an interaction among maternal nutritional factors and oxidative stress would explain these anomalies. Vitamin B12, folic acid, and zinc supplementations should be considered for further decrease in the occurrence of NTD. Preventing excess iron during pregnancy favors better pregnancy outcomes.Keywords: ceruloplasmin, copper, folic acid, iron, neural tube defects, oxidative stress, vitamin b12, zinc
Procedia PDF Downloads 2223416 Optimization of Extraction Conditions and Characteristics of Scale collagen From Sardine: Sardina pilchardus
Authors: F. Bellali, M. Kharroubi, M. Loutfi, N.Bourhim
Abstract:
In Morocco, fish processing industry is an important source income for a large amount of byproducts including skins, bones, heads, guts and scales. Those underutilized resources particularly scales contain a large amount of proteins and calcium. Scales from Sardina plichardus resulting from the transformation operation have the potential to be used as raw material for the collagen production. Taking into account this strong expectation of the regional fish industry, scales sardine upgrading is well justified. In addition, political and societal demands for sustainability and environment-friendly industrial production systems, coupled with the depletion of fish resources, drive this trend forward. Therefore, fish scale used as a potential source to isolate collagen has a wide large of applications in food, cosmetic and bio medical industry. The main aim of this study is to isolate and characterize the acid solubilize collagen from sardine fish scale, Sardina pilchardus. Experimental design methodology was adopted in collagen processing for extracting optimization. The first stage of this work is to investigate the optimization conditions of the sardine scale deproteinization on using response surface methodology (RSM). The second part focus on the demineralization with HCl solution or EDTA. Moreover, the last one is to establish the optimum condition for the isolation of collagen from fish scale by solvent extraction. The basic principle of RSM is to determinate model equations that describe interrelations between the independent variables and the dependent variables.Keywords: Sardina pilchardus, scales, valorization, collagen extraction, response surface methodology
Procedia PDF Downloads 4203415 The Effects of Yield and Yield Components of Some Quality Increase Applications on Razakı Grape Variety
Authors: Şehri Çınar, Aydın Akın
Abstract:
This study was conducted Razakı grape variety (Vitis vinifera L.) and its vine which was aged 19 was grown on 5 BB rootstock in a vegetation period of 2014 in Afyon province in Turkey. In this research, it was investigated whether the applications of Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), Shoot Tip Reduction (STR), 1/3 CTR + STR, Boric Acid (BA), 1/3 CTR + BA, STR + BA, 1/3 CTR + STR + BA on yield and yield components of Razakı grape variety. The results were obtained as the highest fresh grape yield (7.74 kg/vine) with C application, as the highest cluster weight (244.62 g) with STR application, as the highest 100 berry weight (504.08 g) with C application, as the highest maturity index (36.89) with BA application, as the highest must yield (695.00 ml) with BA and (695.00 ml) with 1/3 CTR + STR + BA applications, as the highest intensity of L* color (46.93) with STR and (46.10) with 1/3 CTR + STR + BA applications, as the highest intensity of a* color (-5.37) with 1/3 CTR + STR and (-5.01) with STR, as the highest intensity of b* color (12.59) with STR application. The shoot tip reduction to increase cluster weight and boric acid application to increase maturity index of Razakı grape variety can be recommended.Keywords: razakı, 1/3 cluster tip reduction, shoot tip reduction, boric acid, yield and yield components
Procedia PDF Downloads 4753414 Antioxidant Activity Studies of Novel Schiff and Mannich Bases
Authors: D. J. Madhu Kumar, D. Jagadeesh Prasad, Sana Sheik, E. P. Rejeesh
Abstract:
A series of Mannich bases derived from 1,2,4-triazole(3a-k and 4a-k) are synthesized by treating a Schiff base with various substituted primary/secondary amines and formaldehyde. The Schiff base is prepared by treating 3-methyl-4-amino-5-mercapto-1,2,4-triazole with 3,4-dimethoxybenzaldehyde in the presence of acid catalyst. The triazole is prepared by treating acetic acid with thiocarbohydrazide at reflux temperature. All the synthesized samples are characterised by FT-IR, 1H-NMR, and LC-MASS spectral studies and screened for their anti-oxidant activity.Keywords: mannich bases, anti-oxidant activity, schiff base, triazole
