Search results for: sequential pattern mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3995

Search results for: sequential pattern mining

2525 Dietary Quality among U.S. Adults with Diabetes, Osteoarthritis, and Rheumatoid Arthritis: Age-Specific Associations from NHANES 2011-2022

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Limited research has examined the variations in dietary quality among U.S. adults diagnosed with chronic conditions like diabetes mellitus (DM), osteoarthritis (OA), and rheumatoid arthritis (RA), particularly across different age groups. Understanding how diet differs in relation to these conditions is crucial to developing targeted nutritional interventions. This cross-sectional study analyzed data from adult participants in the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2021. Dietary quality was measured using the Healthy Eating Index (HEI)-2015 scores, encompassing both total and component scores for different dietary factors. Self-reported disease statuses for DM, OA, and RA were obtained, with age groups stratified into younger adults (20–59 years, n = 10,050) and older adults (60 years and older, n = 5,200). Logistic regression models, adjusted for demographic factors like sex, race/ethnicity, education, income, weight status, physical activity, and smoking, were used to examine the relationship between disease status and dietary quality, accounting for NHANES' complex survey design. Among younger adults, 8% had DM, 10% had OA, and 4% had RA. Among older adults, 22% had DM, 35% had OA, and 7% had RA. The results showed a consistent association between excess added sugar intake and DM in both age groups. In younger adults, excess sodium intake was also linked to DM, while low seafood and plant protein intake was associated with a higher prevalence of RA. Among older adults, a poor overall dietary pattern was strongly associated with RA, while OA showed varying associations depending on the intake of specific nutrients like fiber and saturated fats. The dietary quality of U.S. adults with DM, OA, and RA varies significantly by age group and disease type. Younger adults with these conditions demonstrated more specific dietary inadequacies, such as high sodium and low protein intake, while older adults exhibited a broader pattern of poor dietary quality, particularly in relation to RA. These findings suggest that personalized nutritional strategies are needed to address the unique dietary challenges faced by individuals with chronic conditions in different age groups.

Keywords: dietary, diabetes, osteoarthritis, rheumatoid arthritis, logistic regression

Procedia PDF Downloads 9
2524 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik

Abstract:

Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).

Keywords: cell response, excimer laser, polymer treatment, periodic pattern, surface morphology

Procedia PDF Downloads 236
2523 Structural and Magnetic Properties of Cr Doped Ni-Zn Nanoferrites Prepared by Co-Precipitation Method

Authors: E. Ateia, L. M. Salah, A. H. El-Bassuony

Abstract:

Physical properties of nanocrystalline Ni1-xZnxCryFe2-yO4, (x=0.3, 0.5 and y=0.0, 0.1) with estimated crystallite size of 16.4 nm have been studied. XRD pattern of all prepared systems shows that, the nanosamples without Cr3+ have a cubic spinel structure with the appearance of small peaks designated as a secondary phase. Magnetic constants such as saturation magnetization, (MS) remanent magnetization (Mr) and coercive field (Hc) were obtained and reported. The obtained data shows that, the addition of Cr3+ (0.1mol) decreases the saturation magnetization. This is due to the decrease of magnetic moment of Cr3+ ion (3.0 μB) with respect to Fe3+ ion (5.85 μB). The electrical properties of the investigated samples were also investigated.

Keywords: electrical conductivity, ferrites, grain size, sintering

Procedia PDF Downloads 289
2522 A Retrospective Study on the Spectrum of Infection and Emerging Antimicrobial Resistance in Type 2 Diabetes Mellitus

