Search results for: quantification accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4075

Search results for: quantification accuracy

2605 Preparation of Indium Tin Oxide Nanoparticle-Modified 3-Aminopropyltrimethoxysilane-Functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection

Authors: Md. Abdul Aziz

Abstract:

Sulfide ion is water soluble, highly corrosive, toxic and harmful to the human beings. As a result, knowing the exact concentration of sulfide in water is very important. However, the existing detection and quantification methods have several shortcomings, such as high cost, low sensitivity, and massive instrumentation. Consequently, the development of novel sulfide sensor is relevant. Nevertheless, electrochemical methods gained enormous popularity due to a vast improvement in the technique and instrumentation, portability, low cost, rapid analysis and simplicity of design. Successful field application of electrochemical devices still requires vast improvement, which depends on the physical, chemical and electrochemical aspects of the working electrode. The working electrode made of bulk gold (Au) and platinum (Pt) are quite common, being very robust and endowed with good electrocatalytic properties. High cost, and electrode poisoning, however, have so far hindered their practical application in many industries. To overcome these obstacles, we developed a sulfide sensor based on an indium tin oxide nanoparticle (ITONP)-modified ITO electrode. To prepare ITONP-modified ITO, various methods were tested. Drop-drying of ITONPs (aq.) on aminopropyltrimethoxysilane-functionalized ITO (APTMS/ITO) was found to be the best method on the basis of voltammetric analysis of the sulfide ion. ITONP-modified APTMS/ITO (ITONP/APTMS/ITO) yielded much better electrocatalytic properties toward sulfide electro-οxidation than did bare or APTMS/ITO electrodes. The ITONPs and ITONP-modified ITO were also characterized using transmission electron microscopy and field emission scanning electron microscopy, respectively. Optimization of the type of inert electrolyte and pH yielded an ITONP/APTMS/ITO detector whose amperometrically and chronocoulοmetrically determined limits of detection for sulfide in aqueous solution were 3.0 µM and 0.90 µM, respectively. ITONP/APTMS/ITO electrodes which displayed reproducible performances were highly stable and were not susceptible to interference by common contaminants. Thus, the developed electrode can be considered as a promising tool for sensing sulfide.

Keywords: amperometry, chronocoulometry, electrocatalytic properties, ITO-nanoparticle-modified ITO, sulfide sensor

Procedia PDF Downloads 120
2604 Scientific Forecasting in International Relations

Authors: Djehich Mohamed Yousri

Abstract:

In this research paper, the future of international relations is believed to have an important place on the theoretical and applied levels because policy makers in the world are in dire need of such analyzes that are useful in drawing up the foreign policies of their countries, and protecting their national security from potential future threats, and in this context, The topic raised a lot of scientific controversy and intellectual debate, especially in terms of the extent of the effectiveness, accuracy, and ability of foresight methods to identify potential futures, and this is what attributed the controversy to the scientific foundations for foreseeing international relations. An arena for intellectual discussion between different thinkers in international relations belonging to different theoretical schools, which confirms to us the conceptual and implied development of prediction in order to reach the scientific level.

Keywords: foresight, forecasting, international relations, international relations theory, concept of international relations

Procedia PDF Downloads 204
2603 An Investigation into Fraud Detection in Financial Reporting Using Sugeno Fuzzy Classification

Authors: Mohammad Sarchami, Mohsen Zeinalkhani

Abstract:

Always, financial reporting system faces some problems to win public ear. The increase in the number of fraud and representation, often combined with the bankruptcy of large companies, has raised concerns about the quality of financial statements. So, investors, legislators, managers, and auditors have focused on significant fraud detection or prevention in financial statements. This article aims to investigate the Sugeno fuzzy classification to consider fraud detection in financial reporting of accepted firms by Tehran stock exchange. The hypothesis is: Sugeno fuzzy classification may detect fraud in financial reporting by financial ratio. Hypothesis was tested using Matlab software. Accuracy average was 81/80 in Sugeno fuzzy classification; so the hypothesis was confirmed.