Procedia PDF Downloads 5173413 Determination and Qsar Modelling of Partitioning Coefficients for Some Xenobiotics in Soils and Sediments
Authors: Alaa El-Din Rezk
Abstract:
For organic xenobiotics, sorption to Aldrich humic acid is a key process controlling their mobility, bioavailability, toxicity and fate in the soil. Hydrophobic organic compounds possessing either acid or basic groups can be partially ionized (deprotonated or protonated) within the range of natural soil pH. For neutral and ionogenicxenobiotics including (neutral, acids and bases) sorption coefficients normalized to organic carbon content, Koc, have measured at different pH values. To this end, the batch equilibrium technique has been used, employing SPME combined with GC-MSD as an analytical tool. For most ionogenic compounds, sorption has been affected by both pH and pKa and can be explained through Henderson-Hasselbalch equation. The results demonstrate that when assessing the environmental fate of ionogenic compounds, their pKa and speciation under natural conditions should be taken into account. A new model has developed to predict the relationship between log Koc and pH with full statistical evaluation against other existing predictive models. Neutral solutes have displayed a good fit with the classical model using log Kow as log Koc predictor, whereas acidic and basic compounds have displayed a good fit with the LSER approach and the new proposed model. Measurement limitations of the Batch technique and SPME-GC-MSD have been found with ionic compounds.Keywords: humic acid, log Koc, pH, pKa, SPME-GCMSD
Procedia PDF Downloads 2663412 Characterization of Potato Starch/Guar Gum Composite Film Modified by Ecofriendly Cross-Linkers
Authors: Sujosh Nandi, Proshanta Guha
Abstract:
Synthetic plastics are preferred for food packaging due to high strength, stretch-ability, good water vapor and gas barrier properties, transparency and low cost. However, environmental pollution generated by these synthetic plastics is a major concern of modern human civilization. Therefore, use of biodegradable polymers as a substitute for synthetic non-biodegradable polymers are encouraged to be used even after considering drawbacks related to mechanical and barrier properties of the films. Starch is considered one of the potential raw material for the biodegradable polymer, encounters poor water barrier property and mechanical properties due to its hydrophilic nature. That apart, recrystallization of starch molecules occurs during aging which decreases flexibility and increases elastic modulus of the film. The recrystallization process can be minimized by blending of other hydrocolloids having similar structural compatibility, into the starch matrix. Therefore, incorporation of guar gum having a similar structural backbone, into the starch matrix can introduce a potential film into the realm of biodegradable polymer. However, hydrophilic nature of both starch and guar gum, water barrier property of the film is low. One of the prospective solution to enhance this could be modification of the potato starch/guar gum (PSGG) composite film using cross-linker. Over the years, several cross-linking agents such as phosphorus oxychloride, sodium trimetaphosphate, etc. have been used to improve water vapor permeability (WVP) of the films. However, these chemical cross-linking agents are toxic, expensive and take longer time to degrade. Therefore, naturally available carboxylic acid (tartaric acid, malonic acid, succinic acid, etc.) had been used as a cross-linker and found that water barrier property enhanced substantially. As per our knowledge, no works have been reported with tartaric acid and succinic acid as a cross-linking agent blended with the PSGG films. Therefore, the objective of the present study was to examine the changes in water vapor barrier property and mechanical properties of the PSGG films after cross-linked with tartaric acid (TA) and succinic acid (SA). The cross-linkers were blended with PSGG film-forming solution