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

People with diabetes mellitus are more susceptible to developing infections, as high blood sugar levels can weaken the patient's immune system defences. People with diabetes are more adversely affected when they get an infection than someone without the disease, because you have weakened immune defences in diabetes. People who have minimally elevated blood sugar levels experience worse outcomes with infections. Diabetic patients in hospitals do not necessarily have a higher mortality rate due to infections, but they do face longer hospitalisation and recovery times. A study was done in a tertiary care unit in eastern India. Patients with type 2 diabetes mellitus infection were recruited in the study. A total of 520 cases of Type 2 Diabetes Mellitus were recorded out of which 200 infectious cases was included in the study. All subjects underwent detailed history & clinical examination. Microbiological samples were collected from respective site of the infection for microbial culture and antibiotic sensitivity test. Out of the 200 infectious cases urinary tract infection(UTI) was found in majority of the cases followed by diabetic foot ulcer (DFU), respiratory tract infection(RTI) and sepsis. It was observed that Escherichia coli was the most commonest pathogen isolated from UTI cases and Staphylococcus aureus was predominant in foot ulcers followed by other organisms. Klebsiella pneumonia was the major organism isolated from RTI and Enterobacter aerogenes was commonly observed in patients with sepsis. Isolated bacteria showed differential sensitivity pattern against commonly used antibiotics. The majority of the isolates were resistant to several antibiotics that are usually prescribed on an empirical basis. These observations are important, especially for patient management and the development of antibiotic treatment guidelines. It is recommended that diabetic patients receive pneumococcal and influenza vaccine annually to reduce morbidity and mortality. Appropriate usage of antibiotics based on local antibiogram pattern can certainly help the clinician in reducing the burden of infections.

Keywords: antimicrobial resistance, diabetic foot ulcer, respiratory tract infection, urinary tract infection

Procedia PDF Downloads 345
2521 Guiding Urban Development in a Traditional Neighbourhood: Case Application of Kolkata

Authors: Nabamita Nath, Sanghamitra Sarkar

Abstract:

Urban development in traditional neighbourhoods of cities is undergoing a sea change due to imposition of irregular development patterns on a predominantly inclusive urban fabric. In recent times, traditional neighbourhoods of Kolkata have experienced irregular urban development which has resulted in transformation of its immediate urban character. The goal is to study and analyse impact of new urban developments within traditional neighbourhoods of Kolkata and establish development guidelines to balance the old with the new. Various cities predominantly in third world countries are also experiencing similar development patterns in their traditional neighbourhoods. Existing literature surveys of development patterns in such neighbourhoods have established 9 major parameters viz. edge, movement, node, landmark, size-density, pattern-grain-texture, open spaces, urban spaces, urban form and views-vistas of the neighbourhood. To evaluate impact of urban development in traditional neighbourhoods of Kolkata, 3 different areas have been chronologically selected based on their settlement patterns. Parameters established through literature surveys have been applied to the selected areas to study and analyse the existing patterns of development. The main sources of this study included extensive on-site surveys, academic archive, census data, organisational records and informational websites. Applying the established parameters, 5 major conclusions were derived. Firstly, it was found that pedestrian friendly neighbourhoods of the city were becoming more car-centric. This has resulted in loss of interactive and social spaces which defined the cultural heritage of Kolkata. Secondly, the urban pattern which was composed of dense and compact fabric is gradually losing its character due to incorporation of new building typologies. Thirdly, the new building typologies include gated communities with private open spaces which is a stark departure from the existing built typology. However, these open spaces have not contributed in creation of inclusive public places for the community which are a significant part of such heritage neighbourhood precincts. Fourthly, commercial zones that primarily developed along major access routes have now infiltrated within these neighbourhoods. Gated communities do not favour formation of on-street commercial activities generating haphazard development patterns. Lastly, individual residential buildings that reflected Indo-saracenic and Neo-gothic architectural styles are converting into multi-storeyed residential apartments. As a result, the axis that created a definite visual identity for a neighbourhood is progressively following an irregular pattern. Thus, uniformity of the old skyline is gradually becoming inconsistent. The major issue currently is threat caused by irregular urban development to heritage zones and buildings of traditional neighbourhoods. Streets, lanes, courtyards, open spaces and buildings of old neighbourhoods imparted a unique cultural identity to the city that is disappearing with emerging urban development patterns. It has been concluded that specific guidelines for urban development should be regulated primarily based on existing urban form of traditional neighbourhoods. Such neighbourhood development strategies should be formulated for various cities of third world countries to control irregular developments thereby balancing heritage and development.

