Search results for: three dimensional modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5851

Search results for: three dimensional modeling

4381 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging

Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott

Abstract:

The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.

Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging

Procedia PDF Downloads 134
4380 Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride

Authors: Farzaneh Shayeganfar, Ali Ramazani

Abstract:

Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials.

Keywords: surface plasmon, hot carrier, strain engineering, valley polariton

Procedia PDF Downloads 109
4379 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Ghambir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, fault ride through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT

Procedia PDF Downloads 461
4378 Electrohydrodynamic Study of Microwave Plasma PECVD Reactor

Authors: Keltoum Bouherine, Olivier Leroy

Abstract:

The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.The present work is dedicated to study a three–dimensional (3D) self-consistent fluid simulation of microwave discharges of argon plasma in PECVD reactor. The model solves the Maxwell’s equations, continuity equations for charged species and the electron energy balance equation, coupled with Poisson’s equation, and Navier-Stokes equations by finite element method, using COMSOL Multiphysics software. In this study, the simulations yield the profiles of plasma components as well as the charge densities and electron temperature, the electric field, the gas velocity, and gas temperature. The results show that the microwave plasma reactor is outside of local thermodynamic equilibrium.

Keywords: electron density, electric field, microwave plasma reactor, gas velocity, non-equilibrium plasma

Procedia PDF Downloads 329
4377 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes

Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay

Abstract:

Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.

Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR

Procedia PDF Downloads 325
4376 Environmental Modeling of Storm Water Channels

Authors: L. Grinis

Abstract:

Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.

Keywords: open channel, physical modeling, baffles, turbulent flow

Procedia PDF Downloads 283
4375 Exploring Fertility Dynamics in the MENA Region: Distribution, Determinants, and Temporal Trends

Authors: Dena Alhaloul

Abstract:

The Middle East and North Africa (MENA) region is characterized by diverse cultures, economies, and social structures. Fertility rates in MENA have seen significant changes over time, with variations among countries and subregions. Understanding fertility patterns in this region is essential due to its impact on demographic dynamics, healthcare, labor markets, and social policies. Rising or declining fertility rates have far-reaching consequences for the region's socioeconomic development. The main thrust of this study is to comprehensively examine fertility rates in the Middle East and North Africa (MENA) region. It aims to understand the distribution, determinants, and temporal trends of fertility rates in MENA countries. The study seeks to provide insights into the factors influencing fertility decisions, assess how fertility rates have evolved over time, and potentially develop statistical models to characterize these trends. As for the methodology of the study, the study uses descriptive statistics to summarize and visualize fertility rate data. It also uses regression analyses to identify determinants of fertility rates as well as statistical modeling to characterize temporal trends in fertility rates. The conclusion of this study The research will contribute to a deeper understanding of fertility dynamics in the MENA region, shedding light on the distribution of fertility rates, their determinants, and historical trends.

Keywords: fertility, distribution, modeling, regression

Procedia PDF Downloads 78
4374 Evaluating the Accuracy of Biologically Relevant Variables Generated by ClimateAP

Authors: Jing Jiang, Wenhuan XU, Lei Zhang, Shiyi Zhang, Tongli Wang

Abstract:

