Search results for: early detection of violence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7287

Search results for: early detection of violence

5817 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors

Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri

Abstract:

Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.

Keywords: citrus greening, pattern recognition, feature extraction, classification

Procedia PDF Downloads 183
5816 Atom Probe Study of Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys

Authors: Muna Khushaim

Abstract:

Aluminum-based alloys play a key role in modern engineering, especially in the aerospace industry. Introduction of solute atoms such as Li and Cu is the main approach to improve the strength in age-hardenable Al alloys via the precipitation hardening phenomenon. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Comparing the random binomial frequency distribution and the experimental frequency distribution of concentrations in atom probe tomography data was used to investigate the early stage of decomposition in the different binary and ternary alloys which were experienced different heat treatments. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160 °C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160 °C) induces increasing on the number density of the Li clusters and hence increase number of precipitated δ' particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus, the results contribute to the understanding of Al-alloy design.

Keywords: aluminum alloy, atom probe tomography, early stage, decomposition

Procedia PDF Downloads 342
5815 SFO-ECRSEP: Sensor Field Optimızation Based Ecrsep For Heterogeneous WSNS

Authors: Gagandeep Singh

Abstract:

The sensor field optimization is a serious issue in WSNs and has been ignored by many researchers. As in numerous real-time sensing fields the sensor nodes on the corners i.e. on the segment boundaries will become lifeless early because no extraordinary safety is presented for them. Accordingly, in this research work the central objective is on the segment based optimization by separating the sensor field between advance and normal segments. The inspiration at the back this sensor field optimization is to extend the time spam when the first sensor node dies. For the reason that in normal sensor nodes which were exist on the borders may become lifeless early because the space among them and the base station is more so they consume more power so at last will become lifeless soon.

Keywords: WSNs, ECRSEP, SEP, field optimization, energy

Procedia PDF Downloads 298
5814 A Review of Security Attacks and Intrusion Detection Schemes in Wireless Sensor Networks: A Survey

Authors: Maleh Yassine, Ezzati Abdellah

Abstract:

Wireless Sensor Networks (WSNs) are currently used in different industrial and consumer applications, such as earth monitoring, health related applications, natural disaster prevention, and many other areas. Security is one of the major aspects of wireless sensor networks due to the resource limitations of sensor nodes. However, these networks are facing several threats that affect their functioning and their life. In this paper we present security attacks in wireless sensor networks, and we focus on a review and analysis of the recent Intrusion Detection schemes in WSNs.

Keywords: wireless sensor networks, security attack, denial of service, IDS, cluster-based model, signature based IDS, hybrid IDS

Procedia PDF Downloads 383
5813 A Fortunate Presentation of Intestinal Obstruction Secondary to a Sarcomatoid Tumour of the Small Bowel

Authors: Thampi Rawther, Sean O’Brien, Kamala Kanta Das

Abstract:

Background: Intussusception in the adult is rarely from a benign cause and is almost always pathological. Causes include carcinomas, polyps, Meckel's diverticulum, or colonic diverticulum. Common symptoms include abdominal pain, intestinal obstruction, palpable abdominal mass, GI bleeding, and anemia. Sarcomatoid carcinoma is a rare type of small intestinal malignancy exhibiting carcinomatous and sarcomatous features. It primarily affects older patients, mean age 57, and is 1.5 times more prevalent in men. Method: This is an interesting case report of a patient presenting with intussusception secondary to a sarcomatoid tumor of the small bowel. Conclusion: Surgery is the treatment of choice in adults with intussusception due to the high malignancy potential. Furthermore, surgical resection of the affected bowel is the definitive form of therapy as small bowel sarcomatoid tumors are not responsive to chemotherapy and radiotherapy. Early surgical intervention helps reduce mortality as it allows for early staging, treatment, and monitoring of the tumor. The patient was fortunate to have presented with intussusception, facilitating early surgical intervention, and was found to have a low disease stage.

