Search results for: dual phase lag model
5674 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models
Authors: Hadush Kidane Meresa
Abstract:
The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland
Procedia PDF Downloads 6055673 Analytics Capabilities and Employee Role Stressors: Implications for Organizational Performance
Authors: Divine Agozie, Muesser Nat, Eric Afful-Dadzie
Abstract:
This examination attempts an analysis of the effect of business intelligence and analytics (BI&A) capabilities on organizational role stressors and the implications of such an effect on performance. Two hundred twenty-eight responses gathered from seventy-six firms across Ghana were analyzed using the Partial Least Squares Structural Equation Modelling (PLS-SEM) approach to validate the hypothesized relationships identified in the research model. Findings suggest both endogenous and exogenous dependencies of the sensing capability on the multiple role requirements of personnel. Further, transforming capability increases role conflict, whereas driving capability of BI&A systems impacts role conflict and role ambiguity. This study poses many practical insights to firms seeking to acquire analytics capabilities to drive performance and data-driven decision-making. It is important for firms to consider balancing role changes and task requirements before implementing and post-implementation stages of BI&A innovations.Keywords: business intelligence and analytics, dynamic capabilities view, organizational stressors, structural equation modelling
Procedia PDF Downloads 1155672 Cardiovascular Disease Data Analysis Using Machine Learning Models
Authors: Ranveet Saggu, Saad Bin Ahmed
Abstract:
Cardiovascular Disease (CVD) is the leading cause of death worldwide. One of its main manifestations, myocardial infarction (commonly known as a heart attack), occurs about 750,000 times a year, caused by insufficient blood flow to a portion of the heart muscle. A quick and accurate diagnosis of a heart attack or heart failure is crucial in the treatment of the patient. The aim of this research project is to improve the prediction of cardiovascular diseases by automating risk assessment using binary classifiers. The methodology includes Exploratory Data Analysis (EDA), which helps to obtain information about the dataset with the help of visualizations and metrics. Additionally, Feature Engineering techniques is employed to address missing values, outliers, feature extraction, and normalizing the dataset. Subsequently, various classification machine learning algorithms are trained, and their accuracy along with other metrics are evaluated to identify the most efficient model in terms of processing time and predictive performance.Keywords: cardiovascular disease, machine learning, deci- sion trees, logistic regression, k-nearest neighbor, xgboost, random forest, gradient boosting
Procedia PDF Downloads 105671 Empirical Study on Grassroots Innovation for Entrepreneurship Development with Microfinance Provision as Moderator
Authors: Sonal H. Singh, Bhaskar Bhowmick
Abstract:
The research hypothesis formulated in this paper examines the importance of microfinance provision for entrepreneurship development by engendering a high level of entrepreneurial orientation among the grassroots entrepreneurs. A theoretically well supported empirical framework is proposed to identify the influence of financial services and non-financial services provided by microfinance institutes in strengthening the impact of grassroots innovation on entrepreneurial orientation under resource constraints. In this paper, Grassroots innovation is perceived in three dimensions: new learning practice, localized solution, and network development. The study analyzes the moderating effect of microfinance provision on the relationship between grassroots innovation and entrepreneurial orientation. The paper employed structural equation modelling on 400 data entries from the grassroots entrepreneurs in India. The research intends to help policymakers, entrepreneurs and microfinance providers to promote the innovative design of microfinance services for the well-being of grassroots entrepreneurs and to foster sustainable entrepreneurship development.Keywords: entrepreneurship development, grassroots innovation, India, structural equation model
Procedia PDF Downloads 2675670 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 1135669 Methods of Categorizing Architectural Technical Debt
Authors: Blessing Igbadumhe
Abstract:
The continuous long- and short-term delivery of value to customers continues to be the overarching objective of software organizations. Software engineering professionals and organizations face challenges in the maintenance and evolution of software as a result of architectural, technical debt. The issues of architectural, technical debt continue to receive a significant amount of attention because of its important impact on successful system implementation. The cost of doing nothing as far as architectural, technical debt is concerned can be significant both in financial terms and impacts on customers. Different architectural, technical debt issues exist, and this qualitative research design reviewed existing literature on the subject to identify and categorize them. This research intends to contribute to the existing bludgeoning body of knowledge on categorizations and descriptive model of technical debt related issues related to system architecture. The results identify the most common characteristics of architectural and technical debt categories. Raising awareness of the intricacies of architectural and technical debt helps technology stakeholders reduce negative consequences and increase the system success rate.Keywords: architecture, categorizing TD, system design, technical debt
Procedia PDF Downloads 955668 A Periodogram-Based Spectral Method Approach: The Relationship between Tourism and Economic Growth in Turkey
Authors: Mesut BALIBEY, Serpil TÜRKYILMAZ
Abstract:
A popular topic in the econometrics and time series area is the cointegrating relationships among the components of a nonstationary time series. Engle and Granger’s least squares method and Johansen’s conditional maximum likelihood method are the most widely-used methods to determine the relationships among variables. Furthermore, a method proposed to test a unit root based on the periodogram ordinates has certain advantages over conventional tests. Periodograms can be calculated without any model specification and the exact distribution under the assumption of a unit root is obtained. For higher order processes the distribution remains the same asymptotically. In this study, in order to indicate advantages over conventional test of periodograms, we are going to examine a possible relationship between tourism and economic growth during the period 1999:01-2010:12 for Turkey by using periodogram method, Johansen’s conditional maximum likelihood method, Engle and Granger’s ordinary least square method.Keywords: cointegration, economic growth, periodogram ordinate, tourism
Procedia PDF Downloads 2735667 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment
Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot
Abstract:
Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography
Procedia PDF Downloads 2765666 A Study of Learning to Enhance Ability Career Skills Consistent With Disruptive Innovation in Creative Strategies for Advertising Course
Authors: Kornchanok Chidchaisuwan
Abstract:
This project is a study of learning activities through experience to enhance career skills and technical abilities on the creative strategies for advertising course of undergraduate students. This instructional model consisted of study learning approaches: 1) Simulation-based learning: used to create virtual learning activities plans for work like working at advertising companies. 2) Project-based learning: Actual work based on the processed creating and focus on producing creative works to present on new media channels. The results of learning management found that there were effects on the students in various areas, including 1) The learners have experienced in the step by step of advertising work process. 2) The learner has the skills to work from the actual work (Learning by Doing), allowing the ability to create, present, and produce the campaign accomplished achievements and published on online media at a better level.Keywords: technical, advertising, presentation, career skills, experience, simulation based learning
Procedia PDF Downloads 935665 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 385664 A Critical Evaluation of Building Information Modelling in New Zealand: Deepening Our Understanding of the Benefits and Drawbacks
Authors: Garry Miller, Thomas Alexander, Cameron Lee
Abstract:
There is belief that Building Information Modelling (BIM) will improve performance of the New Zealand (NZ) Architecture, Engineering and Construction (AEC) sector, however, widespread use of BIM is yet to be seen. Previous research indicates there are many issues affecting the uptake of BIM in NZ; nevertheless the underlying benefits, drawbacks, and barriers preventing more widespread uptake are not fully understood. This investigation aimed to understand these factors more clearly and make suggestions on how to improve the uptake of BIM in NZ. Semi-structured interviews were conducted with a range of industry professionals to gather a qualitative understanding. Findings indicated the ability to incorporate better information into a BIM model could drive many benefits. However scepticism and lack of positive incentives in NZ are affecting its widespread use. This concluded that there is a need for the government to produce a number of BIM case studies and develop a set of BIM standards to resolve payment issues surrounding BIM use. This study provides useful information for those interested in BIM and members of government interested in improving the performance of the construction industry. This study may also be of interest to small, developed countries such as NZ where the level of BIM maturity is relatively low.Keywords: BIM, New Zealand, AEC sector, building information modelling