at four different concentrations (4, 8, 12 & 16%) and cast on teflon plate at 37°C for 20 h. From the fourier-transform infrared spectroscopy (FTIR) study of the developed films, a band at 1720cm-1 was observed which is attributed to the formation of ester group in the developed films. On the other hand, it was observed that tensile strength (TS) of the cross-linked film decreased compared to non-cross linked films, whereas strain at break increased by several folds. Moreover, the results depicted that tensile strength diminished with increasing the concentration of TA or SA and lowest TS (1.62 MPa) was observed for 16% SA. That apart, maximum strain at break was also observed for TA at 16% and the reason behind this could be a lesser degree of crystallinity of the TA cross-linked films compared to SA. However, water vapor permeability of succinic acid cross-linked film was reduced significantly, but it was enhanced significantly by addition of tartaric acid.Keywords: cross linking agent, guar gum, organic acids, potato starch
Procedia PDF Downloads 1173411 Preparation of Poly(Acrylic Acid) Functionalized Magnetic Graphene Oxide Composite and Its Application for Pb(II) Removal
Authors: Yu Wang, Xibang Chen, Maolin Zhai, Jing Peng, Jiuqiang Li
Abstract:
Poly(acrylic acid) (PAA) functionalized magnetic graphene oxide (GO) composite was synthesized through a two-step process. Magnetic Fe₃O₄/GO was first prepared by a facile hydrothermal method. A radiation-induced grafting technique was used to graft PAA to Fe₃O₄/GO to obtain the Fe₃O₄/GO-g-PAA subsequently. The characteristics results of FTIR, Raman, XRD, SEM, TEM, and VSM showed that Fe₃O₄/GO-g-PAA was successfully prepared. The Fe₃O₄/GO-g-PAA composites were used as sorbents for the removal of Pb(II) ions, and the maximum adsorption capacity for Pb(II) was 176.92 mg/g.Keywords: Fe₃O₄, graphene oxide, magnetic, Pb(II) removal, radiation-induced
Procedia PDF Downloads 1603410 Characterization of New Sources of Maize (Zea mays L.) Resistance to Sitophilus zeamais (Coleoptera: Curculionidae) Infestation in Stored Maize
Authors: L. C. Nwosu, C. O. Adedire, M. O. Ashamo, E. O. Ogunwolu
Abstract:
The maize weevil, Sitophilus zeamais Motschulsky is a notorious pest of stored maize (Zea mays L.). The development of resistant maize varieties to manage weevils is a major breeding objective. The study investigated the parameters and mechanisms that confer resistance on a maize variety to S. zeamais infestation using twenty elite maize varieties. Detailed morphological, physical and chemical studies were conducted on whole-maize grain and the grain pericarp. Resistance was assessed at 33, 56, and 90 days post infestation using weevil mortality rate, weevil survival rate, percent grain damage, percent grain weight loss, weight of grain powder, oviposition rate and index of susceptibility as indices rated on a scale developed by the present study and on Dobie’s modified scale. Linear regression models that can predict maize grain damage in relation to the duration of storage were developed and applied. The resistant varieties identified particularly 2000 SYNEE-WSTR and TZBRELD3C5 with very high degree of resistance should be used singly or best in an integrated pest management system for the control of S. zeamais infestation in stored maize. Though increases in the physical properties of grain hardness, weight, length, and width increased varietal resistance, it was found that the bases of resistance were increased chemical attributes of phenolic acid, trypsin inhibitor and crude fibre while the bases of susceptibility were increased protein, starch, magnesium, calcium, sodium, phosphorus, manganese, iron, cobalt and zinc, the role of potassium requiring further investigation. Characters that conferred resistance on the test varieties were found distributed in the pericarp and the endosperm of the grains. Increases in grain phenolic acid, crude fibre, and trypsin inhibitor adversely and significantly affected the bionomics of the weevil on further assessment. The flat side of a maize grain at the point of penetration was significantly preferred by the weevil. Why the south area of the flattened side of a maize grain was significantly preferred by the weevil is clearly unknown, even though grain-face-type seemed to be a contributor in the study. The preference shown to the south area of the grain flat side has implications for seed viability. The study identified antibiosis, preference, antixenosis, and host evasion as the mechanisms of maize post harvest resistance to Sitophilus zeamais infestation.Keywords: maize weevil, resistant, parameters, mechanisms, preference
