Search results for: crop yields
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1680

Search results for: crop yields

210 Performance of Different Spray Nozzles in the Application of Defoliant on Cotton Plants (Gossypium hirsutum L.)

Authors: Mohamud Ali Ibrahim, Ali Bayat, Ali Bolat

Abstract:

Defoliant spraying is an important link in the mechanized cotton harvest because adequate and uniform spraying can improve defoliation quality and reduce cotton trash content. In defoliant application, application volume and spraying technology are extremely important. In this study, the effectiveness of defoliant application to cotton plant that has come to harvest with two different application volumes and three different types of nozzles with a standard field crop sprayer was determined. Experiments were carried in two phases as field area trials and laboratory analysis. Application rates were 250 l/ha and 400 L/ha, and spraying nozzles were (1) Standard flat fan nozzle (TP8006), (2) Air induction nozzle (AI 11002-VS), and (3) Dual Pattern nozzle (AI307003VP). A tracer (BSF) and defoliant were applied to mature cotton with approximately 60% open bolls and samplings for BSF deposition and spray coverage on the cotton plant were done at two plant height (upper layer, lower layer) of plant. Before and after spraying, bolls open and leaves rate on cotton plants were calculated, and filter papers were used to detect BSF deposition, and water sensitive papers (WSP) were used to measure the coverage rate of spraying methods used. Spectrofluorophotometer was used to detect the amount of tracer deposition on targets, and an image process computer programme was used to measure coverage rate on WSP. In analysis, conclusions showed that air induction nozzle (AI 11002-VS) achieved better results than the dual pattern and standard flat fan nozzles in terms of higher depositions, coverages, and leaf defoliations, and boll opening rates. AI nozzles operating at 250 L/ha application rate provide the highest deposition and coverage rate on applications of the defoliant; in addition, BSF as an indicator of the defoliant used reached on leaf beneath in merely this spray nozzle. After defoliation boll opening rate was 85% on the 7th and 12th days after spraying and falling rate of leaves was 76% at application rate of 250 L/ha with air induction (AI1102) nozzle.

Keywords: cotton defoliant, air induction nozzle, dual pattern nozzle, standard flat fan nozzle, coverage rate, spray deposition, boll opening rate, leaves falling rate

Procedia PDF Downloads 178
209 An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, biosensor, oxime (2-PAM)

Procedia PDF Downloads 440
208 The Strategic Gas Aggregator: A Key Legal Intervention in an Evolving Nigerian Natural Gas Sector

Authors: Olanrewaju Aladeitan, Obiageli Phina Anaghara-Uzor

Abstract:

Despite the abundance of natural gas deposits in Nigeria and the immense potential, this presents both for the domestic and export oriented revenue, there exists an imbalance in the preference for export as against the development and optimal utilization of natural gas for the domestic industry. Considerable amounts of gas are still being wasted by flaring in the country to this day. Although the government has set in place initiatives to harness gas at the flare and thereby reduce volumes flared, the gas producers would rather direct the gas produced to the export market whereas gas apportioned to the domestic market is often marred by the low domestic gas price which is often discouraging to the gas producers. The exported fraction of gas production no doubt yields healthy revenues for the government and an encouraging return on investment for the gas producers and for this reason export sales remain enticing and preferable to the domestic sale of gas. This export pull impacts negatively if left unchecked, on the domestic market which is in no position to match the price at the international markets. The issue of gas price remains critical to the optimal development of the domestic gas industry, in that it comprises the basis for investment decisions of the producers on the allocation of their scarce resources and to what project to channel their output in order to maximize profit. In order then to rebalance the domestic industry and streamline the market for gas, the Gas Aggregation Company of Nigeria, also known as the Strategic Aggregator was proposed under the Nigerian Gas Master Plan of 2008 and then established pursuant to the National Gas Supply and Pricing Regulations of 2008 to implement the domestic gas supply obligation which focuses on ramping-up gas volumes for domestic utilization by mandatorily requiring each gas producer to dedicate a portion of its gas production for domestic utilization before having recourse to the export market. The 2008 Regulations further stipulate penalties in the event of non-compliance. This study, in the main, assesses the adequacy of the legal framework for the Nigerian Gas Industry, given that the operational laws are structured more for oil than its gas counterpart; examine the legal basis for the Strategic Aggregator in the light of the Domestic Gas Supply and Pricing Policy 2008 and the National Domestic Gas Supply and Pricing Regulations 2008 and makes a case for a review of the pivotal role of the Aggregator in the Nigerian Gas market. In undertaking this assessment, the doctrinal research methodology was adopted. Findings from research conducted reveal the reawakening of the Federal Government to the immense potential of its gas industry as a critical sector of its economy and the need for a sustainable domestic natural gas market. A case for the review of the ownership structure of the Aggregator to comprise a balanced mix of the Federal Government, gas producers and other key stakeholders in order to ensure the effective implementation of the domestic supply obligations becomes all the more imperative.

Keywords: domestic supply obligations, natural gas, Nigerian gas sector, strategic gas aggregator

Procedia PDF Downloads 208
207 Efficient Synthesis of Highly Functionalized Biologically Important Spirocarbocyclic Oxindoles via Hauser Annulation

Authors: Kanduru Lokesh, Venkitasamy Kesavan

Abstract:

The unique structural features of spiro-oxindoles with diverse biological activities have made them privileged structures in new drug discovery. The key structural characteristic of these compounds is the spiro ring fused at the C-3 position of the oxindole core with varied heterocyclic motifs. Structural diversification of heterocyclic scaffolds to synthesize new chemical entities as pharmaceuticals and agrochemicals is one of the important goals of synthetic organic chemists. Nitrogen and oxygen containing heterocycles are by far the most widely occurring privileged structures in medicinal chemistry. The structural complexity and distinct three-dimensional arrangement of functional groups of these privileged structures are generally responsible for their specificity against biological targets. Structurally diverse compound libraries have proved to be valuable assets for drug discovery against challenging biological targets. Thus, identifying a new combination of substituents at C-3 position on oxindole moiety is of great importance in drug discovery to improve the efficiency and efficacy of the drugs. The development of suitable methodology for the synthesis of spiro-oxindole compounds has attracted much interest often in response to the significant biological activity displayed by the both natural and synthetic compounds. So creating structural diversity of oxindole scaffolds is need of the decade and formidable challenge. A general way to improve synthetic efficiency and also to access diversified molecules is through the annulation reactions. Annulation reactions allow the formation of complex compounds starting from simple substrates in a single transformation consisting of several steps in an ecologically and economically favorable way. These observations motivated us to develop the annulation reaction protocol to enable the synthesis of a new class of spiro-oxindole motifs which in turn would enable the enhancement of molecular diversity. As part of our enduring interest in the development of novel, efficient synthetic strategies to enable the synthesis of biologically important oxindole fused spirocarbocyclic systems, We have developed an efficient methodology for the construction of highly functionalized spirocarbocyclic oxindoles through [4+2] annulation of phthalides via Hauser annulation. functionalized spirocarbocyclic oxindoles was accomplished for the first time in the literature using Hauser annulation strategy. The reaction between methyleneindolinones and arylsulfonylphthalides catalyzed by cesium carbonate led to the access of new class of biologically important spiro[indoline-3,2'-naphthalene] derivatives in very good yields. The synthetic utility of the annulated product was further demonstrated by fluorination Using NFSI as a fluorinating agent to furnish corresponding fluorinated product.

