Search results for: material factor design
20566 Numerical Simulation of High Strength Steel Hot-Finished Elliptical Hollow Section Subjected to Uniaxial Eccentric Compression
Authors: Zhengyi Kong, Xueqing Wang, Quang-Viet Vu
Abstract:
In this study, the structural behavior of high strength steel (HSS) hot-finished elliptical hollow section (EHS) subjected to uniaxial eccentric compression is investigated. A finite element method for predicting the cross-section resistance of HSS hot-finished EHS is developed using ABAQUS software, which is then verified by comparison with previous experiments. The validated finite element method is employed to carry out parametric studies for investigating the structural behavior of HSS hot-finished EHS under uniaxial eccentric compression and evaluate the current design guidance for HSS hot-finished EHS. Different parameters, such as the radius of the larger and smaller outer diameter of EHS, thickness of EHS, eccentricity, and material property, are considered. The resulting data from 84 finite element models are used to obtain the relationship between the cross-section resistance of HSS hot-finished EHS and cross-section slenderness. It is concluded that current design provisions, such as EN 1993-1-1, BS 5950-1, AS4100, and Gardner et al., are conservative for predicting the HSS hot-finished EHS under uniaxial eccentric compression.Keywords: hot-finished, elliptical hollow section, uniaxial eccentric compression, finite element method
Procedia PDF Downloads 13820565 Method and Apparatus for Optimized Job Scheduling in the High-Performance Computing Cloud Environment
Authors: Subodh Kumar, Amit Varde
Abstract:
Typical on-premises high-performance computing (HPC) environments consist of a fixed number and a fixed set of computing hardware. During the design of the HPC environment, the hardware components, including but not limited to CPU, Memory, GPU, and networking, are carefully chosen from select vendors for optimal performance. High capital cost for building the environment is a prime factor influencing the design environment. A class of software called “Job Schedulers” are critical to maximizing these resources and running multiple workloads to extract the maximum value for the high capital cost. In principle, schedulers work by preventing workloads and users from monopolizing the finite hardware resources by queuing jobs in a workload. A cloud-based HPC environment does not have the limitations of fixed (type of and quantity of) hardware resources. In theory, users and workloads could spin up any number and type of hardware resource. This paper discusses the limitations of using traditional scheduling algorithms for cloud-based HPC workloads. It proposes a new set of features, called “HPC optimizers,” for maximizing the benefits of the elasticity and scalability of the cloud with the goal of cost-performance optimization of the workload.Keywords: high performance computing, HPC, cloud computing, optimization, schedulers
Procedia PDF Downloads 9320564 Nonlinear Response of Tall Reinforced Concrete Shear Wall Buildings under Wind Loads
Authors: Mahtab Abdollahi Sarvi, Siamak Epackachi, Ali Imanpour
Abstract:
Reinforced concrete shear walls are commonly used as the lateral load-resisting system of mid- to high-rise office or residential buildings around the world. Design of such systems is often governed by wind rather than seismic effects, in particular in low-to-moderate seismic regions. The current design philosophy as per the majority of building codes under wind loads require elastic response of lateral load-resisting systems including reinforced concrete shear walls when subjected to the rare design wind load, resulting in significantly large wall sections needed to meet strength requirements and drift limits. The latter can highly influence the design in upper stories due to stringent drift limits specified by building codes, leading to substantial added costs to the construction of the wall. However, such walls may offer limited to moderate over-strength and ductility due to their large reserve capacity provided that they are designed and detailed to appropriately develop such over-strength and ductility under extreme wind loads. This would significantly contribute to reducing construction time and costs, while maintaining structural integrity under gravity and frequently-occurring and less frequent wind events. This paper aims to investigate the over-strength and ductility capacity of several imaginary office buildings located in Edmonton, Canada with a glance at earthquake design philosophy. Selected models are 10- to 25-story buildings with three types of reinforced concrete shear wall configurations including rectangular, barbell, and flanged. The buildings are designed according to National Building Code of Canada. Then fiber-based numerical models of the walls are developed in Perform 3D and by conducting nonlinear static (pushover) analysis, lateral nonlinear behavior of the walls are evaluated. Ductility and over-strength of the structures are obtained based on the results of the pushover analyses. The results confirmed moderate nonlinear capacity of reinforced concrete shear walls under extreme wind loads. This is while lateral displacements of the walls pass the serviceability limit states defined in Pre standard for Performance-Based Wind Design (ASCE). The results indicate that we can benefit the limited nonlinear response observed in the reinforced concrete shear walls to economize the design of such systems under wind loads.Keywords: concrete shear wall, high-rise buildings, nonlinear static analysis, response modification factor, wind load