Keywords: general surgery, small bowel tumour, imaging, unique

Procedia PDF Downloads 78
5812 A Combined Fiber-Optic Surface Plasmon Resonance and Ta2O5: rGO Nanocomposite Synergistic Scheme for Trace Detection of Insecticide Fenitrothion

Authors: Ravi Kant, Banshi D. Gupta

Abstract:

The unbridled application of insecticides to enhance agricultural yield has become a matter of grave concern to both the environment and the human health and, thus pose a potential threat to sustainable development. Fenitrothion is an extensively used organophosphate insecticide whose residues are reported to be extremely toxic for birds, humans and aquatic life. A sensitive, swift and accurate detection protocol for fenitrothion is, thus, highly demanded. In this work, we report an SPR based fiber optic sensor for the detection of fenitrothion, where a nanocomposite arrangement of Ta2O5 and reduced graphene oxide (rGO) (Ta₂O₅: rGO) decorated on silver coated unclad core region of an optical fiber forms the sensing channel. A nanocomposite arrangement synergistically integrates the properties of involved components and consequently furnishes a conducive framework for sensing applications. The modification of the dielectric function of the sensing layer on exposure to fenitrothion solutions of diverse concentration forms the sensing mechanism. This modification is reflected in terms of the shift in resonance wavelength. Experimental variables such as the concentration of rGO in the nanocomposite configuration, dip time of silver coated fiber optic probe for deposition of sensing layer and influence of pH on the performance of the sensor have been optimized to extract the best performance of the sensor. SPR studies on the optimized sensing probe reveal the high sensitivity, wide operating range and good reproducibility of the fabricated sensor, which unveil the promising utility of Ta₂O₅: rGO nanocomposite framework for developing an efficient detection methodology for fenitrothion. FOSPR approach in cooperation with nanomaterials projects the present work as a beneficial approach for fenitrothion detection by imparting numerous useful advantages such as sensitivity, selectivity, compactness and cost-effectiveness.

Keywords: surface plasmon resonance, optical fiber, sensor, fenitrothion

Procedia PDF Downloads 207
5811 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar

Authors: Yasir E. Mohieldeen

Abstract:

Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.

Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination

Procedia PDF Downloads 105
5810 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique

Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu

Abstract:

Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.

Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing

Procedia PDF Downloads 99
5809 A Survey and Analysis on Inflammatory Pain Detection and Standard Protocol Selection Using Medical Infrared Thermography from Image Processing View Point

Authors: Mrinal Kanti Bhowmik, Shawli Bardhan Jr., Debotosh Bhattacharjee

Abstract:

Human skin containing temperature value more than absolute zero, discharges infrared radiation related to the frequency of the body temperature. The difference in infrared radiation from the skin surface reflects the abnormality present in human body. Considering the difference, detection and forecasting the temperature variation of the skin surface is the main objective of using Medical Infrared Thermography(MIT) as a diagnostic tool for pain detection. Medical Infrared Thermography(MIT) is a non-invasive imaging technique that records and monitors the temperature flow in the body by receiving the infrared radiated from the skin and represent it through thermogram. The intensity of the thermogram measures the inflammation from the skin surface related to pain in human body. Analysis of thermograms provides automated anomaly detection associated with suspicious pain regions by following several image processing steps. The paper represents a rigorous study based survey related to the processing and analysis of thermograms based on the previous works published in the area of infrared thermal imaging for detecting inflammatory pain diseases like arthritis, spondylosis, shoulder impingement, etc. The study also explores the performance analysis of thermogram processing accompanied by thermogram acquisition protocols, thermography camera specification and the types of pain detected by thermography in summarized tabular format. The tabular format provides a clear structural vision of the past works. The major contribution of the paper introduces a new thermogram acquisition standard associated with inflammatory pain detection in human body to enhance the performance rate. The FLIR T650sc infrared camera with high sensitivity and resolution is adopted to increase the accuracy of thermogram acquisition and analysis. The survey of previous research work highlights that intensity distribution based comparison of comparable and symmetric region of interest and their statistical analysis assigns adequate result in case of identifying and detecting physiological disorder related to inflammatory diseases.

Keywords: acquisition protocol, inflammatory pain detection, medical infrared thermography (MIT), statistical analysis

Procedia PDF Downloads 341
5808 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 31
5807 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 276
5806 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy

Procedia PDF Downloads 246
5805 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 77
5804 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach

Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim

Abstract:

De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantation

Keywords: De novo malignancy, bilirubin, data mining, transplantation

Procedia PDF Downloads 104
5803 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion

Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin

Abstract:

This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.

Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection

Procedia PDF Downloads 475
5802 Investigation of Several New Ionic Liquids’ Behaviour during ²¹⁰PB/²¹⁰BI Cherenkov Counting in Waters

Authors: Nataša Todorović, Jovana Nikolov, Ivana Stojković, Milan Vraneš, Jovana Panić, Slobodan Gadžurić

Abstract:

The detection of ²¹⁰Pb levels in aquatic environments evokes interest in various scientific studies. Its precise determination is important not only for the radiological assessment of drinking waters but also ²¹⁰Pb, and ²¹⁰Po distribution in the marine environment are significant for the assessment of the removal rates of particles from the ocean and particle fluxes during transport along the coast, as well as particulate organic carbon export in the upper ocean. Measurement techniques for ²¹⁰Pb determination, gamma spectrometry, alpha spectrometry, or liquid scintillation counting (LSC) are either time-consuming or demand expensive equipment or complicated chemical pre-treatments. However, one other possibility is to measure ²¹⁰Pb on an LS counter if it is in equilibrium with its progeny ²¹⁰Bi - through the Cherenkov counting method. It is unaffected by the chemical quenching and assumes easy sample preparation but has the drawback of lower counting efficiencies than standard LSC methods, typically from 10% up to 20%. The aim of the presented research in this paper is to investigate the possible increment of detection efficiency of Cherenkov counting during ²¹⁰Pb/²¹⁰Bi detection on an LS counter Quantulus 1220. Considering naturally low levels of ²¹⁰Pb in aqueous samples, the addition of ionic liquids to the counting vials with the analysed samples has the benefit of detection limit’s decrement during ²¹⁰Pb quantification. Our results demonstrated that ionic liquid, 1-butyl-3-methylimidazolium salicylate, is more efficient in Cherenkov counting efficiency increment than the previously explored 2-hydroxypropan-1-amminium salicylate. Consequently, the impact of a few other ionic liquids that were synthesized with the same cation group (1-butyl-3-methylimidazolium benzoate, 1-butyl-3-methylimidazolium 3-hydroxybenzoate, and 1-butyl-3-methylimidazolium 4-hydroxybenzoate) was explored in order to test their potential influence on Cherenkov counting efficiency. It was confirmed that, among the explored ones, only ionic liquids in the form of salicylates exhibit a wavelength shifting effect. Namely, the addition of small amounts (around 0.8 g) of 1-butyl-3-methylimidazolium salicylate increases the detection efficiency from 16% to >70%, consequently reducing the detection threshold by more than four times. Moreover, the addition of ionic liquids could find application in the quantification of other radionuclides besides ²¹⁰Pb/²¹⁰Bi via Cherenkov counting method.

Keywords: liquid scintillation counting, ionic liquids, Cherenkov counting, ²¹⁰PB/²¹⁰BI in water

Procedia PDF Downloads 100
5801 CSRFDtool: Automated Detection and Prevention of a Reflected Cross-Site Request Forgery

Authors: Alaa A. Almarzuki, Nora A. Farraj, Aisha M. Alshiky, Omar A. Batarfi

Abstract:

The number of internet users is dramatically increased every year. Most of these users are exposed to the dangers of attackers in one way or another. The reason for this lies in the presence of many weaknesses that are not known for native users. In addition, the lack of user awareness is considered as the main reason for falling into the attackers’ snares. Cross Site Request Forgery (CSRF) has placed in the list of the most dangerous threats to security in OWASP Top Ten for 2013. CSRF is an attack that forces the user’s browser to send or perform unwanted request or action without user awareness by exploiting a valid session between the browser and the server. When CSRF attack successes, it leads to many bad consequences. An attacker may reach private and personal information and modify it. This paper aims to detect and prevent a specific type of CSRF, called reflected CSRF. In a reflected CSRF, a malicious code could be injected by the attackers. This paper explores how CSRF Detection Extension prevents the reflected CSRF by checking browser specific information. Our evaluation shows that the proposed solution succeeds in preventing this type of attack.

Keywords: CSRF, CSRF detection extension, attackers, attacks

Procedia PDF Downloads 412
5800 Mage Fusion Based Eye Tumor Detection

Authors: Ahmed Ashit

Abstract:

Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.