Keywords: Hauser-Kraus annulation, spiro carbocyclic oxindoles, oxindole-ester, fluoridation

Procedia PDF Downloads 192
206 Effect of Phytohormones on the Development and Nutraceutical Characteristics of the Fruit Capsicum annuum

Authors: Rossy G. Olan Villegas, Gerardo Acosta Garcia, Aurea Bernardino Nicanor, Leopoldo Gonzalez Cruz, Humberto Ramirez Medina

Abstract:

Capsicum annuum is a crop of agricultural and economic importance in Mexico and other countries. The fruit (pepper) contains bioactive components such as carotenoids, phenolic compounds and capsaicinoids that improve health. However, pepper cultivation is affected by biotic and abiotic factors that decrease yield. Some phytohormones like gibberellins and auxins induce the formation and development of fruit in several plants. In this study, we evaluated the effect of the exogenous application of phytohormones like gibberellic acid and indolbutyric acid on fruit development of jalapeno pepper plants, the protein profile of plant tissues, the accumulation of bioactive compounds and antioxidant activity in the pericarp and seeds. For that, plants were sprinkled with these phytohormones. The fruit collection for the control, indolbutyric acid and gibberellic acid treatments was 7 peppers per plant; however, for the treatment that combines indolbutyric acid and gibberellic acid, a fruit with the shortest length (1.52 ± 1.00 cm) and weight (0.41 ± 1.0 g) was collected compared to fruits of plants grown under other treatments. The length (4,179 ± 0,130 cm) and weight of the fruit (8,949 ± 0.583 g) increased in plants treated with indolbutyric acid, but these characteristics decreased with the application of GA3 (length of 3,349 ± 0.127 cm and a weight 4,429 ± 0.144 g). The content of carotenes and phenolic compounds increased in plants treated with GA3 (1,733 ± 0.092 and 1,449 ± 0.009 mg / g, respectively) or indolbutyric acid (1,164 ± 0.042 and 0.970 ± 0.003 mg / g). However, this effect was not observed in plants treated with both phytohormones (0.238 ± 0.021 and 0.218 ± 0.004 mg / g). Capsaicin content was higher in all treatments; but it was more noticeable in plants treated with both phytohormones, the value being 0.913 ± 0.001 mg / g (three times greater in amount). The antioxidant activity was measured by 3 different assays, 2,2-diphenyl-1-picrylhydrazyl (DPPH), antioxidant power of ferric reduction (FRAP) and 2,2'-Azinobis-3-ethyl-benzothiazoline-6-sulfonic acid ( ABTS) to find the minimum inhibitory concentration of the reducing radical (IC50 and EC50). Significant differences were observed from the application of the phytohormone, being the fruits treated with gibberellins, which had a greater accumulation of bioactive compounds. Our results suggest that the application of phytohormones modifies the development of fruit and its content of bioactive compounds.

Keywords: auxins, capsaicinoids, carotenoids, gibberellins

Procedia PDF Downloads 104
205 Microbiological Examination and Antimicrobial Susceptibility of Microorganisms Isolated from Salt Mining Site in Ebonyi State

Authors: Anyimc, C. J. Aneke, J. O. Orji, O. Nworie, U. C. C. Egbule

Abstract:

The microbial examination and antimicrobial susceptibility profile of microorganism isolated from the salt mining site in Ebonyi state were evaluated in the present study using a standard microbiological technique. A total of 300 samples were randomly collected in three sample groups (A, B, and C) of 100 each. Isolation, Identification and characterization of organization present on the soil samples were determined by culturing, gram-staining and biochemical technique. The result showed the following organisms were isolated with their frequency as follow: Bacillus species (37.3%) and Staphylococcus species(23.5%) had the highest frequency in the whole Sample group A and B while Klebsiella specie (15.7%), Pseudomonas species(13.7%), and Erwinia species (9.8%) had the least. Rhizopus species (42.0%) and Aspergillus species (26.0%) were the highest fungi isolated, followed by Penicillum species (20.0%) while Mucor species (4.0%), and Fusarium species (8.0%) recorded the least. Sample group C showed high microbial population of all the microbial isolates when compared to sample group A and B. Disc diffusion method was used to determine the susceptibility of isolated bacteria to various antibiotics (oxfloxacin, pefloxacin, ciprorex, augumentin, gentamycin, ciproflox, septrin, ampicillin), while agar well diffusion method was used to determine the susceptibility of isolated fungi to some antifungal drugs (metronidazole, ketoconazole, itraconazole fluconazole). The antibacterial activity of the antibiotics used showed that ciproflux has the best inhibitory effect on all the test bacteria. Ketoconazole showed the highest inhibitory effect on the fungal isolates, followed by itraconazole, while metronidazole and fluconazole showed the least inhibitory effect on the entire test fungal isolates. Hence, the multiple drug resistance of most isolates to appropriate drugs of choice are of great public health concern and cells for periodic monitoring of antibiograms to detect possible changing patterns. Microbes isolated in the salt mining site can also be used as a source of gene(s) that can increase salt tolerance in different crop species through genetic engineering.

Keywords: microorganisms, antibacterial, antifungal, resistance, salt mining site, Ebonyi State

Procedia PDF Downloads 306
204 Carbon-Supported Pd Nano-Particles as Green Catalysts for the Production of Fuels from Biomass

Authors: Andrea Dragu, Solen Kinayyigit, Valerie Colliere, Karin Karin Philippot, Camelia Bala, Vasile I. Parvulescu

Abstract:

The production of transportation fuels from biomass has gained a growing attention due to diminishing fossil fuel reserves, rising petroleum prices and increasing concern about global warming. In recent years, renewable hydrocarbons that are completely fungible with fossil fuels have been suggested to be efficiently produced by catalytic deoxygenation of fatty acids and their derivatives viadecarboxylation / decarbonylation. Several triglycerides (tall oil fatty acids) and saturated/unsaturated fatty acids and their corresponding esters were used as feedstocks. Their impact together with the influence of the reaction conditions and the catalyst composition on the nature of the reaction pathways of the deoxygenation of vegetable oils and their derivatives were recently reviewed. Following this state of the art the aim of the present study was the investigation of Pd NPs deposited onto mesoporous carbon supports as active and stable catalysts for the deoxygenation of oleic acid. The catalysts were prepared by the deposition of Pd NPs synthesised following an organometallic route on mesoporous carbons with different characteristics. Experiments were carried out under both batch and flow conditions. They demonstrated that under batch conditions (200 atm; 573K), the extent of the reaction depended, firstly, on the Pd loading and then on the metal dispersion and the oxidation state of palladium, both influenced by the way the support has been treated before the NPs deposition and by the preparation/stabilization methodology of Pd NPs. No aromatic compounds were detected in the reaction products but octadecanol and octadecane were observed in large extents. Under flow conditions (4 atm; 573 K), the conversion of stearic acid was superior to that observed in batch conditions. The product mixture contained over 20% heptadecane. No octadecanol, octadecane, and aromatic compounds were detected. The maxima in performances are obtained after only 0.5 h. After that, the yields in heptadecane suffer from a severe decrease until 3h reaction time. However, at that time, stopping feeding the reactor with oleic acid and flushing the catalyst only with mesitylene recovered the activity and the selectivity of the catalysts. With the complete removal of H2, the analysis revealed the presence of heptadecene in high excess compared to heptadecane (almost 7 to 1), thus suggesting decarbonylation as the main route. ICP-OES measurements indicated no leaching of palladium and simple washing of catalysts with mesitylene allowed recycling without any change in conversion or product distribution. Noteworthy, mesitylene as solvent exhibited no effect in this reaction. In conclusion, this study demonstrates the feasibility of such catalysts for the green production of fuels from biomass.

Keywords: fuels from biomass, green catalyst, Pd nano-particles , recycble catalyst

Procedia PDF Downloads 297
203 Correlations and Impacts Of Optimal Rearing Parameters on Nutritional Value Of Mealworm (Tenebrio Molitor)

Authors: Fabienne Vozy, Anick Lepage

Abstract:

Insects are displaying high nutritional value, low greenhouse gas emissions, low land use requirements and high food conversion efficiency. They can contribute to the food chain and be one of many solutions to protein shortages. Currently, in North America, nutritional entomology is under-developed and the needs to better understand its benefits remain to convince large-scale producers and consumers (both for human and agricultural needs). As such, large-scale production of mealworms offers a promising alternative to replacing traditional sources of protein and fatty acids. To proceed orderly, it is required to collect more data on the nutritional values of insects such as, a) Evaluate the diets of insects to improve their dietary value; b) Test the breeding conditions to optimize yields; c) Evaluate the use of by-products and organic residues as sources of food. Among the featured technical parameters, relative humidity (RH) percentage and temperature, optimal substrates and hydration sources are critical elements, thus establishing potential benchmarks for to optimize conversion rates of protein and fatty acids. This research is to establish the combination of the most influential rearing parameters with local food residues, to correlate the findings with the nutritional value of the larvae harvested. 125 same-monthly old adults/replica are randomly selected in the mealworm breeding pool then placed to oviposit in growth chambers preset at 26°C and 65% RH. Adults are removed after 7 days. Larvae are harvested upon the apparition of the first nymphosis signs and batches, are analyzed for their nutritional values using wet chemistry analysis. The first samples analyses include total weight of both fresh and dried larvae, residual humidity, crude proteins (CP%), and crude fats (CF%). Further analyses are scheduled to include soluble proteins and fatty acids. Although they are consistent with previous published data, the preliminary results show no significant differences between treatments for any type of analysis. Nutritional properties of each substrate combination have yet allowed to discriminate the most effective residue recipe. Technical issues such as the particles’ size of the various substrate combinations and larvae screen compatibility are to be investigated since it induced a variable percentage of lost larvae upon harvesting. To address those methodological issues are key to develop a standardized efficient procedure. The aim is to provide producers with easily reproducible conditions, without incurring additional excessive expenditure on their part in terms of equipment and workforce.