Procedia PDF Downloads 3073409 Tryptophan and Its Derivative Oxidation via Heme-Dioxygenase Enzyme
Authors: Ali Bahri Lubis
Abstract:
Tryptophan oxidation by Heme-dioxygenase enzyme is the initial rate-limiting step in the kynurenine pathway, which leads to the formation of NADH and dangerous metabolites, implicating several severe diseases such as Parkinson’s Disease, Huntington's Disease, poliomyelitis and cataract. This oxidation, generally, allows tryptophan to convert to N-Formylkynurenine (NFK). Observing the catalytic mechanism of Heme dioxygenase in tryptophan oxidation has been a debatably scientific interest since no one has yet proven the mechanism obviously. In this research we have attempted to prove mechanistic steps of tryptophan oxidation via human indoleamine dioxygenase (h-IDO) utilising various substrates: L-tryptophan, L-tryptophan (indole-ring-2-¹³C), L-fully-labelled¹³C-tryptophan, L-N-methyl-tryptophan, L-tryptophanol and 2-amino-3-(benzo(b)thiophene-3-yl) propanoic acid. All enzyme assay experiments were measured using a UV-Vis spectrophotometer, LC-MS, 1H-NMR and HSQC. We also successfully synthesised enzyme products as our control in NMR measurements. The result exhibited that all substrates produced N-formyl kynurenine (NFK), and a side, the minor product of hydroxypyrrolloindoleamine carboxylic acid (HPIC) in cis and trans isomer, except 1-methyl tryptophan only generating cis HPIC. Interestingly, L- tryptophanol was oxidised to form HPIC derivative as a major product and 5-hydroxy tryptophan was converted to NFK derivative instead without any HPIC derivative. The bizarre result of oxidation underwent in 2-amino-3-(benzo(b)thiophene-3-yl) propanoic acid, which produced epoxide cyclic. Those phenomena have been explainable in our research based on the proposed mechanism of how tryptophan is oxidised by human indoleamine dioxygenase.Keywords: tryptophan oxidation, heme-dioxygenases, human indoleamine dioxygenases, N-formylkynurenine, hydroxypyrroloindoleamine carboxylic acid
Procedia PDF Downloads 743408 Efficacy of TiO₂ in the Removal of an Acid Dye by Photo Catalytic Degradation
Authors: Laila Mahtout, Kerami Ahmed, Rabhi Souhila
Abstract:
The objective of this work is to reduce the impact on the environment of an acid dye (Black Eriochrome T) using catalytic photo-degradation in the presence of the semiconductor powder (TiO₂) previously characterized. A series of tests have been carried out in order to demonstrate the influence of certain parameters on the degree of dye degradation by titanium dioxide in the presence of UV rays, such as contact time, the powder mass and the pH of the solution. X-ray diffraction analysis of the powder showed that the anatase structure is predominant and the rutile phase is presented by peaks of low intensity. The various chemical groups which characterize the presence of the bands corresponding to the anatase and rutile form and other chemical functions have been detected by the Fourier Transform Infrared spectroscopy. The photo degradation of the NET by TiO₂ is very interesting because it gives encouraging results. The study of photo-degradation at different concentrations of the dye showed that the lower concentrations give better removal rates. The degree of degradation of the dye increases with increasing pH; it reaches the maximum value at pH = 9. The ideal mass of TiO₂ which gives the high removal rate is 1.2 g/l. Thermal treatment of TiO₂ with the addition of CuO with contents of 5%, 10%, and 15% respectively gives better results of degradation of the NET dye. The high percentage of elimination is observed at a CuO content of 15%.Keywords: acid dye, ultraviolet rays, degradation, photocatalyse
Procedia PDF Downloads 1953407 Optimization of Radiation Therapy with a Nanotechnology Based Enzymatic Therapy
Authors: R. D. Esposito, V. M. Barberá, P. García Morales, P. Dorado Rodríguez, J. Sanz, M. Fuentes, D. Planes Meseguer, M. Saceda, L. Fernández Fornos, M. P. Ventero