Procedia PDF Downloads 10720563 Simulation-Based Optimization Approach for an Electro-Plating Production Process Based on Theory of Constraints and Data Envelopment Analysis
Authors: Mayada Attia Ibrahim
Abstract:
Evaluating and developing the electroplating production process is a key challenge in this type of process. The process is influenced by several factors such as process parameters, process costs, and production environments. Analyzing and optimizing all these factors together requires extensive analytical techniques that are not available in real-case industrial entities. This paper presents a practice-based framework for the evaluation and optimization of some of the crucial factors that affect the costs and production times associated with this type of process, energy costs, material costs, and product flow times. The proposed approach uses Design of Experiments, Discrete-Event Simulation, and Theory of Constraints were respectively used to identify the most significant factors affecting the production process and simulate a real production line to recognize the effect of these factors and assign possible bottlenecks. Several scenarios are generated as corrective strategies for improving the production line. Following that, data envelopment analysis CCR input-oriented DEA model is used to evaluate and optimize the suggested scenarios.Keywords: electroplating process, simulation, design of experiment, performance optimization, theory of constraints, data envelopment analysis
Procedia PDF Downloads 9720562 An Analysis and Design of Mobile Payment System Based on NFC Technology
Authors: Shafiq ur Rehman, Zubair Ahmed Shaikh
Abstract:
This research provides the comparative study of different mobile payment system and proposes an efficient solution of mobile payment system. The research involves discovering how the mobile payment methods can be used and implemented keeping user and system interaction under consideration. The implementation of Nielsen’s heuristic and universal design principles enhanced the user’s interaction design and made the system more appropriate, understandable and visible to the end user. The design of application is greatly affected by the user driven factors. These factors help in the efficiency of the application usage.Keywords: mobile payment system, m-commerce, usability, near field communication
Procedia PDF Downloads 45220561 Patterns of Change in Specific Behaviors of Autism Symptoms for Boys and for Girls Across Childhood
Authors: Einat Waizbard, Emilio Ferrer, Meghan Miller, Brianna Heath, Derek S. Andrews, Sally J. Rogers, Christine Wu Nordahl, Marjorie Solomon, David G. Amaral
Abstract:
Background: Autism symptoms are comprised of social-communication deficits and restricted/repetitive behaviors (RRB). The severity of these symptoms can change during childhood, with differences between boys and girls. From the literature, it was found that young autistic girls show a stronger tendency to decrease and a weaker tendency to increase their overall autism symptom severity levels compared to young autistic boys. It is not clear, however, which symptoms are driving these sex differences across childhood. In the current study, we evaluated the trajectories of independent autism symptoms across childhood and compared the patterns of change in such symptoms between boys and girls. Method: The study included 183 children diagnosed with autism (55 girls) evaluated three times across childhood, at ages 3, 6 and 11. We analyzed 22 independent items from the Autism Diagnostic Observation Scheudule-2 (ADOS-2), the gold-standard assessment tool for autism symptoms, each item representing a specific autism symptom. First, we used latent growth curve models to estimate the trajectories for the 22 ADOS-2 items for each child in the study. Second, we extracted the factor scores representing the individual slopes for each ADOS-2 item (i.e., slope representing that child’s change in that specific item). Third, we used factor analysis to identify common patterns of change among the ADOS-2 items, separately for boys and girls, i.e., which autism symptoms tend to change together and which change independently across childhood. Results: The best-emerging patterns for both boys and girls identified four common factors: three factors representative of changes in social-communication symptoms and one factor describing changes in RRB. Boys and girls showed the same pattern of change in RRB, with four items (e.g., speech abnormalities) changing together across childhood and three items (e.g., mannerisms) changing independently of other items. For social-communication deficits in boys, three factors were identified: the first factor included six items representing initiating and engaging in social-communication (e.g., quality of social overtures, conversation), the second factor included five items describing responsive social-communication (e.g., response to name) and the third factor included three items related to different aspects of social-communication (e.g., level of language). Girls’ social-communications deficits also loaded onto three factors: the first factor included five items (e.g., unusual eye contact), the second factor included six items (e.g., quality of social response), and the third factor included four items (e.g., showing). Some items showed similar patterns of change for both sexes (e.g., responsive joint attention), while other items showed differences (e.g., shared enjoyment). Conclusions: Girls and boys had different patterns of change in autism symptom severity across childhood. For RRB, both sexes showed similar patterns. For social-communication symptoms, however, there were both similarities and differences between boys and girls in the way symptoms changed over time. The strongest patterns of change were identified for initiating and engaging in social communication for boys and responsive social communication for girls.Keywords: autism spectrum disorder, autism symptom severity, symptom trajectories, sex differences