Keywords: entomophagy, nutritional value, rearing parameters optimization, Tenebrio molitor

Procedia PDF Downloads 105
202 Agri-Tourism as a Sustainable Adaptation Option for Climate Change Impacts on Small Scale Agricultural Sector

Authors: Rohana Pandukabhya Mahaliyanaarachchi, Maheshwari Sangeetha Elapatha, Mohamed Esham, Banagala Chathurika Maduwanthi

Abstract:

The global climate change has become one of the imperative issues for the smallholder dominated agricultural sector and nature based tourism sector in Sri Lanka. Thus addressing this issue is notably important. The main objective of this study was to investigate the potential of agri-tourism as a sustainable adaptation option to mitigate some of the negative impacts of climate change in small scale agricultural sector in Sri Lanka. The study was carried out in two different climatic zones in Sri Lanka namely Low Country Dry Zone and Up Country Wet Zone. A case study strategy followed by structured and unstructured interviewers through cross-sectional surveys were adapted to collect data. The study revealed that there had been a significant change in the climate in regard to the rainfall patterns in both climatic zones resulting unexpected rains during months and longer drought periods. This results the damages of agricultural production, low yields and subsequently low income. However, to mitigate these adverse effects, farmers have mainly focused on using strategies related to the crops and farming patterns rather than diversifying their business by adopting other entrepreneurial activities like agri-tourism. One of the major precursor for this was due to lesser awareness on the concept of agri-tourism within the farming community. The study revealed that the respondents of both climatic zones do have willingness and potential to adopt agri-tourism. One key important factor identified was that farming or agriculture was the main livelihood of the respondents, which is one of the vital precursor needed to start up an agri-tourism enterprise. Most of the farmers in the Up Country Wet Zone had an inclination to start a farm guest house or a farm home stay whereas the farmers in the Low Country Dry Zone wish to operate farm guest house, farm home stay or farm restaurant. They also have an interest to open up a road side farm product stall to facilitate the direct sales of the farm. Majority of the farmers in both climatic zones showed an interest to initiate an agri-tourism business as a complementary enterprise where they wished to give an equal share to both farming and agri-tourism. Thus this revealed that the farmers have identified agri-tourism as a vital concept and have given the equal importance as given to farming. This shows that most of the farmers have understood agri-tourism as an alternative income source that can mitigate the adverse effects of climatic change. This study emphasizes that agri-tourism as an alternative income source that can mitigate the adverse effects of climatic change on small scale agriculture sector.

Keywords: adaptation, agri-tourism, climate change, small scale agriculture

Procedia PDF Downloads 145
201 Adaptive Strategies to Nutrient Deficiency of Doubled Diploid Citrumelo 4475: A Prospective Study Based on Structural, Ultrastructural, Physiological and Biochemical Parameters

Authors: J. Oustric, L. Berti, J. Santini

Abstract:

Nowadays, the objective of durable agriculture, and in particular organic agriculture, is to reduce the level of fertilizer inputs used in crops. Limiting the quantity of fertilizer inputs would optimize the economical result and minimizing the environmental impact. Nutrient deficiency, particularly of a major nutrient (N, P, and K), can seriously affect fruit production and quality. In citrus crops, rootstock/scion combinations. In citrus crop, scion/rootstock combinations are used frequently to improve tolerance to various abiotic stresses. New rootstocks are needed to respond to these constraints, and the use of new tetraploid rootstocks better adapted to lower nutrient intake could offer a promising way forward. The aim of this work was to determine whether a better tolerance to nutrient deficiency could be observed in a doubled diploid seedling and whether this tolerance could be observed in common clementine scion if used as rootstocks. We selected diploid (CM2x) and doubled diploid (CM4x) Citrumelo 4475 seedlings and common clementine (C) grafted onto Citrumelo 4475 diploid (C/CM2x) and doubled diploid (C/CM4x) rootstocks. Nutrient deficiency effects on the seedlings and scion/rootstock combinations were analyzed by studying anatomical, structural and ultrastructural determinants (chlorosis, stomata, ostiole and cells and their organelles), photosynthetic properties (leaf net photosynthetic rate (Pₙₑₜ), stomatal conductance (gₛ), chlorophyll a fluorescence (Fᵥ/Fₘ)) and oxidative marker (malondialdehyde). Nutrient deficiency affected differently foliar tissues, physiological parameters, and oxidative metabolism in leaves of seedlings depending on their ploidy level and of common clementine scion depending on their rootstocks ploidy level. Both CM4x and C/CM4x presented lower foliar damages (chlorosis, chloroplasts, mitochondria, and plastoglobuli), photosynthesis processes alteration (Pₙₑₜ, gₛ, and Fᵥ/Fₘ), and malondialdehyde accumulation than CM2x and C/CM2x after nutrient deficiency. Doubled diploid Citrumelo 4475 can improve nutrient deficiency tolerance, and its use as a rootstock allows to confer this tolerance to the common clementine scion.

Keywords: nutrient deficiency, oxidative stress, photosynthesis, polyploid rootstocks

Procedia PDF Downloads 122
200 Unification of Lactic Acid Bacteria and Aloe Vera for Healthy Gut

Authors: Pavitra Sharma, Anuradha Singh, Nupur Mathur

Abstract:

There exist more than 100 trillion bacteria in the digestive system of human-beings. Such bacteria are referred to as gut microbiota. Gut microbiota comprises around 75% of our immune system. The bacteria that comprise the gut microbiota are unique to every individual and their composition keeps changing with time owing to factors such as the host’s age, diet, genes, environment, and external medication. Of these factors, the variable easiest to control is one’s diet. By modulating one’s diet, one can ensure an optimal composition of the gut microbiota yielding several health benefits. Prebiotics and probiotics are two compounds that have been considered as viable options to modulate the host’s diet. Prebiotics are basically plant products that support the growth of good bacteria in the host’s gut. Examples include garden asparagus, aloe vera etc. Probiotics are living microorganisms that exist in our intestines and play an integral role in promoting digestive health and supporting our immune system in general. Examples include yogurt, kimchi, kombucha etc. In the context of modulating the host’s diet, the key attribute of prebiotics is that they support the growth of probiotics. By developing the right combination of prebiotics and probiotics, food products or supplements can be created to enhance the host’s health. An effective combination of prebiotics and probiotics that yields health benefits to the host is referred to as synbiotics. Synbiotics comprise of an optimal proportion of prebiotics and probiotics, their application benefits the host’s health more than the application of prebiotics and probiotics used in isolation. When applied to food supplements, synbiotics preserve the beneficial probiotic bacteria during storage period and during the bacteria’s passage through the intestinal tract. When applied to the gastrointestinal tract, the composition of the synbiotics assumes paramount importance. Reason being that for synbiotics to be effective in the gastrointestinal tract, the chosen probiotic must be able to survive in the stomach’s acidic environment and manifest tolerance towards bile and pancreatic secretions. Further, not every prebiotic stimulates the growth of a particular probiotic. The prebiotic chosen should be one that not only maintains 2 balance in the host’s digestive system, but also provides the required nutrition to probiotics. Hence in each application of synbiotics, the prebiotic-probiotic combination needs to be carefully selected. Once the combination is finalized, the exact proportion of prebiotics and probiotics to be used needs to be considered. When determining this proportion, only that amount of a prebiotic should be used that activates metabolism of the required number of probiotics. It was observed that while probiotics are active is both the small and large intestine, the effect of prebiotics is observed primarily in the large intestine. Hence in the host’s small intestine, synbiotics are likely to have the maximum efficacy. In small intestine, prebiotics not only assist in the growth of probiotics, but they also enable probiotics to exhibit a higher tolerance to pH levels, oxygenation, and intestinal temperature

Keywords: microbiota, probiotics, prebiotics, synbiotics

Procedia PDF Downloads 129
199 Cloning and Expression a Gene of β-Glucosidase from Penicillium echinulatum in Pichia pastoris