Climate data quality significantly affects the reliability of ecological modeling. In the Asia Pacific (AP) region, low-quality climate data hinders ecological modeling. ClimateAP, a software developed in 2017, generates high-quality climate data for the AP region, benefiting researchers in forestry and agriculture. However, its adoption remains limited. This study aims to confirm the validity of biologically relevant variable data generated by ClimateAP during the normal climate period through comparison with the currently available gridded data. Climate data from 2,366 weather stations were used to evaluate the prediction accuracy of ClimateAP in comparison with the commonly used gridded data from WorldClim1.4. Univariate regressions were applied to 48 monthly biologically relevant variables, and the relationship between the observational data and the predictions made by ClimateAP and WorldClim was evaluated using Adjusted R-Squared and Root Mean Squared Error (RMSE). Locations were categorized into mountainous and flat landforms, considering elevation, slope, ruggedness, and Topographic Position Index. Univariate regressions were then applied to all biologically relevant variables for each landform category. Random Forest (RF) models were implemented for the climatic niche modeling of Cunninghamia lanceolata. A comparative analysis of the prediction accuracies of RF models constructed with distinct climate data sources was conducted to evaluate their relative effectiveness. Biologically relevant variables were obtained from three unpublished Chinese meteorological datasets. ClimateAPv3.0 and WorldClim predictions were obtained from weather station coordinates and WorldClim1.4 rasters, respectively, for the normal climate period of 1961-1990. Occurrence data for Cunninghamia lanceolata came from integrated biodiversity databases with 3,745 unique points. ClimateAP explains a minimum of 94.74%, 97.77%, 96.89%, and 94.40% of monthly maximum, minimum, average temperature, and precipitation variances, respectively. It outperforms WorldClim in 37 biologically relevant variables with lower RMSE values. ClimateAP achieves higher R-squared values for the 12 monthly minimum temperature variables and consistently higher Adjusted R-squared values across all landforms for precipitation. ClimateAP's temperature data yields lower Adjusted R-squared values than gridded data in high-elevation, rugged, and mountainous areas but achieves higher values in mid-slope drainages, plains, open slopes, and upper slopes. Using ClimateAP improves the prediction accuracy of tree occurrence from 77.90% to 82.77%. The biologically relevant climate data produced by ClimateAP is validated based on evaluations using observations from weather stations. The use of ClimateAP leads to an improvement in data quality, especially in non-mountainous regions. The results also suggest that using biologically relevant variables generated by ClimateAP can slightly enhance climatic niche modeling for tree species, offering a better understanding of tree species adaptation and resilience compared to using gridded data.

Keywords: climate data validation, data quality, Asia pacific climate, climatic niche modeling, random forest models, tree species

Procedia PDF Downloads 68
4373 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies

Authors: Rituparna Nath, Shawn J. Marshall

Abstract:

Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.

Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age

Procedia PDF Downloads 267
4372 Fatigue Tests of New Assembly Bolt Connections for Perspective Temporary Steel Railway Bridges

Authors: Marcela Karmazínová, Michal Štrba, Miln Pilgr

Abstract:

The paper deals with the problems of the actual behavior, failure mechanism and load-carrying capacity of the special bolt connection developed and intended for the assembly connections of truss main girders of perspective railway temporary steel bridges. Within the framework of this problem solution, several types of structural details of assembly joints have been considered as the conceptual structural design. Based on the preliminary evaluation of advantages or disadvantages of these ones, in principle two basic structural configurations so-called “tooth” and “splice-plate” connections have been selected for the subsequent detailed investigation. This investigation is mainly based on the experimental verification of the actual behavior, strain and failure mechanism and corresponding strength of the connection, and on its numerical modeling using FEM. This paper is focused only on the cyclic loading (fatigue) tests results of “splice-plate” connections and their evaluation, which have already been finished. Simultaneously with the fatigue tests, the static loading tests have been realized too, but these ones, as well as FEM numerical modeling, are not the subject of this paper.

Keywords: Bolt assembly connection, cyclic loading, failure mechanisms, fatigue strength, steel structure, structural detail category, temporary railway bridge

Procedia PDF Downloads 443
4371 Cost-Effective and Optimal Control Analysis for Mitigation Strategy to Chocolate Spot Disease of Faba Bean

Authors: Haileyesus Tessema Alemneh, Abiyu Enyew Molla, Oluwole Daniel Makinde

Abstract:

Introduction: Faba bean is one of the most important grown plants worldwide for humans and animals. Several biotic and abiotic elements have limited the output of faba beans, irrespective of their diverse significance. Many faba bean pathogens have been reported so far, of which the most important yield-limiting disease is chocolate spot disease (Botrytis fabae). The dynamics of disease transmission and decision-making processes for intervention programs for disease control are now better understood through the use of mathematical modeling. Currently, a lot of mathematical modeling researchers are interested in plant disease modeling. Objective: In this paper, a deterministic mathematical model for chocolate spot disease (CSD) on faba bean plant with an optimal control model was developed and analyzed to examine the best strategy for controlling CSD. Methodology: Three control interventions, quarantine (u2), chemical control (u3), and prevention (u1), are employed that would establish the optimal control model. The optimality system, characterization of controls, the adjoint variables, and the Hamiltonian are all generated employing Pontryagin’s maximum principle. A cost-effective approach is chosen from a set of possible integrated strategies using the incremental cost-effectiveness ratio (ICER). The forward-backward sweep iterative approach is used to run numerical simulations. Results: The Hamiltonian, the optimality system, the characterization of the controls, and the adjoint variables were established. The numerical results demonstrate that each integrated strategy can reduce the diseases within the specified period. However, due to limited resources, an integrated strategy of prevention and uprooting was found to be the best cost-effective strategy to combat CSD. Conclusion: Therefore, attention should be given to the integrated cost-effective and environmentally eco-friendly strategy by stakeholders and policymakers to control CSD and disseminate the integrated intervention to the farmers in order to fight the spread of CSD in the Faba bean population and produce the expected yield from the field.