Keywords: heritage, Kolkata, traditional neighbourhood, urban development

Procedia PDF Downloads 179
2520 Information Needs and Information Usage of the Older Person Club’s Members in Bangkok

Authors: Siriporn Poolsuwan

Abstract:

This research aims to explore the information needs, information usages, and problems of information usage of the older people club’s members in Dusit District, Bangkok. There are 12 clubs and 746 club’s members in this district. The research results use for older person service in this district. Data is gathered from 252 club’s members by using questionnaires. The quantitative approach uses in research by percentage, means and standard deviation. The results are as follows (1) The older people need Information for entertainment, occupation and academic in the field of short story, computer work, and religion and morality. (2) The participants use Information from various sources. (3) The Problem of information usage is their language skills because of the older people’s literacy problem.

Keywords: information behavior, older person, information seeking, knowledge discovery and data mining

Procedia PDF Downloads 270
2519 A Schema of Building an Efficient Quality Gate throughout the Software Development with Tools

Authors: Le Chen

Abstract:

This paper presents an efficient tool platform scheme to ensure quality protection throughout the software development process. The main principle is to manage the information of requirements, design, development, testing, operation and maintenance process with proper tools, and to set up the quality standards of each process. Through the tools’ display and summary of quality standards, the quality standards can be visualizad and ready for policy decision, which is called Quality Gate in this paper. In addition, the tools are also integrated to achieve the exchange and relation of information which highly improving operational efficiency. In this paper, the feasibility of the scheme is verified by practical application of development projects, and the overall information display and data mining are proposed to be further improved.

Keywords: efficiency, quality gate, software process, tools

Procedia PDF Downloads 359
2518 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification

Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar

Abstract:

Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.

Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings

Procedia PDF Downloads 174
2517 The Diurnal and Seasonal Relationships of Pedestrian Injuries Secondary to Motor Vehicles in Young People

Authors: Amina Akhtar, Rory O'Connor

Abstract:

Introduction: There remains significant morbidity and mortality in young pedestrians hit by motor vehicles, even in the era of pedestrian crossings and speed limits. The aim of this study was to compare incidence and injury severity of motor vehicle-related pedestrian trauma according to time of day and season in a young population, based on the supposition that injuries would be more prevalent during dusk and dawn and during autumn and winter. Methods: Data was retrieved for patients between 10-25 years old from the National Trauma Audit and Research Network (TARN) database who had been involved as pedestrians in motor vehicle accidents between 2015-2020. The incidence of injuries, their severity (using the Injury Severity Score [ISS]), hospital transfer time, and mortality were analysed according to the hours of daylight, darkness, and season. Results: The study identified a seasonal pattern, showing that autumn was the predominant season and led to 34.9% of injuries, with a further 25.4% in winter in comparison to spring and summer, with 21.4% and 18.3% of injuries, respectively. However, visibility alone was not a sufficient factor as 49.5% of injuries occurred during the time of darkness, while 50.5% occurred during daylight. Importantly, the greatest injury rate (number of injuries/hour) occurred between 1500-1630, correlating to school pick-up times. A further significant relationship between injury severity score (ISS) and daylight was demonstrated (p-value= 0.0124), with moderate injuries (ISS 9-14) occurring most commonly during the day (72.7%) and more severe injuries (ISS>15) occurred during the night (55.8%). Conclusion: We have identified a relationship between time of day and the frequency and severity of pedestrian trauma in young people. In addition, particular time groupings correspond to the greatest injury rate, suggesting that reduced visibility coupled with school pick-up times may play a significant role. This could be addressed through a targeted public health approach to implementing change. We recommend targeted public health measures to improve road safety that focus on these times and that increase the visibility of children combined with education for drivers.