Procedia PDF Downloads 5215663 Finite Element Analysis and Multibody Dynamics of 6-DOF Industrial Robot
Authors: Rahul Arora, S. S. Dhami
Abstract:
This paper implements the design structure of industrial robot along with the different transmission components like gear assembly and analysis of complete industrial robot. In this paper, it gives the overview on the most efficient types of modeling and different analysis results that can be obtained for an industrial robot. The investigation is executed in regards to two classifications i.e. the deformation and the stress tests. SolidWorks is utilized to design and review the 3D drawing plan while ANSYS Workbench is utilized to execute the FEA on an industrial robot and the designed component. The CAD evaluation was conducted on a disentangled model of an industrial robot. The study includes design and drafting its transmission system. In CAE study static, modal and dynamic analysis are presented. Every one of the outcomes is divided in regard with the impact of the static and dynamic analysis on the situating exactness of the robot. It gives critical data with respect to parts of the industrial robot that are inclined to harm under higher high force applications. Therefore, the mechanical structure under different operating conditions can help in optimizing the manipulator geometry and in selecting the right material for the same. The FEA analysis is conducted for four different materials on the same industrial robot and gear assembly.Keywords: CAD, CAE, FEA, robot, static, dynamic, modal, gear assembly
Procedia PDF Downloads 3815662 Solutions for Large Diameter Piles Stifness Used in Offshore Wind Turbine Farms
Authors: M. H. Aissa, Amar Bouzid Dj
Abstract:
As known, many countries are now planning to build new wind farms with high capacity up to 5MW. Consequently, the size of the foundation increase. These kinds of structures are subject to fatigue damage from environmental loading mainly due to wind and waves as well as from cyclic loading imposed through the rotational frequency (1P) through mass and aerodynamic imbalances and from the blade passing frequency (3P) of the wind turbine which make them behavior dynamically very sensitive. That is why natural frequency must be determined with accuracy from the existing data of the soil and the foundation stiffness sources of uncertainties, to avoid the resonance of the system. This paper presents analytical expressions of stiffness foundation with large diameter in linear soil behavior in different soil stiffness profile. To check the accuracy of the proposed formulas, a mathematical model approach based on non-dimensional parameters is used to calculate the natural frequency taking into account the soil structure interaction (SSI) compared with the p-y method and measured frequency in the North Sea Wind farms.Keywords: offshore wind turbines, semi analytical FE analysis, p-y curves, piles foundations
Procedia PDF Downloads 4695661 Characterization of Coastal Solid Waste: Basis for the Development of Waste Collector
Authors: Arnold I. Malag
Abstract:
The study wants to establish the data on the characteristics of coastal solid waste in main Island of Masbate as a model for technology interventions. The research utilized the Google Maps to measure the coastal length and Fishbowl Method for area identification. The solid wastes gathered were classified as residual, non-biodegradable, recyclable wastes, and special wastes, based on the waste analysis and characterization manual of Philippine Environmental Governance Project. The wastes were evaluated by weight in kg., dimension in cm., and characteristics as floating or non-floating. Based on the dimension of coastal solid waste, the biodegradable, recyclable, residual and special waste have the average of 40.95 cm., 16.25 cm., 31.37 cm., and 0.725cm. respectively. The waste in the coastal areas is dominated by biodegradable, followed by residual, then recyclable and special wastes with the data of 0.566 kg/m, 0.533 kg/m, 0.114 kg/m and .0007 kg/m respectively. The 97.15% of solid wastes collected is characterized as “floating”, where in the sources are the nearest rivers and waterways and/or the nearest populated areas adjacent to the island. This accumulation of solid wastes can be minimized and controlled by utilizing a floating equipment.Keywords: solid waste, coastal waste, waste characterization, waste collector
Procedia PDF Downloads 875660 Investigation of Dynamic Heat Transfer in Masonry Walls
Authors: Joelle Al Fakhoury, Emilio Sassine, Yassine Cherif, Joseph Dgheim, Emmanuel Antczak
Abstract:
Hollow block masonry is the most used building technology in the Lebanese context. These blocks are manufactured in an artisanal way and have unknown thermal properties; their overall thermos-physical performance is thus unknown and also poorly investigated scientifically in both single wall and also double wall configurations. In this work, experimental measurements and numerical simulations are performed for a better understanding of the heat transfer in masonry walls. This study was realized using an experimental setup consisting of a masonry hollow block wall (0.1m x 1m x 1m) and two heat boxes, such that each covers one side of the wall. The first is a reference box having a constant interior temperature, and the other is a control box having an adjustable interior temperature. At first, the numerical model is validated using an experimental setup; then 3D numerical analyzes are held in order to investigate the effect of the air gap, the mortar joints, and the plastering on the thermal performance of masonry walls for a better understanding of the heat transfer process and the recommendation of suitable thermal improvements.Keywords: masonry wall, hollow blocks, heat transfer, wall instrumentation, thermal improvement
Procedia PDF Downloads 2365659 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach
Authors: Hamed Rahmani, Wim Groot
Abstract:
The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Centre of Iran and the Ministry of Cooperatives Labour and Social Welfare that was taken from the labour force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of six in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education and years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.Keywords: NEET youth, probit, CART, machine learning, unemployment
Procedia PDF Downloads 1115658 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators
Authors: N. Naz, A. D. Domenico, M. N. Huda
Abstract:
Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator
Procedia PDF Downloads 945657 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.Keywords: neural network computing, continuous functions generating the input-output mapping, decreasing the training time, machines with big memories
Procedia PDF Downloads 2855656 Lifetime Assessment for Test Strips of POCT Device through Accelerated Degradation Test
Authors: Jinyoung Choi, Sunmook Lee
Abstract:
In general, single parameter, i.e. temperature, as an accelerating parameter is used to assess the accelerated stability of Point-of-Care Testing (POCT) diagnostic devices. However, humidity also plays an important role in deteriorating the strip performance since major components of test strips are proteins such as enzymes. 4 different Temp./Humi. Conditions were used to assess the lifetime of strips. Degradation of test strips were studied through the accelerated stability test and the lifetime was assessed using commercial POCT products. The life distribution of strips, which were obtained by monitoring the failure time of test strip under each stress condition, revealed that the weibull distribution was the most proper distribution describing the life distribution of strips used in the present study. Equal shape parameters were calculated to be 0.9395 and 0.9132 for low and high concentrations, respectively. The lifetime prediction was made by adopting Peck Eq. Model for Stress-Life relationship, and the B10 life was calculated to be 70.09 and 46.65 hrs for low and high concentrations, respectively.Keywords: accelerated degradation, diagnostic device, lifetime assessment, POCT
Procedia PDF Downloads 4185655 Identification of Shocks from Unconventional Monetary Policy Measures
Authors: Margarita Grushanina
Abstract:
After several prominent central banks including European Central Bank (ECB), Federal Reserve System (Fed), Bank of Japan and Bank of England employed unconventional monetary policies in the aftermath of the financial crisis of 2008-2009 the problem of identification of the effects from such policies became of great interest. One of the main difficulties in identification of shocks from unconventional monetary policy measures in structural VAR analysis is that they often are anticipated, which leads to a non-fundamental MA representation of the VAR model. Moreover, the unconventional monetary policy actions may indirectly transmit to markets information about the future stance of the interest rate, which raises a question of the plausibility of the assumption of orthogonality between shocks from unconventional and conventional policy measures. This paper offers a method of identification that takes into account the abovementioned issues. The author uses factor-augmented VARs to increase the information set and identification through heteroskedasticity of error terms and rank restrictions on the errors’ second moments’ matrix to deal with the cross-correlation of the structural shocks.Keywords: factor-augmented VARs, identification through heteroskedasticity, monetary policy, structural VARs
Procedia PDF Downloads 3505654 An Activatable Prodrug for the Treatment of Metastatic Tumors
Authors: Eun-Joong Kim, Sankarprasad Bhuniya, Hyunseung Lee, Hyun Min Kim, Chaejoon Cheong, Su-khendu Maiti, Kwan Soo Hong, Jong Seung Kim
Abstract:
Metastatic cancers have historically been difficult to treat. However, metastatic tumors have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential anti-metastatic therapy. In this study, prodrug 7 was designed to be activated by H2O2-mediated boronate oxidation, resulting in activation of the fluorophore for detection and release of the therapeutic agent, SN-38. Drug release from prodrug 7 was investigated by monitoring fluorescence after addition of H2O2 to the cancer cells. Prodrug 7 activated by H2O2 selectively inhibited tumor cell growth. Furthermore, intratracheally administered prodrug 7 showed effective anti-tumor activity in a mouse model of metastatic lung disease. Thus, this H2O2-responsive prodrug has therapeutic potential as a novel treatment for metastatic cancer via cellular imaging with fluorescence as well as selective release of the anti-cancer drug, SN-38.Keywords: hydrogen peroxide, prodrug, metastatic tumors, fluorescence
Procedia PDF Downloads 4565653 Finding out the Best Criteria for Locating the Best Place Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran
Authors: Reyhaneh Saeedi
Abstract:
Iran is a capable zone for the earthquake that follows the loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System(GIS) has a determining role in disaster management, it can determine the best places for temporary resettling after such a disaster. In this paper, the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also, in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in ArcGIS software.Keywords: disaster management, temporary resettlement, earthquake, criteria
Procedia PDF Downloads 2945652 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips
Authors: Wei Chen
Abstract:
3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology
Procedia PDF Downloads 815651 Delivering User Context-Sensitive Service in M-Commerce: An Empirical Assessment of the Impact of Urgency on Mobile Service Design for Transactional Apps
Authors: Daniela Stephanie Kuenstle
Abstract:
Complex industries such as banking or insurance experience slow growth in mobile sales. While today’s mobile applications are sophisticated and enable location based and personalized services, consumers prefer online or even face-to-face services to complete complex transactions. A possible reason for this reluctance is that the provided service within transactional mobile applications (apps) does not adequately correspond to users’ needs. Therefore, this paper examines the impact of the user context on mobile service (m-service) in m-commerce. Motivated by the potential which context-sensitive m-services hold for the future, the impact of temporal variations as a dimension of user context, on m-service design is examined. In particular, the research question asks: Does consumer urgency function as a determinant of m-service composition in transactional apps by moderating the relation between m-service type and m-service success? Thus, the aim is to explore the moderating influence of urgency on m-service types, which includes Technology Mediated Service and Technology Generated Service. While mobile applications generally comprise features of both service types, this thesis discusses whether unexpected urgency changes customer preferences for m-service types and how this consequently impacts the overall m-service success, represented by purchase intention, loyalty intention and service quality. An online experiment with a random sample of N=1311 participants was conducted. Participants were divided into four treatment groups varying in m-service types and urgency level. They were exposed to two different urgency scenarios (high/ low) and two different app versions conveying either technology mediated or technology generated service. Subsequently, participants completed a questionnaire to measure the effectiveness of the manipulation as well as the dependent variables. The research model was tested for direct and moderating effects of m-service type and urgency on m-service success. Three two-way analyses of variance confirmed the significance of main effects, but demonstrated no significant moderation of urgency on m-service types. The analysis of the gathered data did not confirm a moderating effect of urgency between m-service type and service success. Yet, the findings propose an additive effects model with the highest purchase and loyalty intention for Technology Generated Service and high urgency, while Technology Mediated Service and low urgency demonstrate the strongest effect for service quality. The results also indicate an antagonistic relation between service quality and purchase intention depending on the level of urgency. Although a confirmation of the significance of this finding is required, it suggests that only service convenience, as one dimension of mobile service quality, delivers conditional value under high urgency. This suggests a curvilinear pattern of service quality in e-commerce. Overall, the paper illustrates the complex interplay of technology, user variables, and service design. With this, it contributes to a finer-grained understanding of the relation between m-service design and situation dependency. Moreover, the importance of delivering situational value with apps depending on user context is emphasized. Finally, the present study raises the demand to continue researching the impact of situational variables on m-service design in order to develop more sophisticated m-services.Keywords: mobile consumer behavior, mobile service design, mobile service success, self-service technology, situation dependency, user-context sensitivity