Keywords: fraud, financial reporting, Sugeno fuzzy classification, firm

Procedia PDF Downloads 240
2602 Application of Pattern Recognition Technique to the Quality Characterization of Superficial Microstructures in Steel Coatings

Authors: H. Gonzalez-Rivera, J. L. Palmeros-Torres

Abstract:

This paper describes the application of traditional computer vision techniques as a procedure for automatic measurement of the secondary dendrite arm spacing (SDAS) from microscopic images. The algorithm is capable of finding the lineal or curve-shaped secondary column of the main microstructure, measuring its length size in a micro-meter and counting the number of spaces between dendrites. The automatic characterization was compared with a set of 1728 manually characterized images, leading to an accuracy of −0.27 µm for the length size determination and a precision of ± 2.78 counts for dendrite spacing counting, also reducing the characterization time from 7 hours to 2 minutes.

Keywords: dendrite arm spacing, microstructure inspection, pattern recognition, polynomial regression

Procedia PDF Downloads 38
2601 Improved Traveling Wave Method Based Fault Location Algorithm for Multi-Terminal Transmission System of Wind Farm with Grounding Transformer

Authors: Ke Zhang, Yongli Zhu

Abstract:

Due to rapid load growths in today’s highly electrified societies and the requirement for green energy sources, large-scale wind farm power transmission system is constantly developing. This system is a typical multi-terminal power supply system, whose structure of the network topology of transmission lines is complex. What’s more, it locates in the complex terrain of mountains and grasslands, thus increasing the possibility of transmission line faults and finding the fault location with difficulty after the faults and resulting in an extremely serious phenomenon of abandoning the wind. In order to solve these problems, a fault location method for multi-terminal transmission line based on wind farm characteristics and improved single-ended traveling wave positioning method is proposed. Through studying the zero sequence current characteristics by using the characteristics of the grounding transformer(GT) in the existing large-scale wind farms, it is obtained that the criterion for judging the fault interval of the multi-terminal transmission line. When a ground short-circuit fault occurs, there is only zero sequence current on the path between GT and the fault point. Therefore, the interval where the fault point exists is obtained by determining the path of the zero sequence current. After determining the fault interval, The location of the short-circuit fault point is calculated by the traveling wave method. However, this article uses an improved traveling wave method. It makes the positioning accuracy more accurate by combining the single-ended traveling wave method with double-ended electrical data. What’s more, a method of calculating the traveling wave velocity is deduced according to the above improvements (it is the actual wave velocity in theory). The improvement of the traveling wave velocity calculation method further improves the positioning accuracy. Compared with the traditional positioning method, the average positioning error of this method is reduced by 30%.This method overcomes the shortcomings of the traditional method in poor fault location of wind farm transmission lines. In addition, it is more accurate than the traditional fixed wave velocity method in the calculation of the traveling wave velocity. It can calculate the wave velocity in real time according to the scene and solve the traveling wave velocity can’t be updated with the environment and real-time update. The method is verified in PSCAD/EMTDC.

Keywords: grounding transformer, multi-terminal transmission line, short circuit fault location, traveling wave velocity, wind farm

Procedia PDF Downloads 256
2600 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.

Keywords: object-based, roof material, concrete tile, WorldView-2

Procedia PDF Downloads 416
2599 Comparison with Two Clinical Cases of Plasma Cell Neoplasm by Using the Method of Capillary Electrophoresis

Authors: Kai Pai Huang

Abstract:

Background: There are several types of plasma cell neoplasms including multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are found in our lab. Today, we want to compare with two cases using the method of capillary electrophoresis. Method: Serum is prepared and electrophoresis is performed at alkaline PH in a capillary using the Sebia® Capillary 2. Albumin and globulins are detected by the detector which is located in the cathode of the capillary and the signals are transformed to peaks. Serum was treated with beta-mercaptoethanol which reducing the polymerized immunoglobulin to monomer immunoglobulin to clarify two M-protein are secreted from the same plasma cell clone in bone marrow. Result: Case 1: A 78-year-old female presenting dysuria, oliguria and leg edema for several months. Laboratory data showed proteinuria, leukocytosis, results of high serum IgA and lambda light chain. A renal biopsy found amyloid fibrils in the glomerular mesangial area. Serum protein electrophoresis shows a major monoclonal peak in the β region and minor small peak in gamma region, and the immunotyping studies for serum showed two IgA/λ type. Case 2: A 55-year-old male presenting abdominal distension and low back pain for more than one month. Laboratory data showed T12 T8 compression fracture, results of high serum IgM and kappa light chain. Bone marrow aspiration showed the cells from the bone marrow are B cells with monotypic kappa chain expression. Bone marrow biopsy found this is lymphoplasmacytic lymphoma (Waldenstrom macroglobulin). Serum protein electrophoresis shows a monoclonal peak in the β region and the immunotyping studies for serum showed IgM/κ type. Conclusion: Plasma cell neoplasm can be diagnosed by many examinations. Among them, using capillary electrophoresis by a lab can separate several types of gammopathy and the quantification of a monoclonal peak can be used to evaluate the patients’ prognosis or treatment.