Procedia PDF Downloads 5120560 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature
Abstract:
Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties
Procedia PDF Downloads 33820559 Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting
Authors: A. Karimzad Ghavidel, M. Zadshakouyan
Abstract:
Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor.Keywords: dimensional accuracy, PMMA, CNTs, laser cutting
Procedia PDF Downloads 30720558 Appraising the Evolution of Architecture as the Representation of Material Culture: The Nigerian Digest
Authors: Ikenna Emmanuel Idoko
Abstract:
Evolution and evolutionary processes are phenomena that have come to stay in the fabrics of the universal living, hence expressions such as universal evolution. These evolutions in the universe cut across all facets of human accomplishments, which architecture is a part of. There is a notion in political sciences that politics and the act of politicking are local, meaning that politics and political processes are unique and peculiar to a people, all dependent on their sociocultural makeup. The notion is also applicable in architecture because the architecture of a people is mostly dependent on several factors such as climatic conditions, material availability, socio-cultural beliefs and religious inclinations. Stemming from the cultural dimension, it is of course common knowledge that every society is driven by its own unique culture. The fusion of architecture and culture creates the actual uniqueness which underlines the “archi-cultural” representation of a people’s material culture. This paper is aimed at appraising architectural evolution as it affects the representation of the material culture of a people. For effective systemization of the aim, various spectacular kinds of literature were reviewed, coupled with the visitation and study of existing buildings in Nigeria to properly understand the live peculiarity in the architecture of the selected area. Since architecture needs a lot of pictorial pieces of evidence, pictures and graphical representations were extensively utilized, and channelled to aid a better understanding of the study. Amongst all, an important part of this paper is that it adds to the body of existing knowledge in the Arts and Humanities by speaking extensively to the tenets of cultural representation on buildings. Similarly, the field of architecture, specifically, traditional architecture, would be gaining some extra knowledge owing to the study of some important almost-neglected or forgotten architectural elements of various traditional buildings.Keywords: evolution, architecture, material, culture
Procedia PDF Downloads 5720557 Implementation of Conceptual Real-Time Embedded Functional Design via Drive-By-Wire ECU Development
Authors: Ananchai Ukaew, Choopong Chauypen
Abstract:
Design concepts of real-time embedded system can be realized initially by introducing novel design approaches. In this literature, model based design approach and in-the-loop testing were employed early in the conceptual and preliminary phase to formulate design requirements and perform quick real-time verification. The design and analysis methodology includes simulation analysis, model based testing, and in-the-loop testing. The design of conceptual drive-by-wire, or DBW, algorithm for electronic control unit, or ECU, was presented to demonstrate the conceptual design process, analysis, and functionality evaluation. The concepts of DBW ECU function can be implemented in the vehicle system to improve electric vehicle, or EV, conversion drivability. However, within a new development process, conceptual ECU functions and parameters are needed to be evaluated. As a result, the testing system was employed to support conceptual DBW ECU functions evaluation. For the current setup, the system components were consisted of actual DBW ECU hardware, electric vehicle models, and control area network or CAN protocol. The vehicle models and CAN bus interface were both implemented as real-time applications where ECU and CAN protocol functionality were verified according to the design requirements. The proposed system could potentially benefit in performing rapid real-time analysis of design parameters for conceptual system or software algorithm development.Keywords: drive-by-wire ECU, in-the-loop testing, model-based design, real-time embedded system
Procedia PDF Downloads 34920556 Hydrology and Hydraulics Analysis of Beko Abo Dam and Appurtenant Structre Design, Ethiopia
Authors: Azazhu Wassie
Abstract:
This study tried to evaluate the maximum design flood for appurtenance structure design using the given climatological and hydrological data analysis on the referenced study area. The maximum design flood is determined by using flood frequency analysis. Using this method, the peak discharge is 32,583.67 m3/s, but the data is transferred because the dam site is not on the gauged station. Then the peak discharge becomes 38,115 m3/s. The study was conducted in June 2023. This dam is built across a river to create a reservoir on its upstream side for impounding water. The water stored in the reservoir is used for various purposes, such as irrigation, hydropower, navigation, fishing, etc. The total average volume of annual runoff is estimated to be 115.1 billion m3. The total potential of the land for irrigation development can go beyond 3 million ha.Keywords: dam design, flow duration curve, peak flood, rainfall, reservoir capacity, risk and reliability
Procedia PDF Downloads 2620555 Assessment of the Performance of Fly Ash Based Geo-Polymer Concrete under Sulphate and Acid Attack
Authors: Talakokula Visalakshi
Abstract:
Concrete is the most commonly used construction material across the globe, its usage is second only to water. It is prepared using ordinary Portland cement whose production contributes to 5-8% of total carbon emission in the world. On the other hand the fly ash by product from the power plants is produced in huge quantities is termed as waste and disposed in landfills. In order to address the above issues mentioned, it is essential that other forms of binding material must be developed in place of cement to make concrete. The geo polymer concrete is one such alternative developed by Davidovits in 1980’s. Geopolymer do not form calcium-silicate hydrates for matrix formation and strength but undergo polycondensation of silica and alumina precursors to attain structural strength. Its setting mechanism depends upon polymerization rather than hydration. As a result it is able to achieve its strength in 3-5 days whereas concrete requires about a month to do the same. The objective of this research is to assess the performance of geopolymer concrete under sulphate and acid attack. The assessment is done based on the experiments conducted on geopolymer concrete. The expected outcomes include that if geopolymer concrete is more durable than normal concrete, then it could be a competitive replacement option of concrete and can lead to significant reduction of carbon foot print and have a positive impact on the environment. Fly ash based geopolymer concrete offers an opportunity to completely remove the cement content from concrete thereby making the concrete a greener and future construction material.Keywords: fly ash, geo polymer, geopolymer concrete, construction material
Procedia PDF Downloads 48820554 Ingenious Use of Hypo Sludge in M25 Concrete
Authors: Abhinandan Singh Gill
Abstract:
Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.Keywords: concrete, sludge waste, hypo sludge, supplementary cementitious material
Procedia PDF Downloads 30720553 Offline High Voltage Diagnostic Test Findings on 15MVA Generator of Basochhu Hydropower Plant
Authors: Suprit Pradhan, Tshering Yangzom
Abstract:
Even with availability of the modern day online insulation diagnostic technologies like partial discharge monitoring, the measurements like Dissipation Factor (tanδ), DC High Voltage Insulation Currents, Polarization Index (PI) and Insulation Resistance Measurements are still widely used as a diagnostic tools to assess the condition of stator insulation in hydro power plants. To evaluate the condition of stator winding insulation in one of the generators that have been operated since 1999, diagnostic tests were performed on the stator bars of 15 MVA generators of Basochhu Hydropower Plant. This paper presents diagnostic study done on the data gathered from the measurements which were performed in 2015 and 2016 as part of regular maintenance as since its commissioning no proper aging data were maintained. Measurement results of Dissipation Factor, DC High Potential tests and Polarization Index are discussed with regard to their effectiveness in assessing the ageing condition of the stator insulation. After a brief review of the theoretical background, the strengths of each diagnostic method in detecting symptoms of insulation deterioration are identified. The interesting results observed from Basochhu Hydropower Plant is taken into consideration to conclude that Polarization Index and DC High Voltage Insulation current measurements are best suited for the detection of humidity and contamination problems and Dissipation Factor measurement is a robust indicator of long-term ageing caused by oxidative degradation.Keywords: dissipation Factor (tanδ), polarization Index (PI), DC High Voltage Insulation Current, insulation resistance (IR), Tan Delta Tip-Up, dielectric absorption ratio
Procedia PDF Downloads 31220552 Design of a Virtual Instrument (VI) System for Earth Resistivity Survey
Authors: Henry Okoh, Obaro Verisa Omayuli, Gladys A. Osagie
Abstract:
One of the challenges of developing nations is the dearth of measurement devices. Aside the shortage, when available, they are either old or obsolete and also very expensive. When this is the situation, researchers must design alternative systems to help meet the desired needs of academia. This paper presents a design of cost-effective multi-disciplinary virtual instrument system for scientific research. This design was based on NI USB-6255 multifunctional DAQ which was used for earth resistivity measurement in Schlumberger array and the result obtained compared closely with that of a conventional ABEM Terrameter. This instrument design provided a hands-on experience as related to full-waveform signal acquisition in the field.Keywords: cost-effective, data acquisition (DAQ), full-waveform, multi-disciplinary, Schlumberger array, virtual Instrumentation (VI).