Keywords: image fusion, eye tumor, canny operators, superimposed

Procedia PDF Downloads 361
5799 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 80
5798 In vitro Control of Mycosphaerella arachidis Deighton the Early Leaf Spot Disease Pathogen of Groundnut by the Extracts from Six Medicinal Plants

Authors: Matthew Omoniyi Adebola, Jude E Amadi

Abstract:

Ground nut (Arachis hypogaea) is one of the most popular commercial crops in Nigeria. Its suc-cessful production has been drastically affected by early leaf spot disease caused by Mycosphae-rella arachidis Deighton. In vitro control of the pathogen by six medicinal plants (Entada afri-cana, Vitex doniana, Lawsonia inermis, Azadirachta indica, Acalypha hispida and Nuaclea lati-folia) was assessed in this study. The extracts of the plants were prepared using cold and hot wa-ter and alcohol. The pathogen was isolated from ground nut infected with early leaf spot disease. The results revealed a great significant difference (P<0.05) in yield of extracts between cold water, hot water, and alcohol extracts. A significant difference (P<0.05) was observed in percentage concentrations of the various phytochemical constituents present in the extracts. Flavonoids per-centage concentration was the highest (0.68 - 1.95%) followed by saponnin(0.09-1.53%) in N. latifolia extracts. Steroiods had the least percentage concentrations (0.00- 0.09%)followed by terpenoids(0.02–0.71%) and proanthocyannin (0.05 – 0.86%). N. latifolia extracts produced the highest percentage concentrations (0.07–1.95%) of all the phytochemicals followed by A. indi-ca(0.05–1.64%)and least concentrations were obtained in A. hispidia(0.09 – 0.87%)and V. do-niana (0.00–0.88%). The extracts inhibited spore germination and growth of M. arachidis. The inhibition by alcohol extracts was high and significantly different (P>0.05) from cold and hot water extracts. Alcohol extract of L. inermis gave 100% spore germination inhibition followed by N. latifolia and A.indica with 97.75% and 85.60% inhibition respectively. Therefore, field trials of these six medicinal plants on the control of early leaf spot disease of ground nut are rec-ommended.

Keywords: groundnut, phytochemicals, medicinal plants, extracts, inhibition

Procedia PDF Downloads 295
5797 Etiquette Learning and Public Speaking: Early Etiquette Learning and Its Impact on Higher Education and Working Professionals

Authors: Simran Ballani

Abstract:

The purpose of this paper is to call education professionals to implement etiquette and public speaking skills for preschoolers, primary, middle and higher school students. In this paper the author aims to present importance of etiquette learning and public speaking curriculum for preschoolers, reflect on experiences from implementation of the curriculum and discuss the effect of the said implementation on higher education/global job market. Author’s aim to introduce this curriculum was to provide children with innovative learning and all around development. This training of soft skills at kindergarten level can have a long term effect on their social behaviors which in turn can contribute to professional success once they are ready for campus recruitment/global job markets. Additionally, if preschoolers learn polite, appropriate behavior at early age, it will enable them to become more socially attentive and display good manners as an adult. It is easier to nurture these skills in a child rather than changing bad manners at adulthood. Preschool/Kindergarten education can provide the platform for children to learn these crucial soft skills irrespective of the ethnicity, economic or social background they come from. These skills developed at such early years can go a long way to shape them into better and confident individuals. Unfortunately, accessibility of the etiquette learning and public speaking skill education is not standardized in pre-primary or primary level and most of the time embedding into the kindergarten curriculum is next to nil. All young children should be provided with equal opportunity to learn these soft skills which are essential for finding their place in job market.

Keywords: Early Childhood Learning, , public speaking, , confidence building, , innovative learning

Procedia PDF Downloads 111
5796 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System

Authors: Nareshkumar Harale, B. B. Meshram

Abstract:

The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.

Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design

Procedia PDF Downloads 226
5795 China's BRI and Germany's Baghdad Railroad – a Realist Analysis of Hegemonic Conflict and the Circumvention of Maritime Power

Authors: Kamen Kirov

Abstract:

In the late 19th and early 20th centuries, Britain dominated global trade and finance in large part due to its maritime superiority. Germany, a land power, sought to undermine Britain’s position as the primary hegemon but ultimately could not challenge Britain’s maritime position or capabilities. This drove Germany to seek alternative strategies to weaken Britain’s position. Notably, it pushed Germany to create a reliable overland link through the Balkans to the Middle East via railroad. This article will seek to draw parallels between the German-British hegemonic conflict of the early 20th century and the Chinese-American hegemonic conflict taking place today using both secondary historical sources and current scholarly discussions of the changing international sphere. In doing so, it will provide useful insights into how China might attempt to outflank American power. The article will demonstrate that in many ways, the strategic positions and approaches of the early-20th century Germany and modern China are similar. Both countries were faced with a vastly superior foe with respect to maritime and economic power, and in both cases, their response was to undermine their rival hegemon by creating new overland infrastructure. Furthermore, in both cases, a major goal of creating new overland links was to gain further access to and control over Middle Eastern energy markets. It seems that in the modern day, China is conducting such a policy on a much grander scale than Germany did in the early 20th century—which may result in negative consequences for the US strategic position.