Abstract:
Results obtained by our group on glioblastoma multiforme (GBM) primary cultures , show a dramatic potentiation of radiation effects when 2 units/ml of D-amino acid oxidase (DAO) enzyme are added, free or immobilized in magnetic nanoparticles, to irradiated samples just after the irradiation. Cell cultures were exposed to radiation doses of 7Gy and 15Gy of 6 MV photons from a clinical linear accelerator. At both doses, we observed a clear enhancing effect of radiation-induced damages due to the addition of DAO.Keywords: D-amino Acid Oxidase (DAO) enzyme, magnetic particles, nanotechnology, radiation therapy enhancement
Procedia PDF Downloads 5243406 Characterization of the Ignitability and Flame Regression Behaviour of Flame Retarded Natural Fibre Composite Panel
Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari
Abstract:
Natural fibre composites (NFC) are becoming very attractive especially for automotive interior and non-structural building applications because they are biodegradable, low cost, lightweight and environmentally friendly. NFC are known to release high combustible products during exposure to heat atmosphere and this behaviour has raised concerns to end users. To improve on their fire response, flame retardants (FR) such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) are incorporated during processing to delay the start and spread of fire. In this paper, APP was modified with Gum Arabic powder (GAP) and synergized with carbon black (CB) to form new FR species. Four FR species at 0, 12, 15 and 18% loading ratio were added to oil palm fibre polyester composite (OPFC) panels as follows; OPFC12%APP-GAP, OPFC15%APP-GAP/CB, OPFC18%ATH/APP-GAP and OPFC18%ATH/APPGAP/CB. The panels were produced using hand lay-up compression moulding and cured at room temperature. Specimens were cut from the panels and these were tested for ignition time (Tig), peak heat released rate (HRRp), average heat release rate (HRRavg), peak mass loss rate (MLRp), residual mass (Rm) and average smoke production rate (SPRavg) using cone calorimeter apparatus as well as the available flame energy (ɸ) in driving the flame using radiant panel flame spread apparatus. From the ignitability data obtained at 50 kW/m2 heat flux (HF), it shows that the hybrid FR modified with APP that is OPFC18%ATH/APP-GAP exhibited superior flame retardancy and the improvement was based on comparison with those without FR which stood at Tig = 20 s, HRRp = 86.6 kW/m2, HRRavg = 55.8 kW/m2, MLRp =0.131 g/s, Rm = 54.6% and SPRavg = 0.05 m2/s representing respectively 17.6%, 67.4%, 62.8%, 50.9%, 565% and 62.5% improvements less than those without FR (OPFC0%). In terms of flame spread, the least flame energy (ɸ) of 0.49 kW2/s3 for OPFC18%ATH/APP-GAP caused early flame regression. This was less than 39.6 kW2/s3 compared to those without FR (OPFC0%). It can be concluded that hybrid FR modified with APP could be useful in the automotive and building industries to delay the start and spread of fire.Keywords: flame retardant, flame regression, oil palm fibre, composite panel
Procedia PDF Downloads 1303405 The Investigation of Effect of Alpha Lipoic Acid against Damage on Neonatal Rat Lung to Maternal Tobacco Smoke Exposure
Authors: Elif Erdem, Nalan Kaya, Gonca Ozan, Durrin Ozlem Dabak, Enver Ozan
Abstract:
This study was carried out to determine the histological and biochemical changes in the lungs of the rat pups exposed to tobacco smoke during pregnancy period and to investigate the protective effects of alpha lipoic acid, which is administered during pregnancy, on these changes. In our study, 24 six-week old Spraque-Dawley female rats weighing 160 ± 10 g were used (n:7). Rats were randomly divided into four equal groups: group I (control), group II (tobacco smoke), group III (tobacco smoke + alpha lipoic acid) and group IV (alpha lipoic acid). Rats in the group II, group III were exposed to tobacco smoke twice a day for one hour starting from eight weeks before mating and during pregnancy. In addition to tobacco smoke, 20 mg/kg of alpha lipoic acid was administered via oral gavage to the rats in the group III. Only alpha lipoic acid was administered to the rats in the group IV. Once after the delivery, all administrations were stopped. On the 7 and 21th days, the seven pups of all groups were