Search results for: science-informed machine learning
7063 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 1257062 The Design of Intelligent Classroom Management System with Raspberry PI
Authors: Sathapath Kilaso
Abstract:
Attendance checking in the classroom for student is object to record the student’s attendance in order to support the learning activities in the classroom. Despite the teaching trend in the 21st century is the student-center learning and the lecturer duty is to mentor and give an advice, the classroom learning is still important in order to let the student interact with the classmate and the lecturer or for a specific subject which the in-class learning is needed. The development of the system prototype by applied the microcontroller technology and embedded system with the “internet of thing” trend and the web socket technique will allow the lecturer to be alerted immediately whenever the data is updated.Keywords: arduino, embedded system, classroom, raspberry PI
Procedia PDF Downloads 3747061 Teachers’ Involvement in their Designed Play Activities in a Chinese Context
Authors: Shu-Chen Wu
Abstract:
This paper will present a study by the author which investigates Chinese teachers’ perspectives on learning at play and their teaching activities in the designed play activities. It asks the question of how Chinese teachers understand learning at play and how they design play activities in the classroom. Six kindergarten teachers in Hong Kong were invited to select and record exemplary play episodes which contain the largest amount of learning elements in their own classrooms. Applying video-stimulated interview, eight teachers in two focus groups were interviewed to elicit their perspectives on designing play activity and their teaching activities. The findings reveal that Chinese teachers have a very structured representation of learning at play, and the phenomenon of uniformity of teachers’ act was found. The contributions of which are important and useful for professional practices and curricular policies.Keywords: learning at play, teacher involvement, video-stimulated interview, uniformity
Procedia PDF Downloads 1427060 Study on Evaluating the Utilization of Social Media Tools (SMT) in Collaborative Learning Case Study: Faculty of Medicine, King Khalid University
Authors: Vasanthi Muniasamy, Intisar Magboul Ejalani, M.Anandhavalli, K. Gauthaman
Abstract:
Social Media (SM) are websites increasingly popular and built to allow people to express themselves and to interact socially with others. Most SMT are dominated by youth particularly college students. The proliferation of popular social media tools, which can accessed from any communication devices has become pervasive in the lives of today’s student life. Connecting traditional education to social media tools are a relatively new era and any collaborative tool could be used for learning activities. This study focuses (i) how the social media tools are useful for the learning activities of the students of faculty of medicine in King Khalid University (ii) whether the social media affects the collaborative learning with interaction among students, among course instructor, their engagement, perceived ease of use and perceived ease of usefulness (TAM) (iii) overall, the students satisfy with this collaborative learning through Social media.Keywords: social media, Web 2.0, perceived ease of use, perceived usefulness, collaborative Learning
Procedia PDF Downloads 5087059 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response
Abstract:
After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. The hands-free requirement from the first responders excludes the use of tedious manual control and operation. In unknown, unstructured, and obstructed environments, natural-language-based supervision is not amenable for first responders to formulate, and is difficult for robots to understand. Brain-computer interface is a promising option to overcome the limitations. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.Keywords: consensus assessment, electroencephalogram, emergency response, human-robot collaboration, intention recognition, search and rescue
Procedia PDF Downloads 937058 Response Surface Methodology for the Optimization of Paddy Husker by Medium Brown Rice Peeling Machine 6 Rubber Type
Authors: S. Bangphan, P. Bangphan, C. Ketsombun, T. Sammana
Abstract:
Optimization of response surface methodology (RSM) was employed to study the effects of three factor (rubber of clearance, spindle of speed, and rice of moisture) in brown rice peeling machine of the optimal good rice yield (99.67, average of three repeats). The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α=0.05, the values of Regression coefficient, R2 adjust were 96.55% and standard deviation were 1.05056. The independent variables are initial rubber of clearance, spindle of speed and rice of moisture parameters namely. The investigating responses are final rubber clearance, spindle of speed and moisture of rice.Keywords: brown rice, response surface methodology (RSM), peeling machine, optimization, paddy husker
Procedia PDF Downloads 5747057 Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation
Authors: Lou J. Pino, Mark Campbell, Matthew J. Kennedy, Ashleigh C. Kennedy
Abstract:
A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process.Keywords: cognitive activity, EEG, machine learning, personalized recovery
Procedia PDF Downloads 2207056 Locket Application