Keywords: plasma cell neoplasm, capillary electrophoresis, serum protein electrophoresis, immunotyping

Procedia PDF Downloads 138
2598 A New Method Presentation for Locating Fault in Power Distribution Feeders Considering DG

Authors: Rahman Dashti, Ehsan Gord

Abstract:

In this paper, an improved impedance based fault location method is proposed. In this method, online fault locating is performed using voltage and current information at the beginning of the feeder. Determining precise fault location in a short time increases reliability and efficiency of the system. The proposed method utilizes information about main component of voltage and current at the beginning of the feeder and distributed generation unit (DGU) in order to precisely locate different faults in acceptable time. To evaluate precision and accuracy of the proposed method, a 13-node is simulated and tested using MATLAB.

Keywords: distribution network, fault section determination, distributed generation units, distribution protection equipment

Procedia PDF Downloads 391
2597 The Use of AI to Measure Gross National Happiness

Authors: Riona Dighe

Abstract:

This research attempts to identify an alternative approach to the measurement of Gross National Happiness (GNH). It uses artificial intelligence (AI), incorporating natural language processing (NLP) and sentiment analysis to measure GNH. We use ‘off the shelf’ NLP models responsible for the sentiment analysis of a sentence as a building block for this research. We constructed an algorithm using NLP models to derive a sentiment analysis score against sentences. This was then tested against a sample of 20 respondents to derive a sentiment analysis score. The scores generated resembled human responses. By utilising the MLP classifier, decision tree, linear model, and K-nearest neighbors, we were able to obtain a test accuracy of 89.97%, 54.63%, 52.13%, and 47.9%, respectively. This gave us the confidence to use the NLP models against sentences in websites to measure the GNH of a country.

Keywords: artificial intelligence, NLP, sentiment analysis, gross national happiness

Procedia PDF Downloads 98
2596 Rain Gauges Network Optimization in Southern Peninsular Malaysia

Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno

Abstract:

Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.

Keywords: geostatistics, simulated annealing, semivariogram, optimization

Procedia PDF Downloads 293
2595 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 66
2594 Lead Chalcogenide Quantum Dots for Use in Radiation Detectors

Authors: Tom Nakotte, Hongmei Luo

Abstract:

Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power.

Keywords: colloidal synthesis, lead chalcogenide, radiation detectors, quantum dots

Procedia PDF Downloads 122
2593 Determination of Benzatropine in Hair by GC/MS after Liquid-Liquid Extraction (LLE)

Authors: Abdulsallam A. Bakdash, Aiyshah M. Alshehri, Hind M. Alenzi

Abstract:

Benzatropine (benztropine) is used to treat symptoms of Parkinson's disease or involuntary movements due to the side effects of certain psychiatric drugs. We report in this study, results of a procedure for the determination of benzatropine in hair using LLE, once with methanol and second with phosphate buffer (pH 6.0), followed by filtration and then re-extraction with dichloromethane. A GC/MS method was developed and validated for this determination using selected ion monitoring (SIM) detection without derivatization. Linearity established over the concentration range 0.1-20.0 ng/mg hair, and the correlation coefficients were greater than 0.99. Recoveries were 52.2% and 21.1% using methanol and phosphate buffer extraction, respectively. Detection limits of benzatropine in hair were between 0.65 and 3.0 ng/mg hair, while the accuracy were 10.4% and 18.5% (RSD), respectively. We also applied this method to the analysis of soaked hair samples and demonstrated that the LLE using methanol meets the requirement for the analysis of benzatropine in hair.