Procedia PDF Downloads 47120551 The Improvement of Turbulent Heat Flux Parameterizations in Tropical GCMs Simulations Using Low Wind Speed Excess Resistance Parameter
Authors: M. O. Adeniyi, R. T. Akinnubi
Abstract:
The parameterization of turbulent heat fluxes is needed for modeling land-atmosphere interactions in Global Climate Models (GCMs). However, current GCMs still have difficulties with producing reliable turbulent heat fluxes for humid tropical regions, which may be due to inadequate parameterization of the roughness lengths for momentum (z0m) and heat (z0h) transfer. These roughness lengths are usually expressed in term of excess resistance factor (κB^(-1)), and this factor is used to account for different resistances for momentum and heat transfers. In this paper, a more appropriate excess resistance factor (〖 κB〗^(-1)) suitable for low wind speed condition was developed and incorporated into the aerodynamic resistance approach (ARA) in the GCMs. Also, the performance of various standard GCMs κB^(-1) schemes developed for high wind speed conditions were assessed. Based on the in-situ surface heat fluxes and profile measurements of wind speed and temperature from Nigeria Micrometeorological Experimental site (NIMEX), new κB^(-1) was derived through application of the Monin–Obukhov similarity theory and Brutsaert theoretical model for heat transfer. Turbulent flux parameterizations with this new formula provides better estimates of heat fluxes when compared with others estimated using existing GCMs κB^(-1) schemes. The derived κB^(-1) MBE and RMSE in the parameterized QH ranged from -1.15 to – 5.10 Wm-2 and 10.01 to 23.47 Wm-2, while that of QE ranged from - 8.02 to 6.11 Wm-2 and 14.01 to 18.11 Wm-2 respectively. The derived 〖 κB〗^(-1) gave better estimates of QH than QE during daytime. The derived 〖 κB〗^(-1)=6.66〖 Re〗_*^0.02-5.47, where Re_* is the Reynolds number. The derived κB^(-1) scheme which corrects a well documented large overestimation of turbulent heat fluxes is therefore, recommended for most regional models within the tropic where low wind speed is prevalent.Keywords: humid, tropic, excess resistance factor, overestimation, turbulent heat fluxes
Procedia PDF Downloads 20220550 Experimental Damping Performance of Composite Materials with Different Fibre Orientations
Authors: Ferhat Kadioglu
Abstract:
A clamped-free vibrating beam technique was used to evaluate dynamic properties of glass fiber reinforced polymer matrix composite. In the experiment, an electromagnetic shaker and a non-contact laser head were used to vibrate and to take the response of the specimens, respectively. Test results showed that damping and elastic modulus of the material, as dynamic properties, could be obtained successfully using this technique. It was found that the balanced and symmetric specimens with 45 degrees are the best for damping performance. It is believed that such results could be used for the modal design of aerospace structures.Keywords: composite materials, damping values, dynamic properties, non-contact measurements
Procedia PDF Downloads 34820549 An Attempt to Get Communication Design Students to Reflect: A Content Analysis of Students’ Learning Journals
Authors: C. K. Peter Chuah
Abstract:
Essentially, the intention of reflective journal is meant for students to develop higher-order thinking skills and to provide a 'space' to make their learning experience and thinking, making and feeling visible, i.e., it provides students an opportunity to evaluate their learning critically by focusing on the rationale behind their thinking, making and feeling. In addition, reflective journal also gets the students to focus on how could things be done differently—the possibility, alternative point of views, and opportunities for change. It is hoped that by getting communication design students to reflect at various intervals, they could move away from mere working on the design project and pay more attention to what they thought they have learned in relation to the development of their design ability. Unfortunately, a closer examination—through content analysis—of the learning journals submitted by a group of design students revealed that most of the reflections were descriptive and tended to be a summary of what occurred in the learning experience. While many students were able to describe what they did, very few were able to explain how they were able to do something critically. It can be concluded that to get design students to reflect is a fairly easy task, but to get them to reflect critically could be very challenging. To ensure that design students could benefit from the use of reflective journal as a tool to develop their critical thinking skills, a more systematic and structured approach to the introduction of critical thinking and reflective journal should be built into the design curriculum to provide as much practice and sufficient feedback as other studio subjects.Keywords: communication design education, critical thinking, reflection, reflective journal