Authors: Farah Al-Fityani, Aljohara Alsowail, Shatha Bindawood, Heba Balrbeah
Abstract:
Locket is a popular app that lets users share spontaneous photos with a close circle of friends. The app offers a unique way to stay connected with loved ones by allowing users to see glimpses of their day through photos displayed on a widget on their home screen. This summary outlines the process of developing an app like Locket, highlighting the importance of user privacy and security. It also details the findings of a study on user engagement with the Locket app, revealing positive sentiment towards its features and concept but also identifying areas for improvement. Overall, the summary portrays Locket as a successful app that is changing the way people connect on social media.Keywords: locket, app, machine learning, connect
Procedia PDF Downloads 467055 The Use of Webquests in Developing Inquiry Based Learning: Views of Teachers and Students in Qatar
Authors: Abdullah Abu-Tineh, Carol Murphy, Nigel Calder, Nasser Mansour
Abstract:
This paper reports on an aspect of e-learning in developing inquiry-based learning (IBL). We present data on the views of teachers and students in Qatar following a professional development programme intended to help teachers implement IBL in their science and mathematics classrooms. Key to this programme was the use of WebQuests. Views of the teachers and students suggested that WebQuests helped students to develop technical skills, work collaboratively and become independent in their learning. The use of WebQuests also enabled a combination of digital and non-digital tools that helped students connect ideas and enhance their understanding of topics.Keywords: digital technology, inquiry-based learning, mathematics and science education, professional development
Procedia PDF Downloads 1437054 Permanent Magnet Machine Can Be a Vibration Sensor for Itself
Authors: M. Barański
Abstract:
The article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article, the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results will be discussed. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application No P.405669, and it is the main thesis of author’s doctoral dissertation.Keywords: vibrations, generator, permanent magnet, traction drive, electrical vehicle
Procedia PDF Downloads 3667053 3D Receiver Operator Characteristic Histogram
Authors: Xiaoli Zhang, Xiongfei Li, Yuncong Feng
Abstract:
ROC curves, as a widely used evaluating tool in machine learning field, are the tradeoff of true positive rate and negative rate. However, they are blamed for ignoring some vital information in the evaluation process, such as the amount of information about the target that each instance carries, predicted score given by each classification model to each instance. Hence, in this paper, a new classification performance method is proposed by extending the Receiver Operator Characteristic (ROC) curves to 3D space, which is denoted as 3D ROC Histogram. In the histogram, theKeywords: classification, performance evaluation, receiver operating characteristic histogram, hardness prediction
Procedia PDF Downloads 3137052 Effective Learning and Testing Methods in School-Aged Children
Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharrazi
Abstract:
When we teach, we have two critical elements at our disposal to help students: learning styles as well as testing styles. There are many different ways in which educators can effectively teach their students; verbal learning and experience-based learning. Lecture as a form of verbal learning style is a traditional arrangement in which teachers are more active and share information verbally with students. In experienced-based learning as the process of through, students learn actively through hands-on learning materials and observing teachers or others. Meanwhile, standard testing or assessment is the way to determine progress toward proficiency. Teachers and instructors mainly use essay (requires written responses), multiple choice questions (includes the correct answer and several incorrect answers as distractors), or open-ended questions (respondents answers it with own words). The current study focused on exploring an effective teaching style and testing methods as the function of age over school ages. In the present study, totally 410 participants were selected randomly from four grades (2ⁿᵈ, 4ᵗʰ, 6ᵗʰ, and 8ᵗʰ). Each subject was tested individually in one session lasting around 50 minutes. In learning tasks, the participants were presented three different instructions for learning materials (learning by doing, learning by observing, and learning by listening). Then, they were tested via different standard assessments as free recall, cued recall, and recognition tasks. The results revealed that generally students remember more of what they do and what they observe than what they hear. The age effect was more pronounced in learning by doing than in learning by observing, and learning by listening, becoming progressively stronger in the free-recall, cued-recall, and recognition tasks. The findings of this study indicated that learning by doing and free recall task is more age sensitive, suggesting that both of them are more strategic and more affected by developmental differences. Pedagogically, these results denoted that learning by modeling and engagement in program activities have the special role for learning. Moreover, the findings indicated that the multiple-choice questions can produce the best performance for school-aged children but is less age-sensitive. By contrast, the essay as essay can produce the lowest performance but is more age-sensitive. It will be very helpful for educators to know that what types of learning styles and test methods are most effective for students in each school grade.Keywords: experience-based learning, learning style, school-aged children, testing methods, verbal learning