Keywords: major trauma, paediatric trauma, road traffic accidents, diurnal pattern

Procedia PDF Downloads 101
2516 Developing a Culturally Acceptable End of Life Survey (the VOICES-ESRD/Thai Questionnaire) for Evaluation Health Services Provision of Older Persons with End-Stage Renal Disease (ESRD) in Thailand

Authors: W. Pungchompoo, A. Richardson, L. Brindle

Abstract:

Background: The developing of a culturally acceptable end of life survey (the VOICES-ESRD/Thai questionnaire) is an essential instrument for evaluation health services provision of older persons with ESRD in Thailand. The focus of the questionnaire was on symptoms, symptom control and the health care needs of older people with ESRD who are managed without dialysis. Objective: The objective of this study was to develop and adapt VOICES to make it suitable for use in a population survey in Thailand. Methods: The mixed methods exploratory sequential design was focussed on modifying an instrument. Data collection: A cognitive interviewing technique was implemented, using two cycles of data collection with a sample of 10 bereaved carers and a prototype of the Thai VOICES questionnaire. Qualitative study was used to modify the developing a culturally acceptable end of life survey (the VOICES-ESRD/Thai questionnaire). Data analysis: The data were analysed by using content analysis. Results: The revisions to the prototype questionnaire were made. The results were used to adapt the VOICES questionnaire for use in a population-based survey with older ESRD patients in Thailand. Conclusions: A culturally specific questionnaire was generated during this second phase and issues with questionnaire design were rectified.

Keywords: VOICES-ESRD/Thai questionnaire, cognitive interviewing, end of life survey, health services provision, older persons with ESRD

Procedia PDF Downloads 286
2515 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 42
2514 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects

Authors: Behnam Tavakkol

Abstract:

Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.

Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data

Procedia PDF Downloads 215
2513 The Effects of Native Forests Conservation and Preservation Scenarios on Two Chilean Basins Water Cycle, under Climate Change Conditions

Authors: Hernández Marieta, Aguayo Mauricio, Pedreros María, Llompart Ovidio

Abstract:

The hydrological cycle is influenced by multiple factors, including climate change, land use changes, and anthropogenic activities, all of which threaten water availability and quality worldwide. In recent decades, numerous investigations have used landscape metrics and hydrological modeling to demonstrate the influence of landscape patterns on the hydrological cycle components' natural dynamics. Many of these investigations have determined the repercussions on the quality and availability of water, sedimentation, and erosion regime, mainly in Asian basins. In fact, there is progress in this branch of science, but there are still unanswered questions for our region. This study examines the hydrological response in Chilean basins under various land use change scenarios (LUCC) and the influence of climate change. The components of the water cycle were modeled using a physically distributed type hydrological and hydraulic simulation model based on and oriented to mountain basins TETIS model. Future climate data were derived from Chilean regional simulations using the WRF-MIROC5 model, forced with the RCP 8.5 scenario, at a 25 km resolution for the periods 2030-2060 and 2061-2091. LUCC scenarios were designed based on nature-based solutions, landscape pattern influences, current national and international water conservation legislation, and extreme scenarios of non-preservation and conservation of native forests. The scenarios that demonstrate greater water availability, even under climate change, are those promoting the restoration of native forests in over 30% of the basins, even alongside agricultural activities. Current legislation promoting the restoration of native forests only in riparian zones (30-60 m or 200 m in steeper areas) will not be resilient enough to address future water shortages. Evapotranspiration, direct runoff, and water availability at basin outlets showed the greatest variations due to LUCC. The relationship between hydrological modeling and landscape configuration is an effective tool for establishing future territorial planning that prioritizes water resource protection.

Keywords: TETIS, landscape pattern, hydrological process, water availability, Chilean basins

Procedia PDF Downloads 36
2512 Application of Electronic Nose Systems in Medical and Food Industries

Authors: Khaldon Lweesy, Feryal Alskafi, Rabaa Hammad, Shaker Khanfar, Yara Alsukhni

Abstract:

Electronic noses are devices designed to emulate the humane sense of smell by characterizing and differentiating odor profiles. In this study, we build a low-cost e-nose using an array module containing four different types of metal oxide semiconductor gas sensors. We used this system to create a profile for a meat specimen over three days. Then using a pattern recognition software, we correlated the odor of the specimen to its age. It is a simple, fast detection method that is both non-expensive and non-destructive. The results support the usage of this technology in food control management.