decapitated. A portion of the lung was taken and stained with HE, PAS and Masson. In addition to immunohistochemical staining of surfactant protein A, vascular endothelial growth factor, caspase-3, TUNEL method was also used to determine apoptosis. Biochemical analyzes were performed with some part of the lung tissue specimens. In the histological evaluations performed under light microscopy, inflammatory cell increase, hemorrhagic areas, edema, interalveolar septal thickening, alveolar numbers decrease, degeneration of some bronchi and bronchial epithelium, epithelial cells that were fallen into the lumen and hyaline membrane formation were observed in tobacco smoke group. These findings were ameliorated in tobacco smoke + ALA group. Hyaline membrane formation was not detected in this group. The TUNEL positive cell numbers a significant increase was detected in the tobacco smoke group, whereas a significant decrease was detected in the tobacco smoke + ALA group. In terms of the immunoreactivity of both SP-A and VEGF, a significant decrease was observed in the tobacco smoke group, and a significant increase was observed in the tobacco smoke + ALA group. Regarding the immunoreactivity of caspase-3, there was a significant increase in the group of tobacco smoke and a significant decrease in the group of tobacco smoke + ALA. The malondialdehyde levels were determined to be significantly increased in the tobacco smoke group, and a significant decreased in the tobacco smoke + ALA. Glutathione and superoxide dismutase enzyme activities showed a significant decrease in the group of tobacco smoke and a significant increase in the tobacco smoke + ALA group. In conclusion, we suggest that the exposure to tobacco smoke during pregnancy leads to morphological, histopathological and functional changes on lung development by causing oxidative damage in lung tissues of neonatal rats and the maternal use of alpha lipoic acid can provide a protective effect on the neonatal lung development against this oxidative stress originating from tobacco smoke.Keywords: alpha lipoic acid, lung, neonate, tobacco smoke, pregnancy
Procedia PDF Downloads 2123404 Prevalence and Determinants of Hypertension among the Santal Indigenous Group in Bangladesh
Authors: Sharmin Sultana, Palash Chandra Banik, Shirin Jahan Mumu, Liaquat Ali
Abstract:
Santals are one of the oldest indigenous groups of South Asia who, according to anthropological evidence, are thought to be the origins of the Bengali race. The aim of the study was to explore, according to our best knowledge for the first time, the prevalence and determinants of hypertension in this relatively isolated and marginalized indigenous group who still live mostly in a traditional style. Under a cross-sectional analytical design, the study was conducted on the adult (age≥18 years) Santals (n=389, M/F 184/205, age in years, 38±15.3) of a village located in a remote rural area of northern Bangladesh. Subjects were selected by purposive sampling, and data were collected by interviewer-administered pretested questionnaire. Blood pressure was measured by following the WHO guideline of JNC-7 has been used to classify the blood pressure. The prevalence of hypertension was 4.9% among the respondents. Females had a much higher prevalence (5.4%) of hypertension compared to males (4.3%). Among the risk indicators of hypertension, more than half (50.9%) of the study population took extra salt in their meals, whereas 10.5% of respondents used extra salt occasionally, which is an important risk factor for high blood pressure. High waist circumference was found in 19% of the study subjects in terms of central obesity. Older age group (p=0.003, OR=1.1, 95%CI-1.02-1.10), respondents who completed more than primary school (p=0.038, OR=7.1, CI-1.11, 44.6), overweight and obesity (p=0.004, OR=17.1, CI-2.5, 118.1), were the major determinant for hypertension as found from the binary logistic model. None of the respondents received any medication, neither they visit any doctor ever for their hypertension control. The prevalence of hypertension was found to be low but not ignorable. Pre-hypertension in the case of systolic blood pressure needs attention among Santal indigenous population.Keywords: hypertension, indigenous group, Santals, Bangladesh
Procedia PDF Downloads 109