Authors: Amanda Gregorim Fernandes, Lorena Cardoso Cintra, Rosalia Santos Amorim Jesuino, Fabricia Paula De Faria, Marcio José Poças Fonseca

Abstract:

Bioethanol is one of the most promising biofuels and able to replace fossil fuels and reduce its different environmental impacts and can be generated from various agroindustrial waste. The Brazil is in first place in bioethanol production to be the largest producer of sugarcane. The bagasse sugarcane (SCB) has lignocellulose which is composed of three major components: cellulose, hemicellulose and lignin. Cellulose is a homopolymer of glucose units connected by glycosidic linkages. Among all species of Penicillium, Penicillium echinulatum has been the focus of attention because they produce high quantities of cellulase and the mutant strain 9A02S1 produces higher enzyme levels compared to the wild. Among the cellulases, the cellobiohydrolases enzymes are the main components of the cellulolytic system of fungi, and are also responsible for most of the potential hydrolytic in enzyme cocktails for the industrial processing of plant biomass and several cellobiohydrolases Penicillium had higher specific activity against cellulose compared to CBH I from Trichoderma reesei. This fact makes it an interesting pattern for higher yields in the enzymatic hydrolysis, and also they are important enzymes in the hydrolysis of crystalline regions of cellulose. Therefore, finding new and more active enzymes become necessary. Meanwhile, β-glycosidases act on soluble substrates and are highly dependent on cellobiohydrolases and endoglucanases action to provide the substrate in the hydrolysis of the biomass, but the cellobiohydrolases and endoglucanases are highly dependent β-glucosidases to maintain efficient hydrolysis. Thus, there is a need to understand the structure-function relationships that govern the catalytic activity of cellulolytic enzymes to elucidate its mechanism of action and optimize its potential as industrial biocatalysts. To evaluate the enzyme β-glucosidase of Penicillium echinulatum (PeBGL1) the gene was synthesized from the assembly sequence from a library in induction conditions and then the PeBGL1 gene was cloned in the vector pPICZαA and transformed into P. pastoris GS115. After processing, the producers of PeBGL1 were analyzed for enzyme activity and protein profile where a band of approximately 100 kDa was viewed. It was also carried out the zymogram. In partial characterization it was determined optimum temperature of 50°C and optimum pH of 6,5. In addition, to increase the secreted recombinant PeBGL1 production by Pichia pastoris, three parameters of P. pastoris culture medium were analysed: methanol, nitrogen source concentrations and the inoculum size. A 23 factorial design was effective in achieving the optimum condition. Altogether, these results point to the potential application of this P. echinulatum β-glucosidase in hydrolysis of cellulose for the production of bioethanol.

Keywords: bioethanol, biotechnology, beta-glucosidase, penicillium echinulatum

Procedia PDF Downloads 235
198 Magnetron Sputtered Thin-Film Catalysts with Low Noble Metal Content for Proton Exchange Membrane Water Electrolysis

Authors: Peter Kus, Anna Ostroverkh, Yurii Yakovlev, Yevheniia Lobko, Roman Fiala, Ivan Khalakhan, Vladimir Matolin

Abstract:

Hydrogen economy is a concept of low-emission society which harvests most of its energy from renewable sources (e.g., wind and solar) and in case of overproduction, electrochemically turns the excess amount into hydrogen, which serves as an energy carrier. Proton exchange membrane water electrolyzers (PEMWE) are the backbone of this concept. By fast-response electricity to hydrogen conversion, the PEMWEs will not only stabilize the electrical grid but also provide high-purity hydrogen for variety of fuel cell powered devices, ranging from consumer electronics to vehicles. Wider commercialization of PEMWE technology is however hindered by high prices of noble metals which are necessary for catalyzing the redox reactions within the cell. Namely, platinum for hydrogen evolution reaction (HER), running on cathode, and iridium for oxygen evolution reaction (OER) on anode. Possible way of how to lower the loading of Pt and Ir is by using conductive high-surface nanostructures as catalyst supports in conjunction with thin-film catalyst deposition. The presented study discusses unconventional technique of membrane electron assembly (MEA) preparation. Noble metal catalysts (Pt and Ir) were magnetron sputtered in very low loadings onto the surface of porous sublayers (located on gas diffusion layer or directly on membrane), forming so to say localized three-phase boundary. Ultrasonically sprayed corrosion resistant TiC-based sublayer was used as a support material on anode, whereas magnetron sputtered nanostructured etched nitrogenated carbon (CNx) served the same role on cathode. By using this configuration, we were able to significantly decrease the amount of noble metals (to thickness of just tens of nanometers), while keeping the performance comparable to that of average state-of-the-art catalysts. Complex characterization of prepared supported catalysts includes in-cell performance and durability tests, electrochemical impedance spectroscopy (EIS) as well as scanning electron microscopy (SEM) imaging and X-ray photoelectron spectroscopy (XPS) analysis. Our research proves that magnetron sputtering is a suitable method for thin-film deposition of electrocatalysts. Tested set-up of thin-film supported anode and cathode catalysts with combined loading of just 120 ug.cm⁻² yields remarkable values of specific current. Described approach of thin-film low-loading catalyst deposition might be relevant when noble metal reduction is the topmost priority.

Keywords: hydrogen economy, low-loading catalyst, magnetron sputtering, proton exchange membrane water electrolyzer

Procedia PDF Downloads 155
197 Genetically Modified Fuel-Ethanol Industrial Yeast Strains as Biocontrol Agents

Authors: Patrícia Branco, Catarina Prista, Helena Albergaria

Abstract:

Industrial fuel-ethanol fermentations are carried out under non-sterile conditions, which favors the development of microbial contaminants, leading to huge economic losses. Wild yeasts such as Brettanomyces bruxellensis and lactic acid bacteria are the main contaminants of industrial bioethanol fermentation, affecting Saccharomyces cerevisiae performance and decreasing ethanol yields and productivity. In order to control microbial contaminations, the fuel-ethanol industry uses different treatments, including acid washing and antibiotics. However, these control measures carry environmental risks such as acid toxicity and the rise of antibiotic-resistant bacteria. Therefore, it is crucial to develop and apply less toxic and more environmentally friendly biocontrol methods. In the present study, an industrial fuel-ethanol starter, S. cerevisiae Ethanol-Red, was genetically modified to over-express AMPs with activity against fuel-ethanol microbial contaminants and evaluated regarding its biocontrol effect during mixed-culture alcoholic fermentations artificially contaminated with B. bruxellensis. To achieve this goal, S. cerevisiae Ethanol-Red strain was transformed with a plasmid containing the AMPs-codifying genes, i.e., partial sequences of TDH1 (925-963 bp) and TDH2/3 (925-963 bp) and a geneticin resistance marker. The biocontrol effect of those genetically modified strains was evaluated against B. bruxellensis and compared with the antagonistic effect exerted by the modified strain with an empty plasmid (without the AMPs-codifying genes) and the non-modified strain S. cerevisiae Ethanol-Red. For that purpose, mixed-culture alcoholic fermentations were performed in a synthetic must use the modified S. cerevisiae Ethanol-Red strains together with B. bruxellensis. Single-culture fermentations of B. bruxellensis strains were also performed as a negative control of the antagonistic effect exerted by S. cerevisiae strains. Results clearly showed an improved biocontrol effect of the genetically-modified strains against B. bruxellensis when compared with the modified Ethanol-Red strain with the empty plasmid (without the AMPs-codifying genes) and with the non-modified Ethanol-Red strain. In mixed-culture fermentation with the modified S. cerevisiae strain, B. bruxellensis culturability decreased from 5×104 CFU/mL on day-0 to less than 1 CFU/mL on day-10, while in single-culture B. bruxellensis increased its culturability from 6×104 to 1×106 CFU/mL in the first 6 days and kept this value until day-10. Besides, the modified Ethanol-Red strain exhibited an enhanced antagonistic effect against B. bruxellensis when compared with that induced by the non-modified Ethanol-Red strain. Indeed, culturability loss of B. bruxellensis after 10 days of fermentation with the modified Ethanol-Red strain was 98.7 and 100% higher than that occurred in fermentations performed with the non-modified Ethanol-Red and the empty-plasmid modified strain, respectively. Therefore, one can conclude that the S. cerevisiae genetically modified strain obtained in the present work may be a valuable solution for the mitigation of microbial contamination in fuel-ethanol fermentations, representing a much safer and environmentally friendly preservation strategy than the antimicrobial treatments (acid washing and antibiotics) currently applied in fuel-ethanol industry.