Keywords: e-nose, low cost, odor detection, food safety

Procedia PDF Downloads 141
2511 Issue Reorganization Using the Measure of Relevance

Authors: William Wong Xiu Shun, Yoonjin Hyun, Mingyu Kim, Seongi Choi, Namgyu Kim

Abstract:

Recently, the demand of extracting the R&D keywords from the issues and using them in retrieving R&D information is increasing rapidly. But it is hard to identify the related issues or to distinguish them. Although the similarity between the issues cannot be identified, but with the R&D lexicon, the issues that always shared the same R&D keywords can be determined. In details, the R&D keywords that associated with particular issue is implied the key technology elements that needed to solve the problem of the particular issue. Furthermore, the related issues that sharing the same R&D keywords can be showed in a more systematic way through the issue clustering constructed from the perspective of R&D. Thus, sharing of the R&D result and reusable of the R&D technology can be facilitated. Indirectly, the redundancy of investment on the same R&D can be reduce as the R&D information can be shared between those corresponding issues and reusability of the related R&D can be improved. Therefore, a methodology of constructing an issue clustering from the perspective of common R&D keywords is proposed to satisfy the demands mentioned.

Keywords: clustering, social network analysis, text mining, topic analysis

Procedia PDF Downloads 573
2510 Cloning and Characterization of UDP-Glucose Pyrophosphorylases from Lactobacillus kefiranofaciens and Rhodococcus wratislaviensis

Authors: Mesfin Angaw Tesfay

Abstract:

Uridine-5’-diphosphate (UDP)-glucose is one of the most versatile building blocks within the metabolism of prokaryotes and eukaryotes, serving as an activated sugar donor during the glycosylation of natural products. It is formed by the enzyme UDP-glucose pyrophosphorylase (UGPase) using uridine-5′-triphosphate (UTP) and α-d-glucose 1-phosphate as a substrate. Herein, two UGPase genes from Lactobacillus kefiranofaciens ZW3 (LkUGPase) and Rhodococcus wratislaviensis IFP 2016 (RwUGPase) were identified through genome mining approaches. The LkUGPase and RwUGPase have 299 and 306 amino acids, respectively. Both UGPase has the conserved UTP binding site (G-X-G-T-R-X-L-P) and the glucose -1-phosphate binding site (V-E-K-P). The LkUGPase and RwUGPase were cloned in E. coli, and SDS-PAGE analysis showed the expression of both enzymes forming about 36 KDa of protein band after induction. LkUGPase and RwUGPase have an activity of 1549.95 and 671.53 U/mg, respectively. Currently, their kinetic properties are under investigation.

Keywords: UGPase, LkUGPase, RwUGPase, UDP-glucose, glycosylation

Procedia PDF Downloads 24
2509 Direct Cost of Anesthesia in Traumatic Patients with Massive Bleeding: A Prospective Micro-Costing Study

Authors: Asamaporn Puetpaiboon, Sunisa Chatmongkolchart, Nalinee Kovitwanawong, Osaree Akaraborworn

Abstract:

Traumatic patients with massive bleeding require intensive resuscitation. The actual cost of anesthesia per case has never been clarified, so our study aimed to quantify the direct cost, and cost-to-charge ratio of anesthetic care in traumatic patients with intraoperative massive bleeding. This study was a prospective, observational, cost analysis study, conducted in Prince of Songkla University hospital, Thailand, with traumatic patients, of any mechanisms being recruited. Massive bleeding was defined as estimated blood loss of at least one blood volume in 24 hours, or a half of blood volume in 3 hours. The cost components were identified by the micro-costing method, and valued by the bottom-up approach. The direct cost was divided into 4 categories: the labor cost, the capital cost, the material cost and the cost of drugs. From September 2017 to August 2018, 10 patients with multiple injuries were included. Seven patients had motorcycle accidents, two patients fell from a height and another one was in a minibus accident. Two patients died on the operating table, and another two died within 48 hours. The median Sequential Organ Failure Assessment (SOFA) score was 8. The median intraoperative blood loss was 3,500 ml. The median direct cost, per case, was 250 United States Dollars (2017 exchange rate), and the cost-to-charge ratio was 0.53. In summary, the direct cost was nearly half of the hospital charge, for these traumatic patients with massive bleeding. However, our study did not analyze the indirect cost.