Keywords: hair analysis, benzatropine, liquid-liquid extraction, GC/MS

Procedia PDF Downloads 394
2592 ​​An Overview and Analysis of ChatGPT 3.5/4.0​

Authors: Sarah Mohammed, Huda Allagany, Ayah Barakat, Muna Elyas

Abstract:

This paper delves into the history and development of ChatGPT, tracing its evolution from its inception by OpenAI to its current state, and emphasizing its design improvements and strategic partnerships. It also explores the performance and applicability of ChatGPT versions 3.5 and 4 in various contexts, examining its capabilities and limitations in producing accurate and relevant responses. Utilizing a quantitative approach, user satisfaction, speed of response, learning capabilities, and overall utility in academic performance were assessed through surveys and analysis tools. Findings indicate that while ChatGPT generally delivers high accuracy and speed in responses, the need for clarification and more specific user instructions persists. The study highlights the tool's increasing integration across different sectors, showcasing its potential in educational and professional settings.

Keywords: artificial intelligence, chat GPT, analysis, education

Procedia PDF Downloads 39
2591 Uncertainty Quantification of Corrosion Anomaly Length of Oil and Gas Steel Pipelines Based on Inline Inspection and Field Data

Authors: Tammeen Siraj, Wenxing Zhou, Terry Huang, Mohammad Al-Amin

Abstract:

The high resolution inline inspection (ILI) tool is used extensively in the pipeline industry to identify, locate, and measure metal-loss corrosion anomalies on buried oil and gas steel pipelines. Corrosion anomalies may occur singly (i.e. individual anomalies) or as clusters (i.e. a colony of corrosion anomalies). Although the ILI technology has advanced immensely, there are measurement errors associated with the sizes of corrosion anomalies reported by ILI tools due limitations of the tools and associated sizing algorithms, and detection threshold of the tools (i.e. the minimum detectable feature dimension). Quantifying the measurement error in the ILI data is crucial for corrosion management and developing maintenance strategies that satisfy the safety and economic constraints. Studies on the measurement error associated with the length of the corrosion anomalies (in the longitudinal direction of the pipeline) has been scarcely reported in the literature and will be investigated in the present study. Limitations in the ILI tool and clustering process can sometimes cause clustering error, which is defined as the error introduced during the clustering process by including or excluding a single or group of anomalies in or from a cluster. Clustering error has been found to be one of the biggest contributory factors for relatively high uncertainties associated with ILI reported anomaly length. As such, this study focuses on developing a consistent and comprehensive framework to quantify the measurement errors in the ILI-reported anomaly length by comparing the ILI data and corresponding field measurements for individual and clustered corrosion anomalies. The analysis carried out in this study is based on the ILI and field measurement data for a set of anomalies collected from two segments of a buried natural gas pipeline currently in service in Alberta, Canada. Data analyses showed that the measurement error associated with the ILI-reported length of the anomalies without clustering error, denoted as Type I anomalies is markedly less than that for anomalies with clustering error, denoted as Type II anomalies. A methodology employing data mining techniques is further proposed to classify the Type I and Type II anomalies based on the ILI-reported corrosion anomaly information.

Keywords: clustered corrosion anomaly, corrosion anomaly assessment, corrosion anomaly length, individual corrosion anomaly, metal-loss corrosion, oil and gas steel pipeline

Procedia PDF Downloads 304
2590 On-Chip Aging Sensor Circuit Based on Phase Locked Loop Circuit

Authors: Ararat Khachatryan, Davit Mirzoyan

Abstract:

In sub micrometer technology, the aging phenomenon starts to have a significant impact on the reliability of integrated circuits by bringing performance degradation. For that reason, it is important to have a capability to evaluate the aging effects accurately. This paper presents an accurate aging measurement approach based on phase-locked loop (PLL) and voltage-controlled oscillator (VCO) circuit. The architecture is rejecting the circuit self-aging effect from the characteristics of PLL, which is generating the frequency without any aging phenomena affects. The aging monitor is implemented in low power 32 nm CMOS technology, and occupies a pretty small area. Aging simulation results show that the proposed aging measurement circuit improves accuracy by about 2.8% at high temperature and 19.6% at high voltage.