Keywords: belt and road Initiative, hegemonic conflict, maritime power, realism

Procedia PDF Downloads 181
5794 Nation Building versus Self Determination: Thai State’s Response to Insurgency in South

Authors: Sunaina Sunaina

Abstract:

The emergence of Thailand as a modern nation was amalgamation of several minority groups. Eventually, the nation tried to mitigate these diversities in the name of nationalism in the backdrop of colonial powers presence in neighboring nations. However, the continued imposition of modern nation building processes (which is a western concept) in the post-colonial era deepen the feelings of alienation among the minority groups and leads to separatist conflicts. It is significant that whatever form these conflicts take, will impact the security of nation as well as the region of Southeast Asia. This paper tries to explore the possible factors behind the state policies adopted by the government of Thailand to manage the insurgency in Southern provinces in the south. The protracted insurgency in the South has historical roots as Pattani kingdom had glorious period whether it was trade or commerce or education and its assimilation was never accepted by the leaders of these areas. But after assimilation of southern provinces in the state, it has been the state policy as an important factor in promoting or mitigating the insurgency. Initial protests from the elite class of southern provinces inflated into a more organized and violent uprising after Second World War. It was only the decade of 1990s that a relative peace could prevail for some time. The violence reemerged in 2004 with more intensity and till today this area is suffering with violence. Period of different Prime Ministers dealt this insurgency in different ways sometimes very hard line approach had been adopted especially under Primeminstership of Thaksin Shinawatra. Recently, the peace talks which were started during the period of Yinglunck Shinawatra and were carried forward by Junta government also halted. And again, the region stays in a very volatile state. Violence in these provinces not only questions the capability of government to provide political solution to the problem, but also emerges as a major threat to the internal security of the state. The current era where global terrorism is spreading fast, such vulnerable areas may work as a new ground for its proliferation in Southeast Asia. The paper attempts to understand how Thailand’s historical experience of security determines a different approach to national unity which limits the prospects for autonomy in the South. In conjunction with this experience it is nature of national politics and leadership that influences the nature of policies on the ground in Southern Thailand. The paper also tries to bring out conflict between state sovereignty and self-determination as demanded by many in the southern provinces.

Keywords: insurgency, southern Thailand, security, nation building

Procedia PDF Downloads 124
5793 Telomere Length Genetics: Biomarker of Early Age Metabolic Activities and Oxidative Impact in Broiler Chicken (Gallus gallus domesticus)

Authors: Kazeem Ajasa Badmus, Zulkifli Idrus, Goh Yong Meng, Kamalludin Mamat-Hamidi

Abstract:

This study was aimed at evaluating the roles played by early age in performance, organs weights, meat quality traits, and telomere length integrity. One hundred male Cobb 500® broiler chickens were grouped into ten replicates of ten chickens each. Growth performance, measurement of telomere length, weights of organs, and meat quality traits were determined on days 14, 28, and 42 of the experiment. There were significant (p < 0.05) differences obtained in the chicken growth performance across ages. Telomere length of blood, muscle, liver, and heart on day 14 were significantly (p < 0.05) shorter than telomere length obtained on days 28 and 42 of the age. Weights of organs on day 14 were significantly (p < 0.05) higher than those obtained on days 28 and 42. In this study, birds slaughtered on day 14 presented the highest (p < 0.05) pH, drip loss, redness, and yellowness. They, however, showed lower (p < 0.05) cooking loss, shear force, and lightness. There was a significant association between age, telomere length, and meat quality traits. It is therefore concluded that telomere length attrition is associated with early age metabolic activities and could be used to measure chicks' welfare.