Procedia PDF Downloads 28620548 Evaluation of Structural Integrity for Composite Lattice Structure
Authors: Jae Moon Im, Kwang Bok Shin, Sang Woo Lee
Abstract:
In this paper, evaluation of structural integrity for composite lattice structure was conducted by compressive test. Composite lattice structure was manufactured by carbon fiber using filament winding method. In order to evaluate the structural integrity of composite lattice structure, compressive test was done using anti-buckling fixture. The delamination occurred 84 Tons of compressive load. It was found that composite lattice structure satisfied the design requirements.Keywords: composite material, compressive test, lattice structure, structural integrity
Procedia PDF Downloads 50220547 Assessment of Mechanical Properties of Induction Furnace Slag as Partial Replacement of Fine Aggregate in Concrete
Authors: Muhammad Javed Bhatti, Tariq Ali, Muazz Ali
Abstract:
Due to growing environmental awareness in Pakistan, the researchers are increasingly turning to assess and analyze properties of industrial waste and finding solutions on using industrial waste as secondary material. Due to industrialization, enormous by-products are produced and to utilize these by-products is the main challenge faced in Pakistan. Induction furnace slag is one of the industrial by-products from the iron and steel making industries. This paper highlights the true utilization of induction furnace slag as partial replacement of fine aggregate. For the experimental investigation, mixes were prepared with fine aggregate replacement using 0 percent, 5 percent, 10 percent, 15 percent, 20 percent, 25 percent, 30 percent, 35 percent and 40 percent induction furnace slag to evaluate the workability, compaction factor, compressive strength, flexural strength, modulus of elasticity.Keywords: compressive strength, deflection, induction furnace slag, workability
Procedia PDF Downloads 30420546 Determinants and Impact on Income: Special Reference to Household Level Coir Yarn Labourers
Authors: G. H. B. Dilhari, A. A. D. T. Saparamadu
Abstract:
The coir is one of the by-products of the coconut and the coir industry can be identified as one of the traditional industries in Sri Lanka. Sri Lanka is one of the prominent countries for the coir production. Due to the labour insensitiveness, the labourers are the significant factor in the coir production process. The study has analyzed the determinants and its impact on income of the household level coir yarn labourers. The study was conducted in the Kumarakanda Grama Niladhari division, Galle, Sri Lanka. Simple random sampling was used to generate the sample of 100 household level coir yarn labourers and structured questionnaire, personal interviews and discussion were performed to gather the required data. The obtained data were statistically analyzed by using Statistical Package for Social Science (SPSS) software. Mann-Whitney U and Kruskal-Wallis test were carried out. The findings revealed that the household level coir yarn industry is dominated by the female workers and fewer amounts of workers have engaged this industry as the main occupation. In addition to that, elderly participation of the industry is greater than younger participation and most of them engaged as an extra income source. Level of education, the methods of engagement, satisfaction, labour’s children employment in the coir industry, support from the government, method of government support, working hours per day, employed as a main job, no of completed units per day, suffering any job related diseases and type of the diseases were related with income level of household level coir yarn labourers. The recommendations were formulated in respect to these problems including technological transformation for coir yarn production, strengthening of the raw material base and regulating the raw material supply, introduction of new technologies, markets and training programs, the establishment of the labourers association, the initiation of micro credit schemes, better consideration about the job oriented diseases.Keywords: coir, coir yarn labourers, income, Galle
Procedia PDF Downloads 19220545 Static Relaxation of Glass Fiber Reinforced Pipes
Authors: Mohammed Y. Abdellah, Mohamed K. Hassan, A. F. Mohamed, Shadi M. Munshi, A. M. Hashem
Abstract:
Pips made from glass fiber reinforced polymer has competitive role in petroleum industry. The need of evaluating the mechanical behavior of (GRP) pipes is essential objects. Stress relaxation illustrates how polymers relieve stress under constant strain. Static relaxation test is carried out at room temperature. The material gives poor static relaxation strength, two loading cycles have been observed for the tested specimen.Keywords: GRP, sandwich composite material, static relaxation, stress relief