Keywords: cost, cost-to-charge ratio, micro-costing, trauma

Procedia PDF Downloads 148
2508 Digital Phase Shifting Holography in a Non-Linear Interferometer using Undetected Photons

Authors: Sebastian Töpfer, Marta Gilaberte Basset, Jorge Fuenzalida, Fabian Steinlechner, Juan P. Torres, Markus Gräfe

Abstract:

This work introduces a combination of digital phase-shifting holography with a non-linear interferometer using undetected photons. Non-linear interferometers can be used in combination with a measurement scheme called quantum imaging with undetected photons, which allows for the separation of the wavelengths used for sampling an object and detecting it in the imaging sensor. This method recently faced increasing attention, as it allows to use of exotic wavelengths (e.g., mid-infrared, ultraviolet) for object interaction while at the same time keeping the detection in spectral areas with highly developed, comparable low-cost imaging sensors. The object information, including its transmission and phase influence, is recorded in the form of an interferometric pattern. To collect these, this work combines the method of quantum imaging with undetected photons with digital phase-shifting holography with a minimal sampling of the interference. With this, the quantum imaging scheme gets extended in its measurement capabilities and brings it one step closer to application. Quantum imaging with undetected photons uses correlated photons generated by spontaneous parametric down-conversion in a non-linear interferometer to create indistinguishable photon pairs, which leads to an effect called induced coherence without induced emission. Placing an object inside changes the interferometric pattern depending on the object’s properties. Digital phase-shifting holography records multiple images of the interference with determined phase shifts to reconstruct the complete interference shape, which can afterward be used to analyze the changes introduced by the object and conclude its properties. An extensive characterization of this method was done using a proof-of-principle setup. The measured spatial resolution, phase accuracy, and transmission accuracy are compared for different combinations of camera exposure times and the number of interference sampling steps. The current limits of this method are shown to allow further improvements. To summarize, this work presents an alternative holographic measurement method using non-linear interferometers in combination with quantum imaging to enable new ways of measuring and motivating continuing research.

Keywords: digital holography, quantum imaging, quantum holography, quantum metrology

Procedia PDF Downloads 92
2507 Robust Design of a Ball Joint Considering Uncertainties

Authors: Bong-Su Sin, Jong-Kyu Kim, Se-Il Song, Kwon-Hee Lee

Abstract:

An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation.

Keywords: ball joint, pull-out strength, robust design, design of experiments

Procedia PDF Downloads 422
2506 Spatial Rank-Based High-Dimensional Monitoring through Random Projection

Authors: Chen Zhang, Nan Chen

Abstract:

High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.

Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection

Procedia PDF Downloads 299
2505 Evaluation of Liquid Fermentation Strategies to Obtain a Biofertilizer Based on Rhizobium sp.

Authors: Andres Diaz Garcia, Ana Maria Ceballos Rojas, Duvan Albeiro Millan Montano

Abstract:

This paper describes the initial technological development stages in the area of liquid fermentation required to reach the quantities of biomass of the biofertilizer microorganism Rhizobium sp. strain B02, for the application of the unitary stages downstream at laboratory scale. In the first stage, the adjustment and standardization of the fermentation process in conventional batch mode were carried out. In the second stage, various fed-batch and continuous fermentation strategies were evaluated in 10L-bioreactor in order to optimize the yields in concentration (Colony Forming Units/ml•h) and biomass (g/l•h), to make feasible the application of unit operations downstream of process. The growth kinetics, the evolution of dissolved oxygen and the pH profile generated in each of the strategies were monitored and used to make sequential adjustments. Once the fermentation was finished, the final concentration and viability of the obtained biomass were determined and performance parameters were calculated with the purpose of select the optimal operating conditions that significantly improved the baseline results. Under the conditions adjusted and standardized in batch mode, concentrations of 6.67E9 CFU/ml were reached after 27 hours of fermentation and a subsequent noticeable decrease was observed associated with a basification of the culture medium. By applying fed-batch and continuous strategies, significant increases in yields were achieved, but with similar concentration levels, which involved the design of several production scenarios based on the availability of equipment usage time and volume of required batch.