Keywords: CSD, optimal control theory, Pontryagin’s maximum principle, numerical simulation, cost-effectiveness analysis

Procedia PDF Downloads 85
4370 Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach

Authors: Sina Kazemi, Farshid Torabi, Todd Peterson

Abstract:

Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines.

Keywords: ROP, circulating density, drilling parameters, return flow, shale reservoir, well integrity

Procedia PDF Downloads 85
4369 A Simple Computational Method for the Gravitational and Seismic Soil-Structure-Interaction between New and Existent Buildings Sites

Authors: Nicolae Daniel Stoica, Ion Mierlus Mazilu

Abstract:

This work is one of numerical research and aims to address the issue of the design of new buildings in a 3D location of existing buildings. In today's continuous development and congestion of urban centers is a big question about the influence of the new buildings on an already existent vicinity site. Thus, in this study, we tried to focus on how existent buildings may be affected by any newly constructed buildings and in how far this influence is really decreased. The problem of modeling the influence of interaction between buildings is not simple in any area in the world, and neither in Romania. Unfortunately, most often the designers not done calculations that can determine how close to reality these 3D influences nor the simplified method and the more superior methods. In the most literature making a "shield" (the pilots or molded walls) is absolutely sufficient to stop the influence between the buildings, and so often the soil under the structure is ignored in the calculation models. The main causes for which the soil is neglected in the analysis are related to the complexity modeling of interaction between soil and structure. In this paper, based on a new simple but efficient methodology we tried to determine for a lot of study cases the influence, in terms of assessing the interaction land structure on the behavior of structures that influence a new building on an existing one. The study covers additional subsidence that may occur during the execution of new works and after its completion. It also highlighted the efforts diagrams and deflections in the soil for both the original case and the final stage. This is necessary to see to what extent the expected impact of the new building on existing areas.

Keywords: soil, structure, interaction, piles, earthquakes

Procedia PDF Downloads 290
4368 An Empirical Study of Critical Success Factors for the Adoption of M-Government Services in Tanzania

Authors: Fredrick Ishengoma, Leonard Mselle, Hector Mongi

Abstract:

The growing number of mobile phone subscribers in Tanzania offers the government a new channel for the delivery of information and government services to citizens, thus mobile Government (m-Government). In Tanzania, m-Government services usage is in the early stages, and factors that influence its adoption are yet to be known. This study seeks to identify and understand the critical success factors (CSFs) that influence citizens’ behavioural intention (BI) to adopt m-Government services in Tanzania. The study employed the mobile services acceptance model (MSAM) and extends it with external factors relevant in the Tanzanian context. A survey questionnaire was used to collect primary data from users of m-Government services in Dar es salaam and Dodoma cities, and 253 responses were received. Data were analyzed by IBM-SPSS AMOS 23.0 software using structural equation modeling (SEM). The findings of the study indicate that perceived usefulness, trust, perceived mobility, power distance, quality of service, awareness, perceived cost, personal initiatives, and characteristics significantly influence the BI to adopt m-Government services. However, perceived ease of use was found statistically insignificant to predict BI. Furthermore, the interplay between CSFs, discussion on theoretical and practical implications that follow from the results are presented.

Keywords: adoption, critical success factors, structural equation modeling, m-Government, MSAM, Tanzania

Procedia PDF Downloads 145
4367 Supply Chain Resilience Triangle: The Study and Development of a Framework

Authors: M. Bevilacqua, F. E. Ciarapica, G. Marcucci

Abstract:

Supply Chain Resilience has been broadly studied during the last decade, focusing the research on many aspects of Supply Chain performance. Consequently, different definitions of Supply Chain Resilience have been developed by the research community, drawing inspiration also from other fields of study such as ecology, sociology, psychology, economy et al. This way, the definitions so far developed in the extant literature are therefore very heterogeneous, and many authors have pointed out a lack of consensus in this field of analysis. The aim of this research is to find common points between these definitions, through the development of a framework of study: the Resilience Triangle. The Resilience Triangle is a tool developed in the field of civil engineering, with the objective of modeling the loss of resilience of a given structure during and after the occurrence of a disruption such as an earthquake. The Resilience Triangle is a simple yet powerful tool: in our opinion, it can summarize all the features that authors have captured in the Supply Chain Resilience definitions over the years. This research intends to recapitulate within this framework all these heterogeneities in Supply Chain Resilience research. After collecting a various number of Supply Chain Resilience definitions present in the extant literature, the methodology approach provides a taxonomy step with the scope of collecting and analyzing all the data gathered. The next step provides the comparison of the data obtained with the plotting of a disruption profile, in order to contextualize the Resilience Triangle in the Supply Chain context. The tool and the results developed in this research will allow to lay the foundation for future Supply Chain Resilience modeling and measurement work.