Procedia PDF Downloads 62520544 Radiation Safety Factor of Education and Research Institution in Republic of Korea
Authors: Yeo Ryeong Jeon, Pyong Kon Cho, Eun Ok Han, Hyon Chul Jang, Yong Min Kim
Abstract:
This study surveyed on recognition related to radiation safety for radiation safety managers and workers those who have been worked in Republic of Korea education and research institution. At present, South Korea has no guideline and manual of radiation safety for education and research institution. Therefore, we tried to find an educational basis for development of radiation safety guideline and manual. To check the level of knowledge, attitude, and behavior about radiation safety, we used the questionnaire that consisted of 29 questions against knowledge, attitude and behavior, 4 questions against self-efficacy and expectation based on four factors (radiation source, human, organizational and physical environment) of the Haddon's matrix. Responses were collected between May 4 and June 30, 2015. We analyzed questionnaire by means of IBM SPSS/WIN 15 which well known as statistical package for social science. The data were compared with mean, standard deviation, Pearson's correlation, ANOVA (analysis of variance) and regression analysis. 180 copies of the questionnaire were returned from 60 workplaces. The overall mean results for behavior level was relatively lower than knowledge and attitude level. In particular, organizational environment factor on the radiation safety management indicated the lowest behavior level. Most of the factors were correlated in Pearson’s correlation analysis, especially between knowledge of human factors and behavior of human factors (Pearson’s correlation coefficient 0.809, P<.01). When analysis performed in line with the main radiation source type, institutions where have been used only opened RI (radioisotope) behavior level was the lowest among all subjects. Finally, knowledge of radiation source factor (β=0.556, P<.001) and human factor(β=0.376, P<.001) had the greatest impact in terms of behavior practice. Radiation safety managers and workers think positively about radiation safety management, but are poorly informed organizational environment of their institution. Thus, each institution need to efforts to settlement of radiation safety culture. Also, pedagogical interventions for improving knowledge on radiation safety needs in terms of safety accident prevention.Keywords: radiation safety management, factor analysis, SPSS, republic of Korea
Procedia PDF Downloads 36420543 Multi-Response Optimization of CNC Milling Parameters Using Taguchi Based Grey Relational Analysis for AA6061 T6 Aluminium Alloy
Authors: Varsha Singh, Kishan Fuse
Abstract:
This paper presents a study of the grey-Taguchi method to optimize CNC milling parameters of AA6061 T6 aluminium alloy. Grey-Taguchi method combines Taguchi method based design of experiments (DOE) with grey relational analysis (GRA). Multi-response optimization of different quality characteristics as surface roughness, material removal rate, cutting forces is done using grey relational analysis (GRA). The milling parameters considered for experiments include cutting speed, feed per tooth, and depth of cut. Each parameter with three levels is selected. A grey relational grade is used to estimate overall quality characteristics performance. The Taguchi’s L9 orthogonal array is used for design of experiments. MINITAB 17 software is used for optimization. Analysis of variance (ANOVA) is used to identify most influencing parameter. The experimental results show that grey relational analysis is effective method for optimizing multi-response characteristics. Optimum results are finally validated by performing confirmation test.Keywords: ANOVA, CNC milling, grey relational analysis, multi-response optimization
Procedia PDF Downloads 30720542 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model
Authors: Bassim Shaheen Bachy, Jörg Franke
Abstract:
In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.Keywords: laser structuring, simulation, finite element analysis, thermal modeling
Procedia PDF Downloads 34920541 Mechanical Behavior of 16NC6 Steel Hardened by Burnishing
Authors: Litim Tarek, Taamallah Ouahiba
Abstract:
This work relates to the physico-geometrical aspect of the surface layers of 16NC6 steel having undergone the burnishing treatment by hard steel ball. The results show that the optimal effects of burnishing are closely linked to the shape and the material of the active part of the device as well as to the surface plastic deformation ability of the material to be treated. Thus the roughness is improved by more than 70%, and the consolidation rate is increased by 30%. In addition, modeling of the rational traction curves provides a work hardening coefficient of up to 0.3 in the presence of burnishing.Keywords: 16NC6 steel, burnishing, hardening, roughness