Procedia PDF Downloads 2027051 Learning Motivation Factors for Pre-Cadets in Armed Forces Academies Preparatory School, Ministry of Defense
Authors: Prachya Kamonphet
Abstract:
The purposes of this research were to study the learning motivation factors for Pre-cadets in Armed Forces Academies Preparatory School, Ministry of Defense. The subjects were 320 Pre-cadets (from all 3-year classes of Pre-cadets, the academic year 2015). The research instruments were questionnaires. The collected data were analyzed by means of Descriptive Statistic and One-Way Analysis of Variance. The results of this study were as follows: The relation between the Pre-cadets’ average grade and the motivation in studying was significance.In the aspect of the environment related to Pre-cadets’ families and the motivation in studying.In the aspect of the environment related to Pre-cadets’ studying, it was found that teaching method, learning place, educational media, relationship between teachers and Pre-cadets, relationship between Pre-cadets and their friends, and relationship between Pre-cadets and the commanders were significant.Keywords: learning motivation factors, learning motivation, armed forces academies preparatory school, learning
Procedia PDF Downloads 2427050 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting
Authors: Kemal Polat
Abstract:
In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.Keywords: fuzzy C-means clustering, fuzzy C-means clustering based attribute weighting, Pima Indians diabetes, SVM
Procedia PDF Downloads 4137049 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach
Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib
Abstract:
A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation
Procedia PDF Downloads 907048 Content-Aware Image Augmentation for Medical Imaging Applications
Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang
Abstract:
Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving
Procedia PDF Downloads 2227047 The Effects of Computer Game-Based Pedagogy on Graduate Students Statistics Performance
Authors: Clement Yeboah, Eva Laryea
Abstract:
A pretest-posttest within subjects experimental design was employed to examine the effects of a computerized basic statistics learning game on achievement and statistics-related anxiety of students enrolled in introductory graduate statistics course. Participants (N = 34) were graduate students in a variety of programs at state-funded research university in the Southeast United States. We analyzed pre-test posttest differences using paired samples t-tests for achievement and for statistics anxiety. The results of the t-test for knowledge in statistics were found to be statistically significant, indicating significant mean gains for statistical knowledge as a function of the game-based intervention. Likewise, the results of the t-test for statistics-related anxiety were also statistically significant, indicating a decrease in anxiety from pretest to posttest. The implications of the present study are significant for both teachers and students. For teachers, using computer games developed by the researchers can help to create a more dynamic and engaging classroom environment, as well as improve student learning outcomes. For students, playing these educational games can help to develop important skills such as problem solving, critical thinking, and collaboration. Students can develop an interest in the subject matter and spend quality time to learn the course as they play the game without knowing that they are even learning the presupposed hard course. The future directions of the present study are promising as technology continues to advance and become more widely available. Some potential future developments include the integration of virtual and augmented reality into educational games, the use of machine learning and artificial intelligence to create personalized learning experiences, and the development of new and innovative game-based assessment tools. It is also important to consider the ethical implications of computer game-based pedagogy, such as the potential for games to perpetuate harmful stereotypes and biases. As the field continues to evolve, it will be crucial to address these issues and work towards creating inclusive and equitable learning experiences for all students. This study has the potential to revolutionize the way basic statistics graduate students learn and offers exciting opportunities for future development and research. It is an important area of inquiry for educators, researchers, and policymakers and will continue to be a dynamic and rapidly evolving field for years to come.Keywords: pretest-posttest within subjects, computer game-based learning, statistics achievement, statistics anxiety
Procedia PDF Downloads 777046 Value Addition of Quinoa (Chenopodium Quinoa Willd.) Using an Indigenously Developed Saponin Removal Machine
Authors: M.A. Ali, M. Matloob, A. Sahar, M. Yamin, M. Imran, Y.A. Yusof
Abstract:
Quinoa (Chenopodium quinoa Willd.) is known as pseudocereal was originated in South America's Andes. Quinoa is a good source of protein, amino acids, micronutrients and bioactive components. The lack of gluten makes it suitable for celiac patients. Saponins, the leading ant-nutrient, are found in the pericarp, which adheres to the seed and transmits the bitter flavor to the quinoa grain. It is found in varying amounts in quinoa from 0.1% to 5%. This study was planned to design an indigenous machine to remove saponin from quinoa grains at the farm level to promote entrepreneurship. The machine consisted of a feeding hopper, rotating shaft, grooved stone, perforated steel cylinder, V-belts, pulleys, electric motor and mild steel angle iron and sheets. The motor transmitted power to the shaft with a belt drive. The shaft on which the grooved stone was attached rotated inside the perforated cylinder having a clearance of 2 mm and was removed saponin by an abrasion mechanism. The saponin-removed quinoa was then dipped in water to determine the presence of saponin as it produced foam in water and data were statistically analyzed. The results showed that the raw seed feeding rate of 25 g/s and milling time of 135 s completely removed saponin from seeds with minimum grain losses of 2.85% as compared to the economic analysis of the machine showed that its break-even point was achieved after one and half months with 18,000 s and a production capacity of 33 g/s.Keywords: quinoa seeds, saponin, abrasion mechanism, stone polishing, indigenous machine
Procedia PDF Downloads 727045 On the Effectiveness of Educational Technology on the Promotion of Exceptional Children or Children with Special Needs
Authors: Nasrin Badrkhani
Abstract:
The increasing use of educational technologies has created a tremendous transformation in all fields and most importantly, in the field of education and learning. In recent decades, traditional learning approaches have undergone fundamental changes with the emergence of new learning technologies. Research shows that suitable educational tools play an effective role in the transmission, comprehension, and impact of educational concepts. These tools provide a tangible basis for thinking and constructing concepts, resulting in an increased interest in learning. They provide real and true experiences to students and convey educational meanings and concepts more quickly and clearly. It can be said that educational technology, as an active and modern teaching method, with capabilities such as engaging multiple senses in the educational process and involving the learner, makes the learning environment more flexible. It effectively impacts the skills of children with special needs by addressing their specific needs. Teachers are no longer the sole source of information, and students are not mere recipients of information. They are considered the main actors in the field of education and learning. Since education is one of the basic rights of every human being and children with special needs face unique challenges and obstacles in education, these challenges can negatively affect their abilities and learning. To combat these challenges, one of the ways is to use educational technologies for more diverse, effective learning. Also, the use of educational technology for students with special needs has increasingly proven effective in boosting their self-confidence and helping them overcome learning challenges, enhancing their learning outcomes.Keywords: communication technology, students with special needs, self-confidence, raising the expectations and progress
Procedia PDF Downloads 137044 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Base Management Systems
Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi
Abstract:
There are a real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. Those needs raised because most of current learning standard adopted web based learning and the e-learning systems does not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is to approach a methodology uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish for an intelligent educational system supporting student tutoring, self and lifelong learning system.Keywords: knowledge management systems, ontologies, semantic web, open educational resources
Procedia PDF Downloads 4987043 Challenges for Interface Designers in Designing Sensor Dashboards in the Context of Industry 4.0
Authors: Naveen Kumar, Shyambihari Prajapati
Abstract:
Industry 4.0 is the fourth industrial revolution that focuses on interconnectivity of machine to machine, human to machine and human to human via Internet of Things (IoT). Technologies of industry 4.0 facilitate communication between human and machine through IoT and forms Cyber-Physical Production System (CPPS). In CPPS, multiple shop floors sensor data are connected through IoT and displayed through sensor dashboard to the operator. These sensor dashboards have enormous amount of information to be presented which becomes complex for operators to perform monitoring, controlling and interpretation tasks. Designing handheld sensor dashboards for supervision task will become a challenge for the interface designers. This paper reports emerging technologies of industry 4.0, changing context of increasing information complexity in consecutive industrial revolutions and upcoming design challenges for interface designers in context of Industry 4.0. Authors conclude that information complexity of sensor dashboards design has increased with consecutive industrial revolutions and designs of sensor dashboard causes cognitive load on users. Designing such complex dashboards interfaces in Industry 4.0 context will become main challenges for the interface designers.Keywords: Industry4.0, sensor dashboard design, cyber-physical production system, Interface designer