Keywords: supply chain resilience, resilience definition, supply chain resilience triangle

Procedia PDF Downloads 316
4366 Mathematical modeling of the calculation of the absorbed dose in uranium production workers with the genetic effects.

Authors: P. Kazymbet, G. Abildinova, K.Makhambetov, M. Bakhtin, D. Rybalkina, K. Zhumadilov

Abstract:

Conducted cytogenetic research in workers Stepnogorsk Mining-Chemical Combine (Akmola region) with the study of 26341 chromosomal metaphase. Using a regression analysis with program DataFit, version 5.0, dependence between exposure dose and the following cytogenetic exponents has been studied: frequency of aberrant cells, frequency of chromosomal aberrations, frequency of the amounts of dicentric chromosomes, and centric rings. Experimental data on calibration curves "dose-effect" enabled the development of a mathematical model, allowing on data of the frequency of aberrant cells, chromosome aberrations, the amounts of dicentric chromosomes and centric rings calculate the absorbed dose at the time of the study. In the dose range of 0.1 Gy to 5.0 Gy dependence cytogenetic parameters on the dose had the following equation: Y = 0,0067е^0,3307х (R2 = 0,8206) – for frequency of chromosomal aberrations; Y = 0,0057е^0,3161х (R2 = 0,8832) –for frequency of cells with chromosomal aberrations; Y =5 Е-0,5е^0,6383 (R2 = 0,6321) – or frequency of the amounts of dicentric chromosomes and centric rings on cells. On the basis of cytogenetic parameters and regression equations calculated absorbed dose in workers of uranium production at the time of the study did not exceed 0.3 Gy.

Keywords: Stepnogorsk, mathematical modeling, cytogenetic, dicentric chromosomes

Procedia PDF Downloads 475
4365 Finite Volume Method Simulations of GaN Growth Process in MOVPE Reactor

Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski

Abstract:

In the present study, numerical simulations of heat and mass transfer during gallium nitride growth process in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Existing knowledge about phenomena occurring in the MOVPE process allows to produce high quality nitride based semiconductors. However, process parameters of MOVPE reactors can vary in certain ranges. Main goal of this study is optimization of the process and improvement of the quality of obtained crystal. In order to investigate this subject a series of computer simulations have been performed. Numerical simulations of heat and mass transfer in GaN epitaxial growth process have been performed to determine growth rate for various mass flow rates and pressures of reagents. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during the process, modeling is the only solution to understand the process precisely. Main heat transfer mechanisms during MOVPE process are convection and radiation. Correlation of modeling results with the experiment allows to determine optimal process parameters for obtaining crystals of highest quality.

Keywords: Finite Volume Method, semiconductors, epitaxial growth, metalorganic vapor phase epitaxy, gallium nitride

Procedia PDF Downloads 395
4364 Boundary Layer Control Using a Magnetic Field: A Case Study in the Framework of Ferrohydrodynamics

Authors: C. F. Alegretti, F. R. Cunha, R. G. Gontijo

Abstract:

This work investigates the effects of an applied magnetic field on the geometry-driven boundary layer detachment flow of a ferrofluid over a sudden expansion. Both constitutive equation and global magnetization equation for a ferrofluid are considered. Therefore, the proposed formulation consists in a coupled magnetic-hydrodynamic problem. Computational simulations are carried out in order to explore, not only the viability to control flow instabilities, but also to evaluate the consistency of theoretical aspects. The unidirectional sudden expansion in a ferrofluid flow is investigated numerically under the perspective of Ferrohydrodynamics in a two-dimensional domain using a Finite Differences Method. The boundary layer detachment induced by the sudden expansion results in a recirculating zone, which has been extensively studied in non-magnetic hydrodynamic problems for a wide range of Reynolds numbers. Similar investigations can be found in literature regarding the sudden expansion under the magnetohydrodynamics framework, but none considering a colloidal suspension of magnetic particles out of the superparamagnetic regime. The vorticity-stream function formulation is implemented and results in a clear coupling between the flow vorticity and its magnetization field. Our simulations indicate a systematic decay on the length of the recirculation zone as increasing physical parameters of the flow, such as the intensity of the applied field and the volume fraction of particles. The results all are discussed from a physical point of view in terms of the dynamical non-dimensional parameters. We argue that the decrease/reduction in the recirculation region of the flow is a direct consequence of the magnetic torque balancing the action of the torque produced by viscous and inertial forces of the flow. For the limit of small Reynolds and magnetic Reynolds parameters, the diffusion of vorticity balances the diffusion of the magnetic torque on the flow. These mechanics control the growth of the recirculation region.

Keywords: boundary layer detachment, ferrofluid, ferrohydrodynamics, magnetization, sudden expansion

Procedia PDF Downloads 202
4363 Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology

Authors: Anjian Chen, Joseph C. Chen

Abstract:

This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process.

Keywords: additive manufacturing, fused deposition modeling, surface roughness, six-sigma, Taguchi method, 3D printing

Procedia PDF Downloads 391
4362 E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging

Authors: Zhuanfang Fred Zhang, Tim C. Johnson, Yilin Fang, Chris E. Strickland

Abstract:

A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.

Keywords: gravity survey, high-performance computing, sub-surface monitoring, electrical resistivity tomography

Procedia PDF Downloads 155
4361 2D and 3D Breast Cancer Cells Behave Differently to the Applied Free Palbociclib or the Palbociclib-Loaded Nanoparticles

Authors: Maryam Parsian, Pelin Mutlu, Ufuk Gunduz

Abstract:

Two-dimensional cell culture affords simplicity and low cost, but it has serious limitations; lacking cell-cell and cell-matrix interactions that are present in tissues. Cancer cells grown in 3D culture systems have distinct phenotypes of adhesion, growth, migration, invasion as well as profiles of gene and protein expression. These interactions cause the 3D-cultured cells to acquire morphological and cellular characteristics relevant to in vivo tumors. Palbociclib is a chemotherapeutic agent for the treatment of ER-positive and HER-negative metastatic breast cancer. Poly-amidoamine (PAMAM) dendrimer is a well-defined, special three-dimensional structure and has a multivalent surface and internal cavities that can play an essential role in drug delivery systems. In this study, palbociclib is loaded onto the magnetic PAMAM dendrimer. Hanging droplet method was used in order to form 3D spheroids. The possible toxic effects of both free drug and drug loaded nanoparticles were evaluated in 2D and 3D MCF-7, MD-MB-231 and SKBR-3 breast cancer cell culture models by performing MTT cell viability and Alamar Blue assays. MTT analysis was performed with six different doses from 1000 µg/ml to 25 µg/ml. Drug unloaded PAMAM dendrimer did not demonstrate significant toxicity on all breast cancer cell lines. The results showed that 3D spheroids are clearly less sensitive than 2D cell cultures to free palbociclib. Also, palbociclib loaded PAMAM dendrimers showed more toxic effect than free palbociclib in all cell lines at 2D and 3D cultures. The results suggest that the traditional cell culture method (2D) is insufficient for mimicking the actual tumor tissue. The response of the cancer cells to anticancer drugs is different in the 2D and 3D culture conditions. This study showed that breast cancer cells are more resistant to free palbociclib in 3D cultures than in 2D cultures. However, nanoparticle loaded drugs can be more cytotoxic when compared to free drug.

Keywords: 2D and 3D cell culture, breast cancer, palbociclibe, PAMAM magnetic nanoparticles

Procedia PDF Downloads 147
4360 Chemometric Analysis of Raw Milk Quality Originating from Conventional and Organic Dairy Farming in AP Vojvodina, Serbia

Authors: Sanja Podunavac-Kuzmanović, Denis Kučević, Strahinja Kovačević, Milica Karadžić, Lidija Jevrić

Abstract:

The present study describes the application of chemometric methods in analysis of milk samples which were collected in a conventional dairy farm and an organic dairy farm in AP Vojvodina, Republic of Serbia. The chemometric analysis included the application of univariate regression modeling and Analysis of Variance (ANOVA) method. The ANOVA was used in order to determine the differences in fatty acids content in the milk samples from conventional and organic farm. The results of the ANOVA testing indicate that there is a highly statistically significant difference between the content of fatty acid (saturated fatty acid vs. unsaturated fatty acids) in different dairy farming. Besides, the linear univariate models have been obtained as a result of modeling the linear relationships between the milk fat content and saturated fatty acids content, and the linear relationships between the milk fat content and unsaturated fatty acids content. The models obtained on the basis of the milk samples which originate from the organic farming are statistically better than the models based on the milk samples from conventional farming.