Procedia PDF Downloads 16420540 A New Mechanical Architecture Design of a Multifunctional Bed for Bedridden Healthcare
Authors: Rogelio Portillo Vélez, Eduardo Vázquez-Santacruz, Mariano Gamboa-Zúñiga
Abstract:
In this paper a new mechanical architecture design of a multi functional robot bed, is presented. The importance of this design relies on the fact that in next years the need of assistive devices development will increase in such way that elderly patients will use this kind of devices. This mechanical design implies following specific mechanisms which attend Mexican hospital requirements. This design is the base of next step of this kind of development given that it shows all technical details of the mechanical systems which are needed in order to construct the bed. This is first hospital bed design which could responds to the Latin America hospital requirements. We have obtained these hospital requirements using our diagnosis methodology [14]. From these results we have designed the mechanical system. This is the mechanical base of the hospital robotic bed which is being developed in our robotics laboratory. It will be useful in different hospital environments for elderly and disabled patients.Keywords: assistive robotics, methodology, feasibility analysis, robotics, operational feasibility, assistive technology, viability analysis matrix, social impact
Procedia PDF Downloads 39720539 Use of Geosynthetics as Reinforcement Elements in Unpaved Tertiary Roads
Authors: Vivian A. Galindo, Maria C. Galvis, Jaime R. Obando, Alvaro Guarin
Abstract:
In Colombia, most of the roads of the national tertiary road network are unpaved roads with granular rolling surface. These are very important ways of guaranteeing the mobility of people, products, and inputs from the agricultural sector from the most remote areas to urban centers; however, it has not paid much attention to the search for alternatives to avoid the occurrence of deteriorations that occur shortly after its commissioning. In recent years, geosynthetics have been used satisfactorily to reinforce unpaved roads on soft soils, with geotextiles and geogrids being the most widely used. The interaction of the geogrid and the aggregate minimizes the lateral movement of the aggregate particles and increases the load capacity of the material, which leads to a better distribution of the vertical stresses, consequently reducing the vertical deformations in the subgrade. Taking into account the above, the research aimed at the mechanical behavior of the granular material, used in unpaved roads with and without the presence of geogrids, from the development of laboratory tests through the loaded wheel tester (LWT). For comparison purposes, the reinforced conditions and traffic conditions to which this type of material can be accessed in practice were simulated. In total four types of geogrids, were tested with granular material; this means that five test sets, the reinforced material and the non-reinforced control sample were evaluated. The results of the numbers of load cycles and depth rutting supported by each test body showed the influence of the properties of the reinforcement on the mechanical behavior of the assembly and the significant increases in the number of load cycles of the reinforced specimens in relation to those without reinforcement.Keywords: geosynthetics, load wheel tester LWT, tertiary roads, unpaved road, vertical deformation
Procedia PDF Downloads 25020538 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014
Authors: Alexiou Dimitra, Fragkaki Maria
Abstract:
The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.Keywords: Multiple Factorial Correspondence Analysis, Principal Component Analysis, Factor Analysis, E.U.-28 countries, Statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu Statistics
Procedia PDF Downloads 51120537 Mesoporous Material Nanofibers by Electrospinning
Authors: Sh. Sohrabnezhad, A. Jafarzadeh
Abstract:
In this paper, MCM-41 mesoporous material nanofibers were synthesized by an electrospinning technique. The nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) were used as a silica source and fiber forming source, respectively. TEM and SEM images showed synthesis of MCM-41 nanofibers with a diameter of 200 nm. The pore diameter and surface area of calcined MCM-41 nanofibers was 2.2 nm and 970 m2/g, respectively. The morphology of the MCM-41 nanofibers depended on spinning voltages.Keywords: electrospinning, electron microscopy, fiber technology, porous materials, X-ray techniques
Procedia PDF Downloads 248