Keywords: aging effect, HCI, NBTI, nanoscale

Procedia PDF Downloads 352
2589 Credit Risk Evaluation of Dairy Farming Using Fuzzy Logic

Authors: R. H. Fattepur, Sameer R. Fattepur, D. K. Sreekantha

Abstract:

Dairy Farming is one of the key industries in India. India is the leading producer and also the consumer of milk, milk-based products in the world. In this paper, we have attempted to the replace the human expert system and to develop an artificial expert system prototype to increase the speed and accuracy of decision making dairy farming credit risk evaluation. Fuzzy logic is used for dealing with uncertainty, vague and acquired knowledge, fuzzy rule base method is used for representing this knowledge for building an effective expert system.

Keywords: expert system, fuzzy logic, knowledge base, dairy farming, credit risk

Procedia PDF Downloads 353
2588 Physical, Chemical and Environmental Properties of Natural and Construction/Demolition Recycled Aggregates

Authors: Débora C. Mendes, Matthias Eckert, Cláudia S. Moço, Hélio Martins, Jean-Pierre P. Gonçalves, Miguel Oliveira, José P. Da Silva

Abstract:

Uncontrolled disposal of construction and demolition waste (C & DW) in embankments in the periphery of cities causes both environmental and social problems, namely erosion, deforestation, water contamination and human conflicts. One of the milestones of EU Horizon 2020 Programme is the management of waste as a resource. To achieve this purpose for C & DW, a detailed analysis of the properties of these materials should be done. In this work we report the physical, chemical and environmental properties of C & DW aggregates from 25 different origins. The results are compared with those of common natural aggregates used in construction. Assays were performed according to European Standards. Additional analysis of heavy metals and organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed to evaluate their environmental impact. Finally, properties of concrete prepared with C & DW aggregates are also reported. Physical analyses of C & DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. In conclusion, the characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates.

Keywords: concrete preparation, construction and demolition waste, heavy metals, organic pollutants

Procedia PDF Downloads 339
2587 Spectral Analysis of Heart Rate Variability for Normal and Preeclamptic Pregnants

Authors: Abdulnasir Hossen, Alaa Barhoum, Deepali Jaju, V. Gowri, L. Al-Kharusi, M. Hassan, K. Al-Hashmi

Abstract:

Preeclampsia is a pregnancy disorder associated with increase in blood pressure and excess amount of protein in the urine. HRV analysis has been used by many researchers to identify preeclamptic pregnancy from normal pregnancy. A study in this regard to identify preeclamptic pregnancy in Oman from normal pregnant was conducted on 40 subjects (20 patients and 20 normal). The subjects were collected from two hospitals in Oman. A Fast Fourier transform (FFT) spectral analysis has shown that patients with preeclamptic pregnancy have a reduction in the power of the HF band and an increase in the power of the LF band of HRV compared with subjects with normal pregnancy. The accuracy of identification obtained was 80%.

Keywords: preelampsia, pregnancy hypertension, normal pregnant, FFT, spectral analysis, HRV

Procedia PDF Downloads 547
2586 Effect of Synthetic Jet on Wind Turbine Noise

Authors: Reda Mankbadi

Abstract:

The current work explores the use of Synthetic Jet Actuators (SJAs) for control of the acoustic radiation of a low-speed transitioning airfoil in a uniform stream. In the adopted numerical procedure, the actuator is modeled without its resonator cavity through imposing a simple fluctuating-velocity boundary condition at the bottom of the actuator's orifice. The orifice cavity, with the properly defined boundary condition, is then embedded into the airfoil surface. High-accuracy viscous simulations are then conducted to study the effects of the actuation on sound radiated by the airfoil. Results show that SJA can considerably suppress the radiated sound of the airfoil in uniform incoming stream.