Keywords: antimicrobial peptides, fuel-ethanol microbial contaminations, fuel-ethanol fermentation, biocontrol agents, genetically-modified yeasts

Procedia PDF Downloads 92
196 Basil Plants Attract and Benefit Generalist Lacewing Predator Ceraeochrysa cubana Hagen (Neuroptera: Chrysopidae) by Providing Nutritional Resources

Authors: Michela C. Batista Matos, Madelaine Venzon, Elem F. Martins, Erickson C. Freitas, Adenir V. Teodoro, Maira C. M. Fonseca, Angelo Pallini

Abstract:

Aromatic plant species are capable of producing and releasing volatile organic compounds spontaneously, which can repel or attract beneficial insects such as generalist predators of herbivores. Attractive plants could be used as crop companion plants to promote biological control of pests. In order to select such plants for future use in horticulture fields, we assessed the attractiveness of the aromatic plants Ocimum basilicum L. (basil), Mentha piperita L. (peppermint), Melissa officinalis L. (lemon balm) and Cordia verbenacea DC (black sage) to adults of the generalist lacewing predator Ceraeochrysa cubana Hagen (Neuroptera: Chrysopidae). This predator is commonly found in agroecosystems in Brazil and it feeds on aphids, mites, small caterpillars, insect eggs and scales. We further tested the effect of these plant species on the survival, development and oviposition of C. cubana. Finally, we evaluated the survival of larvae and adults of C. cubana when only flowers of basil were offered. Females of C. cubana were attracted to basil but not to the remaining aromatic plants. Larvae survival was higher when individuals had access only to basil leaf than when they had access to peppermint, lemon balm, black sage or water. Adult survival on leaf treatments and on water was no longer than three days. Flowers of basil enhanced predator larvae survival, yet they did not reach adulthood. Adults fed on basil flowers lived longer compared with water, but they did not reproduce. Basil is a promising aromatic plant species to be considered for conservation biological control programs. Besides being attractive to adults of the generalist predator, it benefits larvae and adults by providing nutritional resources when prey or other resources are absent. Financial support: CNPq, FAPEMIG and CAPES (Brazil).

Keywords: basil, chrysopidae, conservation biological control, companion plants

Procedia PDF Downloads 250
195 Sustainable Production of Pharmaceutical Compounds Using Plant Cell Culture

Authors: David A. Ullisch, Yantree D. Sankar-Thomas, Stefan Wilke, Thomas Selge, Matthias Pump, Thomas Leibold, Kai Schütte, Gilbert Gorr

Abstract:

Plants have been considered as a source of natural substances for ages. Secondary metabolites from plants are utilized especially in medical applications but are more and more interesting as cosmetical ingredients and in the field of nutraceuticals. However, supply of compounds from natural harvest can be limited by numerous factors i.e. endangered species, low product content, climate impacts and cost intensive extraction. Especially in the pharmaceutical industry the ability to provide sufficient amounts of product and high quality are additional requirements which in some cases are difficult to fulfill by plant harvest. Whereas in many cases the complexity of secondary metabolites precludes chemical synthesis on a reasonable commercial basis, plant cells contain the biosynthetic pathway – a natural chemical factory – for a given compound. A promising approach for the sustainable production of natural products can be plant cell fermentation (PCF®). A thoroughly accomplished development process comprises the identification of a high producing cell line, optimization of growth and production conditions, the development of a robust and reliable production process and its scale-up. In order to address persistent, long lasting production, development of cryopreservation protocols and generation of working cell banks is another important requirement to be considered. So far the most prominent example using a PCF® process is the production of the anticancer compound paclitaxel. To demonstrate the power of plant suspension cultures here we present three case studies: 1) For more than 17 years Phyton produces paclitaxel at industrial scale i.e. up to 75,000 L in scale. With 60 g/kg dw this fully controlled process which is applied according to GMP results in outstanding high yields. 2) Thapsigargin is another anticancer compound which is currently isolated from seeds of Thapsia garganica. Thapsigargin is a powerful cytotoxin – a SERCA inhibitor – and the precursor for the derivative ADT, the key ingredient of the investigational prodrug Mipsagargin (G-202) which is in several clinical trials. Phyton successfully generated plant cell lines capable to express this compound. Here we present data about the screening for high producing cell lines. 3) The third case study covers ingenol-3-mebutate. This compound is found in the milky sap of the intact plants of the Euphorbiacae family at very low concentrations. Ingenol-3-mebutate is used in Picato® which is approved against actinic keratosis. Generation of cell lines expressing significant amounts of ingenol-3-mebutate is another example underlining the strength of plant cell culture. The authors gratefully acknowledge Inspyr Therapeutics for funding.

Keywords: Ingenol-3-mebutate, plant cell culture, sustainability, thapsigargin

Procedia PDF Downloads 239
194 Determination of Genotypic Relationship among 12 Sugarcane (Saccharum officinarum) Varieties

Authors: Faith Eweluegim Enahoro-Ofagbe, Alika Eke Joseph

Abstract:

Information on genetic variation within a population is crucial for utilizing heterozygosity for breeding programs that aim to improve crop species. The study was conducted to ascertain the genotypic similarities among twelve sugarcane (Saccharum officinarum) varieties to group them for purposes of hybridizations for cane yield improvement. The experiment was conducted at the University of Benin, Faculty of Agriculture Teaching and Research Farm, Benin City. Twelve sugarcane varieties obtained from National Cereals Research Institute, Badeggi, Niger State, Nigeria, were planted in three replications in a randomized complete block design. Each variety was planted on a five-row plot of 5.0 m in length. Data were collected on 12 agronomic traits, including; the number of millable cane, cane girth, internode length, number of male and female flowers (fuss), days to flag leaf, days to flowering, brix%, cane yield, and others. There were significant differences, according to the findings among the twelve genotypes for the number of days to flag leaf, number of male and female flowers (fuss), and cane yield. The relationship between the twelve sugarcane varieties was expressed using hierarchical cluster analysis. The twelve genotypes were grouped into three major clusters based on hierarchical classification. Cluster I had five genotypes, cluster II had four, and cluster III had three. Cluster III was dominated by varieties characterized by higher cane yield, number of leaves, internode length, brix%, number of millable stalks, stalk/stool, cane girth, and cane length. Cluster II contained genotypes with early maturity characteristics, such as early flowering, early flag leaf development, growth rate, and the number of female and male flowers (fuss). The maximum inter-cluster distance between clusters III and I indicated higher genetic diversity between the two groups. Hybridization between the two groups could result in transgressive recombinants for agronomically important traits.

Keywords: sugarcane, Saccharum officinarum, genotype, cluster analysis, principal components analysis

Procedia PDF Downloads 72
193 Application of DSSAT-CSM Model for Estimating Rain-Water Productivity of Maize (Zea Mays L.) Under Changing Climate of Central Rift Valley, Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Pressing demands for agricultural products and its associated pressure on water availability in the semi-arid areas demanded information for strategic decision-making in the changing climate conditions of Ethiopia. Availing such information through traditional agronomic research methods is not sufficient unless supported through the application of decision-support tools. The CERES (Crop Environmental Resource Synthesis) model in DSSAT-CSM was evaluated for estimating yield and water productivity of maize under two soil types (Andosol and Luvisol) of the Central Rift Valley of Ethiopia. A six-year data (2010 – 2017) obtained from national fertilizer determination experiments were used for model evaluation. Pertinent statistical indices were employed to evaluate model performance. Following model evaluation, yield and rain-water productivity of maize was assessed for the baseline (1981-2010) and future climate (2050’s and 2080’s) scenario. The model performed well in predicting phenology, growth, and yield of maize for the different seasons and phosphorous rates. A good agreement between simulated and observed grain yield was indicated by low values of the RMSE (0.15 - 0.37 Mg/ha) and other indices for the two soil types. The evaluated model predicted a decline in the potential (23.8 to 26.7% at Melkassa and from 21.7 to 26.1% at Ziway under RCP4.5 and RCP8.5 climate change scenarios, respectively) and water-limited yield (15 to 18.3% at Melkassa and by 6.5 to 10.5% at Ziway) in the mid-century due to climate change. Consequently, a decline in water productivity was projected in the future periods that necessitate availing options to improve water productivity in the region. In conclusion, the DSSAT-CERES-maize model can be used to simulate maize (Melkassa-2) phenology, growth and grain yield, as well as simulate water productivity under different management scenarios that can help to identify options to improve water productivity in the changing climate of the semi-arid central Rift valley of Ethiopia.