Keywords: age, telomere length, organ weights, meat quality

Procedia PDF Downloads 96
5792 Initial Settlers and Gender Norms: Evidence From the United States

Authors: Joanne Haddad

Abstract:

The distinctive traits of early settlers at initial stages of institutional development may be crucial for cultural formation. In 1973, the cultural geographer Wilbur Zelinsky postulated this in his doctrine of “first effective settlement”. There is however little empirical evidence supporting the role of early settlers in shaping culture over the long run. This paper tests this hypothesis by relating early settlers’ culture to within state variation in gender norms in the United States. Settlers’ culture is captured using past female labor force participation, women’s suffrage, and financial rights at their place of origin. The paper documents the distinctive characteristics of settlers’ populations and provide suggestive evidence in support of the transmission of gender norms across space and time. Results from this analysis show that women’s labor supply is higher, in both the short and long run, in U.S. counties that historically hosted a larger settler population originating from places with favorable gender attitudes. Findings from this study shed new light on the importance of the characteristics of immigrants and their place of origin for cultural formation in hosting societies.

Keywords: female labor force participation, settlers, gender norms, cultural formation.

Procedia PDF Downloads 108
5791 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells

Authors: Amina Farooq, Nauman Zafar Butt

Abstract:

This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.

Keywords: impedance, biochip, cell counting, microfluidics

Procedia PDF Downloads 158
5790 Chaupadi Practice: A Cruel Discrimination against Women a Case Study of Achham District of Nepal

Authors: Santosh Thapa, Sankar Gurung

Abstract:

Chaupadi is a tradition widely practiced in the far and mid-western region of Nepal. It is a practice where girls and women are not allowed to inter the house and touch the food, water and milk during their menstruation period of 4-7 days. They have to spend all the nights during the period in a specific hut (Chhaupadi Goth) which is a bit far from their residence where they faces various kinds of risk and violence like bullying, snakes and insect bite, wild animal attack etc. Sometimes the girls even do not go to school during their menstruation periods. After childbirth, the woman must stay in a cow shed for 11 days in such Chhaupadi practiced areas. This study limits the Achham district of the far western region which is the most vulnerable Chhaupadi practicing district. Several governmental and non-governmental organizations have been involving and spending huge amount of money for capacity building and awareness raising campaign for last 2 decades but still 9 out of 75 Village Development Committees (VDCs) have been partially practicing Chaupadi in the district. This study shows that the school attendance rate of the girls during the period have visibly increased which helps to increase the number of the girl graduation as well. Similarly, the practice of Chhaupadi is one of the reasons for increasing the number of cases of uterus prolapsus and poor reproductive health of women and girls. Triggering tools are the one of the best ways to accelerate the awareness campaign in the VDCs. This study recommends that the local bodies should coordinate and lead the overall awareness campaign program to sustain the Chaupadi free VDCs.

Keywords: awareness campaign, chaupadi practice, gender discrimination, violence

Procedia PDF Downloads 309
5789 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks

Authors: Siddhant Rao

Abstract:

Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.

Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks

Procedia PDF Downloads 223
5788 Social Ties and Integration of the Offenders

Authors: C. Chaillou

Abstract:

The dominant theoretical approaches in Criminology are interested in the phenomenon of delinquency from the question of the management of the risks incurred by the population. Thus, this research advocate prevention of this phenomenon by a tracking of early disorders in children. Treatments offered to rely on medical research (genetics and biology are cited as a reference) and assuming a high naturalization of delinquent behaviour. Programs that are offered also reduce to a recovery of the deviant behaviour, and rely readily on behavioral guidelines, with an educational grant. Public policy then rely on these programs to prevent unwanted behaviour within a given population and to reduce the risk for the company. This is the case in France, with national institutes making (juvenile) violence a public health problem. We consider that other approaches, issues of sociology, are more relevant to the treatment of offenders. These approaches are moving, not on its prevention, but from its inputs and its outputs. Several modalities of entries and exits of delinquency can find and analyze in terms of process. We assume that there is a dynamic inherent in the individual and it is important to take into account the environment of the offender. These different types of processes can illuminate from the derived work of the Psychoanalytical psychopathology and lead to more effective treatment of delinquent acts. Psychoanalytic concepts have enabled us to offer a new look means to treat delinquency, placing several types of relationship with the other and relating to the clinical structure and the uniqueness of the case, we have been able to enter subjective and unconscious logics at work in delinquent acts. This research has facilitated the reduction of these types of subjective responses and proposed others, opening to a reintegration of offenders in a social link them being more favourable and in a longer term.

Keywords: delinquency, insertion, social link, unconscious

Procedia PDF Downloads 392