Keywords: hemometrics, milk, organic farming, quality control

Procedia PDF Downloads 235
4359 Discontinuous Galerkin Method for Higher-Order Ordinary Differential Equations

Authors: Helmi Temimi

Abstract:

In this paper, we study the super-convergence properties of the discontinuous Galerkin (DG) method applied to one-dimensional mth-order ordinary differential equations without introducing auxiliary variables. We found that nth−derivative of the DG solution exhibits an optimal O (hp+1−n) convergence rates in the L2-norm when p-degree piecewise polynomials with p≥1 are used. We further found that the odd-derivatives and the even derivatives are super convergent, respectively, at the upwind and downwind endpoints.

Keywords: discontinuous, galerkin, superconvergence, higherorder, error, estimates

Procedia PDF Downloads 476
4358 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse

Procedia PDF Downloads 408
4357 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour

Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling

Abstract:

Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.

Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model

Procedia PDF Downloads 97
4356 Accelerated Structural Reliability Analysis under Earthquake-Induced Tsunamis by Advanced Stochastic Simulation

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

Recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 brought huge losses of lives and properties. Maintaining vertical evacuation systems is the most crucial strategy to effectively reduce casualty during the tsunami event. Thus, it is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability (or its complement failure probability) of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of the Subset Simulation algorithm and a recently proposed moving least squares response surface approach for stochastic sampling is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface model, subset simulation, structural reliability, Tsunami risk

Procedia PDF Downloads 381
4355 Correlations in the Ising Kagome Lattice

Authors: Antonio Aguilar Aguilar, Eliezer Braun Guitler

Abstract:

Using a previously developed procedure and with the aid of algebraic software, a two-dimensional generalized Ising model with a 4×2 unitary cell (UC), we obtain a Kagome Lattice with twelve different spin-spin values of interaction, in order to determine the partition function per spin L(T). From the partition function we can study the magnetic behavior of the system. Because of the competition phenomenon between spins, a very complex behavior among them in a variety of magnetic states can be observed.

Keywords: correlations, Ising, Kagome, exact functions

Procedia PDF Downloads 367
4354 Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension

Authors: Eiji Nakamachi, Ryota Sakiyama, Koji Yamamoto, Yusuke Morita, Hidetoshi Sakamoto

Abstract:

The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation.

Keywords: nerve regeneration, axonal extension , PC12 cell, magnetic field, three-dimensional bio-reactor

Procedia PDF Downloads 167
4353 TerraEnhance: High-Resolution Digital Elevation Model Generation using GANs

Authors: Siddharth Sarma, Ayush Majumdar, Nidhi Sabu, Mufaddal Jiruwaala, Shilpa Paygude

Abstract:

Digital Elevation Models (DEMs) are digital representations of the Earth’s topography, which include information about the elevation, slope, aspect, and other terrain attributes. DEMs play a crucial role in various applications, including terrain analysis, urban planning, and environmental modeling. In this paper, TerraEnhance is proposed, a distinct approach for high-resolution DEM generation using Generative Adversarial Networks (GANs) combined with Real-ESRGANs. By learning from a dataset of low-resolution DEMs, the GANs are trained to upscale the data by 10 times, resulting in significantly enhanced DEMs with improved resolution and finer details. The integration of Real-ESRGANs further enhances visual quality, leading to more accurate representations of the terrain. A post-processing layer is introduced, employing high-pass filtering to refine the generated DEMs, preserving important details while reducing noise and artifacts. The results demonstrate that TerraEnhance outperforms existing methods, producing high-fidelity DEMs with intricate terrain features and exceptional accuracy. These advancements make TerraEnhance suitable for various applications, such as terrain analysis and precise environmental modeling.

Keywords: DEM, ESRGAN, image upscaling, super resolution, computer vision

Procedia PDF Downloads 6
4352 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD

Authors: Mehdi Montakhabrazlighi, Ercan Balikci

Abstract:

The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.

Keywords: neural network, rupture strength, superalloy, thermocalc

Procedia PDF Downloads 312