Keywords: andosol, CERES-maize, luvisol, model evaluation, water productivity

Procedia PDF Downloads 63
192 Field Performance of Cement Treated Bases as a Reflective Crack Mitigation Technique for Flexible Pavements

Authors: Mohammad R. Bhuyan, Mohammad J. Khattak

Abstract:

Deterioration of flexible pavements due to crack reflection from its soil-cement base layer is a major concern around the globe. The service life of flexible pavement diminishes significantly because of the reflective cracks. Highway agencies are struggling for decades to prevent or mitigate these cracks in order to increase pavement service lives. The root cause of reflective cracks is the shrinkage crack which occurs in the soil-cement bases during the cement hydration process. The primary factor that causes the shrinkage is the cement content of the soil-cement mixture. With the increase of cement content, the soil-cement base gains strength and durability, which is necessary to withstand the traffic loads. But at the same time, higher cement content creates more shrinkage resulting in more reflective cracks in pavements. Historically, various states of USA have used the soil-cement bases for constructing flexile pavements. State of Louisiana (USA) had been using 8 to 10 percent of cement content to manufacture the soil-cement bases. Such traditional soil-cement bases yield 2.0 MPa (300 psi) 7-day compressive strength and are termed as cement stabilized design (CSD). As these CSD bases generate significant reflective cracks, another design of soil-cement base has been utilized by adding 4 to 6 percent of cement content called cement treated design (CTD), which yields 1.0 MPa (150 psi) 7-day compressive strength. The reduction of cement content in the CTD base is expected to minimize shrinkage cracks thus increasing pavement service lives. Hence, this research study evaluates the long-term field performance of CTD bases with respect to CSD bases used in flexible pavements. Pavement Management System of the state of Louisiana was utilized to select flexible pavement projects with CSD and CTD bases that had good historical record and time-series distress performance data. It should be noted that the state collects roughness and distress data for 1/10th mile section every 2-year period. In total, 120 CSD and CTD projects were analyzed in this research, where more than 145 miles (CTD) and 175 miles (CSD) of roadways data were accepted for performance evaluation and benefit-cost analyses. Here, the service life extension and area based on distress performance were considered as benefits. It was found that CTD bases increased 1 to 5 years of pavement service lives based on transverse cracking as compared to CSD bases. On the other hand, the service lives based on longitudinal and alligator cracking, rutting and roughness index remain the same. Hence, CTD bases provide some service life extension (2.6 years, on average) to the controlling distress; transverse cracking, but it was inexpensive due to its lesser cement content. Consequently, CTD bases become 20% more cost-effective than the traditional CSD bases, when both bases were compared by net benefit-cost ratio obtained from all distress types.

Keywords: cement treated base, cement stabilized base, reflective cracking , service life, flexible pavement

Procedia PDF Downloads 161
191 Evaluation of Cyclic Steam Injection in Multi-Layered Heterogeneous Reservoir

Authors: Worawanna Panyakotkaew, Falan Srisuriyachai

Abstract:

Cyclic steam injection (CSI) is a thermal recovery technique performed by injecting periodically heated steam into heavy oil reservoir. Oil viscosity is substantially reduced by means of heat transferred from steam. Together with gas pressurization, oil recovery is greatly improved. Nevertheless, prediction of effectiveness of the process is difficult when reservoir contains degree of heterogeneity. Therefore, study of heterogeneity together with interest reservoir properties must be evaluated prior to field implementation. In this study, thermal reservoir simulation program is utilized. Reservoir model is firstly constructed as multi-layered with coarsening upward sequence. The highest permeability is located on top layer with descending of permeability values in lower layers. Steam is injected from two wells located diagonally in quarter five-spot pattern. Heavy oil is produced by adjusting operating parameters including soaking period and steam quality. After selecting the best conditions for both parameters yielding the highest oil recovery, effects of degree of heterogeneity (represented by Lorenz coefficient), vertical permeability and permeability sequence are evaluated. Surprisingly, simulation results show that reservoir heterogeneity yields benefits on CSI technique. Increasing of reservoir heterogeneity impoverishes permeability distribution. High permeability contrast results in steam intruding in upper layers. Once temperature is cool down during back flow period, condense water percolates downward, resulting in high oil saturation on top layers. Gas saturation appears on top after while, causing better propagation of steam in the following cycle due to high compressibility of gas. Large steam chamber therefore covers most of the area in upper zone. Oil recovery reaches approximately 60% which is of about 20% higher than case of heterogeneous reservoir. Vertical permeability exhibits benefits on CSI. Expansion of steam chamber occurs within shorter time from upper to lower zone. For fining upward permeability sequence where permeability values are reversed from the previous case, steam does not override to top layers due to low permeability. Propagation of steam chamber occurs in middle of reservoir where permeability is high enough. Rate of oil recovery is slower compared to coarsening upward case due to lower permeability at the location where propagation of steam chamber occurs. Even CSI technique produces oil quite slowly in early cycles, once steam chamber is formed deep in the reservoir, heat is delivered to formation quickly in latter cycles. Since reservoir heterogeneity is unavoidable, a thorough understanding of its effect must be considered. This study shows that CSI technique might be one of the compatible solutions for highly heterogeneous reservoir. This competitive technique also shows benefit in terms of heat consumption as steam is injected periodically.

Keywords: cyclic steam injection, heterogeneity, reservoir simulation, thermal recovery

Procedia PDF Downloads 451
190 Consensual A-Monogamous Relationships: Challenges and Ways of Coping

Authors: Tal Braverman Uriel, Tal Litvak Hirsch

Abstract:

Background and Objectives: Little or only partial emphasis has been placed on exploring the complexity of consensual non-monogamous relationships. The term "polyamory" refers to consensual non-monogamy, and it is defined as having emotional and/or sexual relations simultaneously with two or more people, the consent and knowledge of all the partners concerned. Managing multiple romantic relationships with different people evokes more emotions, leads to more emotional conflicts arising from different interests, and demands practical strategies. An individual's transition from a monogamous lifestyle to a consensual non-monogamous lifestyle yields new challenges, accompanied by stress, uncertainty, and question marks, as do other life-changing events, such as divorce or transition to parenthood. The study examines both the process of transition and adaptation to a consensually non-monogamous relationship, as well as the coping mechanism involved in the daily conduct of this lifestyle. The research focuses on understanding the consequences, challenges, and coping methods from a personal, marital, and familial point of view and focuses on 40 middle-aged individuals (20 men and 20 women ages 40-60). The research sheds light on a way of life that has not been previously studied in Israel and is still considered unacceptable. Theories of crisis (e.g., as Folkman and Lazarus) were applied, and as a result, a deeper understanding of the subject was reached, all while focusing on multiple aspects of dealing with stress. The basic research question examines the consequences of entering a polyamorous life from a personal point of view as an individual, partner, and parent and the ways of coping with these consequences. Method: The research is conducted with a narrative qualitative approach in the interpretive paradigm, including semi-structured in-depth interviews. The method of analysis is thematic. Results: The findings indicate that in most cases, an individual's motivation to open the relationship is mainly a longing for better sexuality and for an added layer of excitement to their lives. Most of the interviewees were assisted by their spouses in the process, as well as by social networks and podcasts on the subject. Some of them therapeutic professionals from the field are helpful. It also clearly emerged that among those who experienced acute emotional crises with the primary partner or painful separations from secondary partners, all believed polyamory to be the adequate way of life for them. Finally, a key resource for managing tension and stress is the ability to share and communicate with the primary partner. Conclusions: The study points to the challenges and benefits of a non-monogamous lifestyle as well as the use of coping mechanisms and resources that are consistent with the existing theory and research in the field in the context of life changes. The study indicates the need to expand the research canvas in the future in the context of parenting and the consequences for children.