Procedia PDF Downloads 2705650 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum
Authors: Abdulrahman Sumayli, Saad M. AlShahrani
Abstract:
For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectivelyKeywords: temperature, pressure variations, machine learning, oil treatment
Procedia PDF Downloads 735649 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer
Authors: Timothee Gidenne, Xia Pinqi
Abstract:
In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression
Procedia PDF Downloads 1325648 Heterogeneous Impacts of Population Age Structure on Carbon Emissions
Authors: Jun-Jun Jia, Li Luo, Jinlan Ni, Chu Wei
Abstract:
This paper investigates the impact of population age structure on carbon emissions in China. Using panel data from 30 provinces in China spanning from 1997 to 2020, the study estimates the heterogeneous effects of the working-age population (aged 15-64) on carbon emissions. The IV-MuGS-OR model is proposed to address the endogeneity and accommodate latent group structures in cross-sectional effects and slope coefficients. On average, across the 30 provinces, a one percentage point change in the working-age population share can lead to a 3.22% change in carbon emissions. However, the overall average impact varies significantly across the three identified heterogeneous groups of provinces, which differ from traditional classifications. A shrinking working-age share tends to reduce carbon emissions in provinces with high average carbon emissions while it increases emissions in provinces with median-level emissions. No significant impact is observed in provinces with low levels of carbon emissions. These findings suggest that varying policy intensities are crucial, given the heterogeneous impact of the working-age population share on carbon emissions across different emission levels.Keywords: working share, carbon emissions, IV-MuGS-OR, heterogenous impacts, population aging, China
Procedia PDF Downloads 35647 Numerical Analysis of Various V- rib Cross-section to Optimize Thermal Performance of the Rocket Engine
Authors: Hisham Elmouazen, Xiaobing Zhang
Abstract:
In regenerative-cooled rocket engines, understanding the coolant behaviour within cooling channels is essential to enhance engine performance and maintain chamber walls at low temperatures. However, modelling and testing the rocket engine's cooling channels is challenging due to the high temperature of the chamber walls, supercritical flow, and high Reynolds number. Therefore, a numerical analysis of five different V-rib cross-sections to optimize rocket engine cooling channels' performance is developed and validated in this work. Three-dimensional CFD simulations are employed by the Shear Stress Transport (k- ω) turbulent model at Reynolds number 42,500. The study findings illustrate that the V-ribbed channel performance is optimized by 59.5% relative to the plain/flat channel. Additionally, the chamber wall temperature is decreased to 726.4 K, and the right-angle trapezoidal V-rib (Case 4) improves thermal augmentation up to 74.3 % with a slightly high friction factor.Keywords: computational fluid dynamics CFD, regenerative-cooled system, thermal performance, V-rib cross-sections
Procedia PDF Downloads 785646 Polymer Spiral Film Gas-Liquid Heat Exchanger for Waste Heat Recovery in Exhaust Gases
Authors: S. R. Parthiban, C. Elajchet Senni
Abstract:
Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger.Keywords: spiral heat exchanger, polymer based materials, fouling factor, heat load
Procedia PDF Downloads 3735645 Modeling the Risk Perception of Pedestrians Using a Nested Logit Structure
Authors: Babak Mirbaha, Mahmoud Saffarzadeh, Atieh Asgari Toorzani
Abstract:
Pedestrians are the most vulnerable road users since they do not have a protective shell. One of the most common collisions for them is pedestrian-vehicle at intersections. In order to develop appropriate countermeasures to improve safety for them, researches have to be conducted to identify the factors that affect the risk of getting involved in such collisions. More specifically, this study investigates factors such as the influence of walking alone or having a baby while crossing the street, the observable age of pedestrian, the speed of pedestrians and the speed of approaching vehicles on risk perception of pedestrians. A nested logit model was used for modeling the behavioral structure of pedestrians. The results show that the presence of more lanes at intersections and not being alone especially having a baby while crossing, decrease the probability of taking a risk among pedestrians. Also, it seems that teenagers show more risky behaviors in crossing the street in comparison to other age groups. Also, the speed of approaching vehicles was considered significant. The probability of risk taking among pedestrians decreases by increasing the speed of approaching vehicle in both the first and the second lanes of crossings.Keywords: pedestrians, intersection, nested logit, risk
Procedia PDF Downloads 189