Keywords: simulations, aeroacoustics, wind turbine noise, synthetic jet actuators (SJAs)

Procedia PDF Downloads 346
2585 Bundle Block Detection Using Spectral Coherence and Levenberg Marquardt Neural Network

Authors: K. Padmavathi, K. Sri Ramakrishna

Abstract:

This study describes a procedure for the detection of Left and Right Bundle Branch Block (LBBB and RBBB) ECG patterns using spectral Coherence(SC) technique and LM Neural Network. The Coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. The QT variations of Bundle Blocks are observed in lead V1 of ECG. Spectral Coherence technique uses Welch method for calculating PSD. For the detection of normal and Bundle block beats, SC output values are given as the input features for the LMNN classifier. Overall accuracy of LMNN classifier is 99.5 percent. The data was collected from MIT-BIH Arrhythmia database.

Keywords: bundle block, SC, LMNN classifier, welch method, PSD, MIT-BIH, arrhythmia database

Procedia PDF Downloads 272
2584 2D Point Clouds Features from Radar for Helicopter Classification

Authors: Danilo Habermann, Aleksander Medella, Carla Cremon, Yusef Caceres

Abstract:

This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal.

Keywords: helicopter classification, point clouds features, radar, supervised classifiers

Procedia PDF Downloads 214
2583 Flow Characteristic Analysis for Hatch Type Air Vent Head of Bulk Cargo Ship by Computational Fluid Dynamics

Authors: Hanik Park, Kyungsook Jeon, Suchul Shin, Youngchul Park

Abstract:

The air vent head prevents the inflow of seawater into the cargo holds when it is used for the ballast tank on heavy weather. In this study, the flow characteristics and the grid size were created by the application of Computational Fluid Dynamics by taking into the consideration of comparison of test results. Then, the accuracy of the analysis was verified by comparing with experimental results. Based on this analysis, accurate turbulence model and grid size can be selected. Thus, the design characteristic of air vent head for bulk carrier contributes the reliability based on the research results.

Keywords: bulk carrier, FEM, SST, vent

Procedia PDF Downloads 510
2582 Virtual Assessment of Measurement Error in the Fractional Flow Reserve

Authors: Keltoum Chahour, Mickael Binois

Abstract:

Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.

Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift

Procedia PDF Downloads 120
2581 Detection of Intentional Attacks in Images Based on Watermarking

Authors: Hazem Munawer Al-Otum

Abstract:

In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.

Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection

Procedia PDF Downloads 248
2580 Features Dimensionality Reduction and Multi-Dimensional Voice-Processing Program to Parkinson Disease Discrimination

Authors: Djamila Meghraoui, Bachir Boudraa, Thouraya Meksen, M.Boudraa

Abstract:

Parkinson's disease is a pathology that involves characteristic perturbations in patients’ voices. This paper describes a proposed method that aims to diagnose persons with Parkinson (PWP) by analyzing on line their voices signals. First, Thresholds signals alterations are determined by the Multi-Dimensional Voice Program (MDVP). Principal Analysis (PCA) is exploited to select the main voice principal componentsthat are significantly affected in a patient. The decision phase is realized by a Mul-tinomial Bayes (MNB) Classifier that categorizes an analyzed voice in one of the two resulting classes: healthy or PWP. The prediction accuracy achieved reaching 98.8% is very promising.

Keywords: Parkinson’s disease recognition, PCA, MDVP, multinomial Naive Bayes

Procedia PDF Downloads 266
2579 Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques

Authors: Claus N. Holm, Oliver F. Grooss, Robert A. Alphinas

Abstract:

This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features.

Keywords: hit song science, product life cycle, machine learning, radio

Procedia PDF Downloads 148
2578 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 124
2577 Calculating Stress Intensity Factor of Cracked Axis by Using a Meshless Method

Authors: S. Shahrooi, A. Talavari

Abstract:

Numeral study on the crack and discontinuity using element-free methods has been widely spread in recent years. In this study, for stress intensity factor calculation of the cracked axis under torsional loading has been used from a new element-free method as MLPG method. Region range is discretized by some dispersed nodal points. From method of moving least square (MLS) utilized to create the functions using these nodal points. Then, results of meshless method and finite element method (FEM) were compared. The results is shown which the element-free method was of good accuracy.

Keywords: stress intensity factor, crack, torsional loading, meshless method

Procedia PDF Downloads 556
2576 Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE

Authors: Parimalah Velo, Ahmad Zakaria

Abstract:

Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data.

Keywords: gamma camera, Geant4 application of tomographic emission (GATE), Monte Carlo, thyroid imaging

Procedia PDF Downloads 265