Procedia PDF Downloads 1287042 Educational Practices and Brain Based Language Learning
Authors: Dur-E- Shahwar
Abstract:
Much attention has been given to ‘bridging the gap’ between neuroscience and educational practice. In order to gain a better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning approach, focusing on boundary-spanning actors, boundary objects, and boundary work. In 26 semi-structured interviews, neuroscientists and education professionals were asked about their perceptions in regard to the gap between science and practice and the role they play in creating, managing, and disrupting this boundary. Neuroscientists and education professionals often hold conflicting views and expectations of both brain-based learning and of each other. This leads us to argue that there are increased prospects for a neuro-scientifically informed learning practice if science and practice work together as equal stakeholders in developing and implementing neuroscience research.Keywords: language learning, explore, educational practices, mentalist, practice
Procedia PDF Downloads 3377041 Guidelines for Enhancing the Learning Environment by the Integration of Design Flexibility and Immersive Technology: The Case of the British University in Egypt’s Classrooms
Authors: Eman Ayman, Gehan Nagy
Abstract:
The learning environment has four main parameters that affect its efficiency which they are: pedagogy, user, technology, and space. According to Morrone, enhancing these parameters to be adaptable for future developments is essential. The educational organization will be in need of developing its learning spaces. Flexibility of design an immersive technology could be used as tools for this development. when flexible design concepts are used, learning spaces that can accommodate a variety of teaching and learning activities are created. To accommodate the various needs and interests of students, these learning spaces are easily reconfigurable and customizable. The immersive learning opportunities offered by technologies like virtual reality, augmented reality, and interactive displays, on the other hand, transcend beyond the confines of the traditional classroom. These technological advancements could improve learning. This thesis highlights the problem of the lack of innovative, flexible learning spaces in educational institutions. It aims to develop guidelines for enhancing the learning environment by the integration of flexible design and immersive technology. This research uses a mixed method approach, both qualitative and quantitative: the qualitative section is related to the literature review theories and case studies analysis. On the other hand, the quantitative section will be identified by the results of the applied studies of the effectiveness of redesigning a learning space from its traditional current state to a flexible technological contemporary space that will be adaptable to many changes and educational needs. Research findings determine the importance of flexibility in learning spaces' internal design as it enhances the space optimization and capability to accommodate the changes and record the significant contribution of immersive technology that assists the process of designing. It will be summarized by the questionnaire results and comparative analysis, which will be the last step of finalizing the guidelines.Keywords: flexibility, learning space, immersive technology, learning environment, interior design
Procedia PDF Downloads 937040 A Study on the Effectiveness of Translanguaging in EFL Classrooms: The Case of First-year Japanese University Students
Authors: Malainine Ebnou
Abstract:
This study investigates the effectiveness of using translanguaging techniques in EFL classrooms. The interest in this topic stems from the lack of research on the effectiveness of translanguaging techniques in foreign language learning, both domestically in Japan and globally, as research has focused on translanguaging from a teaching perspective but not much on it from a learning perspective. The main question that the study departs from is whether students’ use of translanguaging techniques can produce better learning outcomes when used at the university level. The sample population of the study is first-year Japanese university students. The study takes an experimental approach where translanguaging is introduced to one group, the experimental group, and withheld from another group, the control group. Both groups will then be assessed and compared to see if the use of translanguaging has had a positive impact on learning. The impact of the research could be in three ways: challenging the prevailing argument that using learners' mother tongue in the classroom is detrimental to the learning process, challenging native speaker-centered approaches in the EFL field, and arguing that translanguaging in EFL classrooms can produce more meaningful learning outcomes. If the effectiveness of translanguaging is confirmed, it will be possible to promote the use of translanguaging in English learning at Japanese universities and contribute to the improvement of students' English, and even lay the foundations for extending the use of translanguaging to people of other ages/nationalities and other languages in the future.Keywords: translanguaging, EFL, language learning and teaching, applied linguistics