Keywords: biofertilizer, liquid fermentation, Rhizobium sp., standardization of processes

Procedia PDF Downloads 177
2504 Examination of Occupational Health and Safety Practices in Ghana

Authors: Zakari Mustapha, Clinto Aigbavboa, Wellinton Didi Thwala

Abstract:

Occupational Health and Safety (OHS) issues has been a major challenge to the Ghanaian government. The purpose of the study was to examine OHS practices in Ghana. The study looked at various views from different scholars about OHS practices in order to achieve the objective of the study. Literature review was conducted on OHS in Ghana. Findings from the study shows Ministry of Roads and Transport (MRT) and Ministry of Water Resources, Works and Housing (MWRWH) are two government ministries in charge of construction and implementation of the construction sector policy. The Factories, Offices and Shops Act 1970, Act 328 and the Mining Regulations 1970 LI 665 are the two major edicts. The study presents a strong background on OHS practices in Ghana and contribute to the body of knowledge on the solution to the current trends and challenges of OHS in the construction sector.

Keywords: ILO convention, OHS challenges, OHS practices, OHS improvement

Procedia PDF Downloads 367
2503 Quality Approaches for Mass-Produced Fashion: A Study in Malaysian Garment Manufacturing

Authors: N. J. M. Yusof, T. Sabir, J. McLoughlin

Abstract:

Garment manufacturing industry involves sequential processes that are subjected to uncontrollable variations. The industry depends on the skill of labour in handling the varieties of fabrics and accessories, machines, and also a complicated sewing operation. Due to these reasons, garment manufacturers created systems to monitor and control the product’s quality regularly by conducting quality approaches to minimize variation. The aims of this research were to ascertain the quality approaches deployed by Malaysian garment manufacturers in three key areas-quality systems and tools; quality control and types of inspection; sampling procedures chosen for garment inspection. The focus of this research also aimed to distinguish quality approaches used by companies that supplied the finished garments to both domestic and international markets. The feedback from each of company’s representatives was obtained using the online survey, which comprised of five sections and 44 questions on the organizational profile and quality approaches used in the garment industry. The results revealed that almost all companies had established their own mechanism of process control by conducting a series of quality inspection for daily production either it was formally been set up or vice versa. Quality inspection was the predominant quality control activity in the garment manufacturing and the level of complexity of these activities was substantially dictated by the customers. AQL-based sampling was utilized by companies dealing with the export market, whilst almost all the companies that only concentrated on the domestic market were comfortable using their own sampling procedures for garment inspection. This research provides an insight into the implementation of quality approaches that were perceived as important and useful in the garment manufacturing sector, which is truly labour-intensive.

Keywords: garment manufacturing, quality approaches, quality control, inspection, Acceptance Quality Limit (AQL), sampling

Procedia PDF Downloads 444
2502 Clinico-Microbiological Study of S. aureus from Various Clinical Samples with Reference to Methicillin Resistant S. aureus (MRSA)

Authors: T. G. Pathrikar, A. D. Urhekar, M. P. Bansal

Abstract:

To find out S. aureus from patient samples on the basis of coagulase test. We have evaluated slide coagulase (n=46 positive), tube coagulase (n=48 positive) and DNase test (n=44, positive) , We have isolated and identified MRSA from various clinical samples and specimens by disc diffusion method determined the incidence of MRSA 50% in patients. Found out the in vitro antimicrobial susceptibility pattern of MRSA isolates and also the MIC of MRSA of oxacillin by E-Test.