Keywords: a-monogamy, consent, family, stress, tension

Procedia PDF Downloads 66
189 Profiling the Volatile Metabolome in Pear Leaves with Different Resistance to the Pear Psylla Cacopsylla bidens (Sulc) and Characterization of Phenolic Acid Decarboxylase

Authors: Mwafaq Ibdah, Mossab, Yahyaa, Dor Rachmany, Yoram Gerchman, Doron Holland, Liora Shaltiel-Harpaz

Abstract:

Pear Psylla is the most important pest of pear in all pear-growing regions, in Asian, European, and the USA. Pear psylla damages pears in several ways: high-density populations of these insects can cause premature leaf and fruit drop, diminish plant growth, and reduce fruit size. In addition, their honeydew promotes sooty mold on leaves and russeting on fruit. Pear psyllas are also considered vectors of pear pathogens such as Candidatus Phytoplasma pyri causing pear decline that can lead to loss of crop and tree vigor, and sometimes loss of trees. Psylla control is a major obstacle to efficient integrated pest management. Recently we have identified two naturally resistance pear accessions (Py.760-261 and Py.701-202) in the Newe Ya’ar live collection. GC-MS volatile metabolic profiling identified several volatile compounds common in these accessions but lacking, or much less common, in a sensitive accession, the commercial Spadona variety. Among these volatiles were styrene and its derivatives. When the resistant accessions were used as inter-stock, the volatile compounds appear in commercial Spadona scion leaves, and it showed reduced susceptibility to pear psylla. Laboratory experiments and applications of some of these volatile compounds were very effective against psylla eggs, nymphs, and adults. The genes and enzymes involved in the specific reactions that lead to the biosynthesis of styrene in plant are unknown. We have identified a phenolic acid decarboxylase that catalyzes the formation of p-hydroxystyrene, which occurs as a styrene analog in resistant pear genotypes. The His-tagged and affinity chromatography purified E. coli-expressed pear PyPAD1 protein could decarboxylate p-coumaric acid and ferulic acid to p-hydroxystyrene and 3-methoxy-4-hydroxystyrene. In addition, PyPAD1 had the highest activity toward p-coumaric acid. Expression analysis of the PyPAD gene revealed that its expressed as expected, i.e., high when styrene levels and psylla resistance were high.

Keywords: pear Psylla, volatile, GC-MS, resistance

Procedia PDF Downloads 133
188 Hybrid versus Cemented Fixation in Total Knee Arthroplasty: Mid-Term Follow-Up

Authors: Pedro Gomes, Luís Sá Castelo, António Lopes, Marta Maio, Pedro Mota, Adélia Avelar, António Marques Dias

Abstract:

Introduction: Total Knee Arthroplasty (TKA) has contributed to improvement of patient`s quality of life, although it has been associated with some complications including component loosening and polyethylene wear. To prevent these complications various fixation techniques have been employed. Hybrid TKA with cemented tibial and cementless femoral components have shown favourable outcomes, although it still lack of consensus in the literature. Objectives: To evaluate the clinical and radiographic results of hybrid versus cemented TKA with an average 5 years follow-up and analyse the survival rates. Methods: A retrospective study of 125 TKAs performed in 92 patients at our institution, between 2006 to 2008, with a minimum follow-up of 2 years. The same prosthesis was used in all knees. Hybrid TKA fixation was performed in 96 knees, with a mean follow-up of 4,8±1,7 years (range, 2–8,3 years) and 29 TKAs received fully cemented fixation with a mean follow-up of 4,9±1,9 years (range, 2-8,3 years). Selection for hybrid fixation was nonrandomized and based on femoral component fit. The Oxford Knee Score (OKS 0-48) was evaluated for clinical assessment and Knee Society Roentgenographic Evaluation Scoring System was used for radiographic outcome. The survival rate was calculated using the Kaplan-Meier method, with failures defined as revision of either the tibial or femoral component for aseptic failures and all-causes (aseptic and infection). Analysis of survivorship data was performed using the log-rank test. SPSS (v22) was the computer program used for statistical analysis. Results: The hybrid group consisted of 72 females (75%) and 24 males (25%), with mean age 64±7 years (range, 50-78 years). The preoperative diagnosis was osteoarthritis (OA) in 94 knees (98%), rheumatoid arthritis (RA) in 1 knee (1%) and Posttraumatic arthritis (PTA) in 1 Knee (1%). The fully cemented group consisted of 23 females (79%) and 6 males (21%), with mean age 65±7 years (range, 47-78 years). The preoperative diagnosis was OA in 27 knees (93%), PTA in 2 knees (7%). The Oxford Knee Scores were similar between the 2 groups (hybrid 40,3±2,8 versus cemented 40,2±3). The percentage of radiolucencies seen on the femoral side was slightly higher in the cemented group 20,7% than the hybrid group 11,5% p0.223. In the cemented group there were significantly more Zone 4 radiolucencies compared to the hybrid group (13,8% versus 2,1% p0,026). Revisions for all causes were performed in 4 of the 96 hybrid TKAs (4,2%) and 1 of the 29 cemented TKAs (3,5%). The reason for revision was aseptic loosening in 3 hybrid TKAs and 1 of the cemented TKAs. Revision was performed for infection in 1 hybrid TKA. The hybrid group demonstrated a 7 years survival rate of 93% for all-cause failures and 94% for aseptic loosening. No significant difference in survivorship was seen between the groups for all-cause failures or aseptic failures. Conclusions: Hybrid TKA yields similar intermediate-term results and survival rates as fully cemented total knee arthroplasty and remains a viable option in knee joint replacement surgery.

Keywords: hybrid, survival rate, total knee arthroplasty, orthopaedic surgery

Procedia PDF Downloads 585
187 The Effect of the Variety and Harvesting Date on Polyphenol Composition of Haskap (Lonicera caerulea L.) and Anti-diabetic Properties of Haskap Polyphenols

Authors: Aruma Baduge Kithma De Silva

Abstract:

Haskap (Lonicera caerulea L.), also known as blue honeysuckle, is a newly commercialized berry crop in Canada. Haskap berries are rich in polyphenols, including, anthocyanins, which are known for potential health-promoting properties. Cyanidin-3-O-glucoside (C3G) is the most abundant anthocyanin of haskap berries. The compound C3G has the ability to reduce the risk of type 2 diabetes (T2D), which has become an increasingly common health issue around the world. The T2D is characterized as a metabolic disorder of hyperglycemia and insulin resistance. It has been demonstrated that C3G has anti-diabetic effects through several ways, including inhibition of dipeptidyl peptidase-4 (DPP-4), reduction of gluconeogenesis, improvement in insulin sensitivity, and inhibition of activities of carbohydrate hydrolyzing enzymes, including α-amylase and α-glucosidase. The goal of this study was to investigate the influence of variety and harvests maturity of haskap on C3G, other fruit quality characteristics and anti-diabetic activities of haskap berries using in vitro studies. The polyphenols present in four commercially grown haskap cultivars, Aurora, Rebecca, Larissa, and Evie harvested at five harvesting dates (H1-H5) apart from 2-3 days, were extracted separately. High-performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS) analyzes of polyphenols revealed that haskap berries contain predominantly anthocyanins, flavonols, flavan-3-ols, and phenolic acids. The compound C3G was the most prominent anthocyanin, which is available in approximately 79% of total anthocyanin in four cultivars. The Larissa at H5 contained the highest C3G content. The antioxidant capacity of Evie at H5 was greater than other cultivars. Furthermore, Larissa H5 showed the greatest inhibition of carbohydrate hydrolyzing enzymes including alpha-glucosidase and alpha-amylase. In conclusion, the haskap variety and harvesting date influenced the polyphenol composition and biological properties. The variety Larissa, at H5 harvesting date, contained the highest polyphenol content and the ability of inhibition of the carbohydrate hydrolyzing enzyme as well as DPP4 enzyme in order to reduce type 2 diabetes.