Procedia PDF Downloads 587039 Using the Smith-Waterman Algorithm to Extract Features in the Classification of Obesity Status
Authors: Rosa Figueroa, Christopher Flores
Abstract:
Text categorization is the problem of assigning a new document to a set of predetermined categories, on the basis of a training set of free-text data that contains documents whose category membership is known. To train a classification model, it is necessary to extract characteristics in the form of tokens that facilitate the learning and classification process. In text categorization, the feature extraction process involves the use of word sequences also known as N-grams. In general, it is expected that documents belonging to the same category share similar features. The Smith-Waterman (SW) algorithm is a dynamic programming algorithm that performs a local sequence alignment in order to determine similar regions between two strings or protein sequences. This work explores the use of SW algorithm as an alternative to feature extraction in text categorization. The dataset used for this purpose, contains 2,610 annotated documents with the classes Obese/Non-Obese. This dataset was represented in a matrix form using the Bag of Word approach. The score selected to represent the occurrence of the tokens in each document was the term frequency-inverse document frequency (TF-IDF). In order to extract features for classification, four experiments were conducted: the first experiment used SW to extract features, the second one used unigrams (single word), the third one used bigrams (two word sequence) and the last experiment used a combination of unigrams and bigrams to extract features for classification. To test the effectiveness of the extracted feature set for the four experiments, a Support Vector Machine (SVM) classifier was tuned using 20% of the dataset. The remaining 80% of the dataset together with 5-Fold Cross Validation were used to evaluate and compare the performance of the four experiments of feature extraction. Results from the tuning process suggest that SW performs better than the N-gram based feature extraction. These results were confirmed by using the remaining 80% of the dataset, where SW performed the best (accuracy = 97.10%, weighted average F-measure = 97.07%). The second best was obtained by the combination of unigrams-bigrams (accuracy = 96.04, weighted average F-measure = 95.97) closely followed by the bigrams (accuracy = 94.56%, weighted average F-measure = 94.46%) and finally unigrams (accuracy = 92.96%, weighted average F-measure = 92.90%).Keywords: comorbidities, machine learning, obesity, Smith-Waterman algorithm
Procedia PDF Downloads 2977038 Structuring Taiwanese Elementary School English Teachers' Professional Dialogue about Teaching and Learning through Protocols
Authors: Chin-Wen Chien
Abstract:
Protocols are tools that help teachers inquire into the teaching and professional learning during the professional dialogue. This study focused on the integration of protocols into elementary school English teachers’ professional dialogue and discussed the influence of protocols on teachers’ teaching and learning. Based on the analysis of documents, observations, and interviews, this study concluded that with the introduction of protocols to elementary school English teachers, three major protocols were used during their professional dialogue. These protocols led the teachers to gain professional learning in content knowledge and pedagogical content knowledge. However, the facilitators’ lack of experience in using protocols led to interruptions during the professional dialogue. Suggestions for effective protocol-based professional dialogue are provided.Keywords: protocols, professional learning, professional dialogue, classroom practice
Procedia PDF Downloads 3827037 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1757036 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry
Authors: Dhanuj M. Gandikota
Abstract:
Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry
Procedia PDF Downloads 1027035 Students’ Perspectives on Learning Science Education amidst COVID-19
Authors: Rajan Ghimire
Abstract:
One of the diseases caused by the coronavirus shook the whole world. This situation challenged the education system across the world and compelled educators to shift to an online mode of teaching. Many academic institutions that were persistent to keep their traditional pedagogical approach were also forced to change their teaching methods. This study aims to assess science education students' experiences and perceptions of this global issue, especially on the science teaching and learning process. The study is based on qualitative research and through in-depth interviews with respondents and data is analyzed. Online distance teaching and learning processes meet the requirements of students who cannot or prefer not to participate in conventional classroom settings. But there are some challenges for the students and teachers in the science teaching learning process. This study recommends some points to all stakeholders.Keywords: electronic devices, internet, online and distance learning, science education, educational policy
Procedia PDF Downloads 537034 Investigation of Learning Challenges in Building Measurement Unit
Authors: Argaw T. Gurmu, Muhammad N. Mahmood
Abstract:
The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units.Keywords: building measurement, construction management, learning challenges, evaluate survey
Procedia PDF Downloads 138