Keywords: cefoxitin disc diffusion MRSA detection, e – test, S. aureus devastating pathogen, tube coagulase confirmation

Procedia PDF Downloads 491
2501 Glasshouse Experiment to Improve Phytomanagement Solutions for Cu-Polluted Mine Soils

Authors: Marc Romero-Estonllo, Judith Ramos-Castro, Yaiza San Miguel, Beatriz Rodríguez-Garrido, Carmela Monterroso

Abstract:

Mining activity is among the main sources of trace and heavy metal(loid) pollution worldwide, which is a hazard to human and environmental health. That is why several projects have been emerging for the remediation of such polluted places. Phytomanagement strategies draw good performances besides big side benefits. In this work, a glasshouse assay with trace element polluted soils from an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE Project (SOE1/P5/E0189)) was set. The objective was to evaluate improvements induced by the following phytoremediation-related treatments. Three increasingly complex amendments alone or together with plant growth (Populus nigra L. alone and together with Tripholium repens L.) were tested. And three different rhizosphere bioinocula were applied (Plant Growth Promoting Bacteria (PGP), mycorrhiza (MYC), or mixed (PGP+MYC)). After 110 days of growth, plants were collected, biomass was weighed, and tree length was measured. Physical-chemical analyses were carried out to determine pH, effective Cation Exchange Capacity, carbon and nitrogen contents, bioavailable phosphorous (Olsen bicarbonate method), pseudo total element content (microwave acid digested fraction), EDTA extractable metals (complexed fraction), and NH4NO3 extractable metals (easily bioavailable fraction). On plant material, nitrogen content and acid digestion elements were determined. Amendment usage, plant growth, and bioinoculation were demonstrated to improve soil fertility and/or plant health within the time span of this study. Particularly, pH levels increased from 3 (highly acidic) to 5 (acidic) in the worst-case scenario, even reaching 7 (neutrality) in the best plots. Organic matter and pH increments were related to polluting metals’ bioavailability decrements. Plants grew better both with the most complex amendment and the middle one, with few differences due to bioinoculation. Using the less complex amendment (just compost) beneficial effects of bioinoculants were more observable, although plants didn’t thrive very well. On unamended soils, plants neither sprouted nor bloomed. The scheme assayed in this study is suitable for phytomanagement of these kinds of soils affected by mining activity. These findings should be tested now on a larger scale.

Keywords: aided phytoremediation, mine pollution, phytostabilization, soil pollution, trace elements

Procedia PDF Downloads 66
2500 Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw

Authors: Felix U. Asoiro, Daniel I. Eleazar, Peter O. Offor

Abstract:

As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production.

Keywords: bioethanol, hydrolysis, Jatropha curcas l. kernel, rice husk, fermentation, proximate composition

Procedia PDF Downloads 96
2499 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 326
2498 Integrated Intensity and Spatial Enhancement Technique for Color Images

Authors: Evan W. Krieger, Vijayan K. Asari, Saibabu Arigela

Abstract:

Video imagery captured for real-time security and surveillance applications is typically captured in complex lighting conditions. These less than ideal conditions can result in imagery that can have underexposed or overexposed regions. It is also typical that the video is too low in resolution for certain applications. The purpose of security and surveillance video is that we should be able to make accurate conclusions based on the images seen in the video. Therefore, if poor lighting and low resolution conditions occur in the captured video, the ability to make accurate conclusions based on the received information will be reduced. We propose a solution to this problem by using image preprocessing to improve these images before use in a particular application. The proposed algorithm will integrate an intensity enhancement algorithm with a super resolution technique. The intensity enhancement portion consists of a nonlinear inverse sign transformation and an adaptive contrast enhancement. The super resolution section is a single image super resolution technique is a Fourier phase feature based method that uses a machine learning approach with kernel regression. The proposed technique intelligently integrates these algorithms to be able to produce a high quality output while also being more efficient than the sequential use of these algorithms. This integration is accomplished by performing the proposed algorithm on the intensity image produced from the original color image. After enhancement and super resolution, a color restoration technique is employed to obtain an improved visibility color image.

Keywords: dynamic range compression, multi-level Fourier features, nonlinear enhancement, super resolution

Procedia PDF Downloads 554
2497 Machine Learning Methods for Network Intrusion Detection

Authors: Mouhammad Alkasassbeh, Mohammad Almseidin

Abstract:

Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.

Keywords: IDS, DDoS, MLP, KDD

Procedia PDF Downloads 234
2496 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: mobile computing, deep learning apps, sensitive information, static analysis

Procedia PDF Downloads 179