Keywords: anthocyanin, Haskap, type 2 diabetes, polyphenol

Procedia PDF Downloads 134
186 Recycling the Lanthanides from Permanent Magnets by Electrochemistry in Ionic Liquid

Authors: Celine Bonnaud, Isabelle Billard, Nicolas Papaiconomou, Eric Chainet

Abstract:

Thanks to their high magnetization and low mass, permanent magnets (NdFeB and SmCo) have quickly became essential for new energies (wind turbines, electrical vehicles…). They contain large quantities of neodymium, samarium and dysprosium, that have been recently classified as critical elements and that therefore need to be recycled. Electrochemical processes including electrodissolution followed by electrodeposition are an elegant and environmentally friendly solution for the recycling of such lanthanides contained in permanent magnets. However, electrochemistry of the lanthanides is a real challenge as their standard potentials are highly negative (around -2.5V vs ENH). Consequently, non-aqueous solvents are required. Ionic liquids (IL) are novel electrolytes exhibiting physico-chemical properties that fulfill many requirements of the sustainable chemistry principles, such as extremely low volatility and non-flammability. Furthermore, their chemical and electrochemical properties (solvation of metallic ions, large electrochemical windows, etc.) render them very attractive media to implement alternative and sustainable processes in view of integrated processes. All experiments that will be presented were carried out using butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Linear sweep, cyclic voltammetry and potentiostatic electrochemical techniques were used. The reliability of electrochemical experiments, performed without glove box, for the classic three electrodes cell used in this study has been assessed. Deposits were obtained by chronoamperometry and were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The IL cathodic behavior under different constraints (argon, nitrogen, oxygen atmosphere or water content) and using several electrode materials (Pt, Au, GC) shows that with argon gas flow and gold as a working electrode, the cathodic potential can reach the maximum value of -3V vs Fc+/Fc; thus allowing a possible reduction of lanthanides. On a gold working electrode, the reduction potential of samarium and neodymium was found to be -1.8V vs Fc+/Fc while that of dysprosium was -2.1V vs Fc+/Fc. The individual deposits obtained were found to be porous and presented some significant amounts of C, N, F, S and O atoms. Selective deposition of neodymium in presence of dysprosium was also studied and will be discussed. Next, metallic Sm, Nd and Dy electrodes were used in replacement of Au, which induced changes in the reduction potential values and the deposit structures of lanthanides. The individual corrosion potentials were also measured in order to determine the parameters influencing the electrodissolution of these metals. Finally, a full recycling process was investigated. Electrodissolution of a real permanent magnet sample was monitored kinetically. Then, the sequential electrodeposition of all lanthanides contained in the IL was investigated. Yields, quality of the deposits and consumption of chemicals will be discussed in depth, in view of the industrial feasibility of this process for real permanent magnets recycling.

Keywords: electrodeposition, electrodissolution, ionic liquids, lanthanides, rcycling

Procedia PDF Downloads 264
185 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 96
184 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)

Procedia PDF Downloads 426
183 Control Mechanisms for Sprayer Used in Turkey

Authors: Huseyin Duran, Yesim Benal Oztekin, Kazim Kubilay Vursavus, Ilker Huseyin Celen

Abstract:

There are two main approaches to manufacturing, market and usage of plant protection machinery in Turkey. The first approach is called as ‘Product Safety Approach’ and could be summarized as minimum health and safety requirements of consumer needs on plant protection equipment and machinery products. The second approach is the practices related to the Plant Protection Equipment and Machinery Directive. Product safety approach covers the plant protection machinery product groups within the framework of a new approach directive, Machinery Safety Directive (2006/42 / AT). The new directive is in practice in our country by 03.03.2009, parallel to the revision of the EU Regulation on the Directive (03.03.2009 dated and numbered 27158 published in the Official Gazette). ‘Pesticide Application for Machines’ paragraph is added to the 2006/42 / EC Machinery Safety Directive, which is, in particular, reveals the importance of primary health care and product safety issue, explaining the safety requirements for machines used in the application of plant protection products. The Ministry of Science, Industry and Technology is the authorized organizations in our country for the publication and implementation of this regulation. There is a special regulation, carried out by Ministry of Food, Agriculture and Livestock General Directorate of Food and Control, on the manufacture and sale of plant protection machinery. This regulation, prepared based on 5996 Veterinary Services, Plant Health, Food and Feed Law, is ‘Regulation on Plant Protection Equipment and Machinery’ (published on 02.04.2011 whit number 27893 in the Official Gazette). The purposes of this regulation are practicing healthy and reliable crop production, the preparation, implementation and dissemination of the integrated pest management programs and projects for the development of human health and environmentally friendly pest control methods. This second regulation covers: approval, manufacturing, licensing of Plant Protection Equipment and Machinery; duties and responsibilities of the dealers; principles and procedures related to supply and control of the market. There are no inspection procedures for the application of currently used plant protection machinery in Turkey. In this study, content and application principles of all regulation approaches currently used in Turkey are summarized.

Keywords: plant protection equipment and machinery, product safety, market surveillance, inspection procedures

Procedia PDF Downloads 255
182 Changing from Crude (Rudimentary) to Modern Method of Cassava Processing in the Ngwo Village of Njikwa Sub Division of North West Region of Cameroon

Authors: Loveline Ambo Angwah

Abstract:

The processing of cassava from tubers or roots into food using crude and rudimentary method (hand peeling, grating, frying and to sun drying) is a very cumbersome and difficult process. The crude methods are time consuming and labour intensive. While on the other hand, modern processing method, that is using machines to perform the various processes as washing, peeling, grinding, oven drying, fermentation and frying is easier, less time consuming, and less labour intensive. Rudimentarily, cassava roots are processed into numerous products and utilized in various ways according to local customs and preferences. For the people of Ngwo village, cassava is transformed locally into flour or powder form called ‘cumcum’. It is also sucked into water to give a kind of food call ‘water fufu’ and fried to give ‘garri’. The leaves are consumed as vegetables. Added to these, its relative high yields; ability to stay underground after maturity for long periods give cassava considerable advantage as a commodity that is being used by poor rural folks in the community, to fight poverty. It plays a major role in efforts to alleviate the food crisis because of its efficient production of food energy, year-round availability, tolerance to extreme stress conditions, and suitability to present farming and food systems in Africa. Improvement of cassava processing and utilization techniques would greatly increase labor efficiency, incomes, and living standards of cassava farmers and the rural poor, as well as enhance the-shelf life of products, facilitate their transportation, increase marketing opportunities, and help improve human and livestock nutrition. This paper presents a general overview of crude ways in cassava processing and utilization methods now used by subsistence and small-scale farmers in Ngwo village of the North West region in Cameroon, and examine the opportunities of improving processing technologies. Cassava needs processing because the roots cannot be stored for long because they rot within 3-4 days of harvest. They are bulky with about 70% moisture content, and therefore transportation of the tubers to markets is difficult and expensive. The roots and leaves contain varying amounts of cyanide which is toxic to humans and animals, while the raw cassava roots and uncooked leaves are not palatable. Therefore, cassava must be processed into various forms in order to increase the shelf life of the products, facilitate transportation and marketing, reduce cyanide content and improve palatability.

Keywords: cassava roots, crude ways, food system, poverty

Procedia PDF Downloads 158
181 A Research on the Effect of Soil-Structure Interaction on the Dynamic Response of Symmetrical Reinforced Concrete Buildings

Authors: Adinew Gebremeskel Tizazu

Abstract:

The effect of soil-structure interaction on the dynamic response of reinforced concrete buildings of regular and symmetrical geometry are considered in this study. The structures are presumed to be generally embedded in a homogenous soil formation underlain by very stiff material or bedrock. The structure-foundation–soil system is excited at the base by an earthquake ground motion. The superstructure is idealized as a system with lumped masses concentrated at the floor levels, and coupled with the substructure. The substructure system, which comprises of the foundation and soil, is represented, and replaced by springs and dashpots. Frequency-dependent impedances of the foundation system are incorporated in the discrete model in terms of the springs and dashpots coefficients. The excitation applied to the model is field ground motions of actual earthquake records. Modal superposition principle is employed to transform the equations of motion in geometrical coordinates to modal coordinates. However, the modal equations remain coupled with respect to damping terms due to the difference in damping mechanisms of the superstructure and the soil. Hence, proportional damping for the coupled structural system may not be assumed. An iterative approach is adopted and programmed to solve the system of coupled equations of motion in modal coordinates to obtain the displacement responses of the system. Parametric studies for responses of building structures with regular and symmetric plans of different structural properties and heights are made for fixed and flexible base conditions, for different soil conditions encountered in Addis Ababa. The displacement, base shear and base overturning moments are used in the comparison of different types of structures for various foundation embedment depths, site conditions and height of structures. These values are compared against those of fixed base structure. The study shows that the flexible base structures, generally exhibit different responses from those structures with fixed base. Basically, the natural circular frequencies, the base shears and the inter-story displacements for the flexible base are less than those of the fixed base structures. This trend is particularly evident when the flexible soil has large thickness. In contrast, the trend becomes less predictable, when the thickness of the flexible soil decreases. Moreover, in the latter case, the iteration undulates significantly making the prediction difficult. This is attributed to the highly jagged nature of the impedance functions of frequencies for such formations. In this case, it is difficult to conclude whether the conventional fixed-base approach yields conservative design forces, as is the case for soil formations of large thickness.

Keywords: effect of soil structure, dynamic response corroborated, the modal superposition principle, parametric studies

Procedia PDF Downloads 9