Search results for: artificial stock market
4430 Impact of Organic Farming on Soil Fertility and Microbial Activity
Authors: Menuka Maharjan
Abstract:
In the name of food security, agriculture intensification through conventional farming is being implemented in Nepal. Government focus on increasing agriculture production completely ignores soil as well human health. This leads to create serious soil degradation, i.e., reduction of soil fertility and microbial activity and health hazard in the country. On this note, organic farming is sustainable agriculture approach which can address challenge of sustaining food security while protecting the environment. This creates a win-win situation both for people and the environment. However, people have limited knowledge on significance of organic farming for environment conservation and food security especially developing countries like Nepal. Thus, the objective of the study was to assess the impacts of organic farming on soil fertility and microbial activity compared to conventional farming and forest in Chitwan, Nepal. Total soil organic carbon (C) was highest in organic farming (24 mg C g⁻¹ soil) followed by conventional farming (15 mg C g⁻¹ soil) and forest (9 mg C g⁻¹ soil) in the topsoil layer (0-10 cm depth). A similar trend was found for total nitrogen (N) content in all three land uses with organic farming soil possessing the highest total N content in both 0-10 cm and 10-20 cm depth. Microbial biomass C and N were also highest under organic farming, especially in the topsoil layer (350 and 46 mg g⁻¹ soil, respectively). Similarly, microbial biomass phosphorus (P) was higher (3.6 and 1.0 mg P kg⁻¹ at 0-10 and 10-20 cm depth, respectively) in organic farming compared to conventional farming and forest at both depths. However, conventional farming and forest soils had similar microbial biomass (C, N, and P) content. After conversion of forest, the P stock significantly increased by 373% and 170% in soil under organic farming at 0-10 and 10-20 cm depth, respectively. In conventional farming, the P stock increased by 64% and 36% at 0-10 cm and 10-20 cm depth, respectively, compared to forest. Overall, organic farming practices, i.e., crop rotation, residue input and farmyard manure application, significantly alters soil fertility and microbial activity. Organic farming system is emerging as a sustainable land use system which can address the issues of food security and environment conservation by increasing sustainable agriculture production and carbon sequestration, respectively, supporting to achieve goals of sustainable development.Keywords: organic farming, soil fertility, micobial biomas, food security
Procedia PDF Downloads 1764429 Best Responses for the Dynamic Model of Hotel Room Rate
Authors: Xuan Tran
Abstract:
The purpose of this paper is to present a comprehensive dynamic model for pricing strategies in the hotel competition to find a win-win situation for the competitive set. By utilizing the Cobb-Douglas utility model, the study establishes room rates by analyzing the price elasticity of demand across a competitive set of four hotels, with a focus on occupancy rates. To further enhance the analysis, game theory is applied to identify the best response for each competitive party, which illustrates the optimal pricing strategy for each hotel in the competitive landscape. This approach offers valuable insights into how hotels can strategically adjust their room rates in response to market conditions and competitor actions. The primary contributions of this research include as follows: (1) advantages for both individual hotels and the broader competitive hotel market, (2) benefits for hotel management overseeing multiple brands, and (3) positive impacts on the local community.Keywords: dynamic model, game theory, best response, Cobb-Douglas
Procedia PDF Downloads 224428 The Emerging Multi-Species Trap Fishery in the Red Sea Waters of Saudi Arabia
Authors: Nabeel M. Alikunhi, Zenon B. Batang, Aymen Charef, Abdulaziz M. Al-Suwailem
Abstract:
Saudi Arabia has a long history of using traps as a traditional fishing gear for catching commercially important demersal, mainly coral reef-associated fish species. Fish traps constitute the dominant small-scale fisheries in Saudi waters of Arabian Gulf (eastern seaboard of Saudi Arabia). Recently, however, traps have been increasingly used along the Saudi Red Sea coast (western seaboard), with a coastline of 1800 km (71%) compared to only 720 km (29%) in the Saudi Gulf region. The production trend for traps indicates a recent increase in catches and percent contribution to traditional fishery landings, thus ascertaining the rapid proliferation of trap fishing along the Saudi Red Sea coast. Reef-associated fish species, mainly groupers (Serranidae), emperors (Lethrinidae), parrotfishes (Scaridae), scads and trevallies (Carangidae), and snappers (Lutjanidae), dominate the trap catches, reflecting the reef-dominated shelf zone in the Red Sea. This ongoing investigation covers following major objectives (i) Baseline studies to characterize trap fishery through landing site visit and interview surveys (ii) Stock assessment by fisheries and biological data obtained through monthly landing site monitoring using fishery operational model by FLBEIA, (iii) Operational impacts, derelict traps assessment and by-catch analysis through bottom-mounted video camera and onboard monitoring (iv) Elucidation of fishing grounds and derelict traps impacts by onboard monitoring, Remotely Operated underwater Vehicle and Autonomous Underwater Vehicle surveys; and (v) Analysis of gear design and operations which covers colonization and deterioration experiments. The progress of this investigation on the impacts of the trap fishery on fish stocks and the marine environment in the Saudi Red Sea region is presented.Keywords: red sea, Saudi Arabia, fish trap, stock assessment, environmental impacts
Procedia PDF Downloads 3504427 A Study of Behavioral Phenomena Using an Artificial Neural Network
Authors: Yudhajit Datta
Abstract:
Will is a phenomenon that has puzzled humanity for a long time. It is a belief that Will Power of an individual affects the success achieved by an individual in life. It is thought that a person endowed with great will power can overcome even the most crippling setbacks of life while a person with a weak will cannot make the most of life even the greatest assets. Behavioral aspects of the human experience such as will are rarely subjected to quantitative study owing to the numerous uncontrollable parameters involved. This work is an attempt to subject the phenomena of will to the test of an artificial neural network. The claim being tested is that will power of an individual largely determines success achieved in life. In the study, an attempt is made to incorporate the behavioral phenomenon of will into a computational model using data pertaining to the success of individuals obtained from an experiment. A neural network is to be trained using data based upon part of the model, and subsequently used to make predictions regarding will corresponding to data points of success. If the prediction is in agreement with the model values, the model is to be retained as a candidate. Ultimately, the best-fit model from among the many different candidates is to be selected, and used for studying the correlation between success and will.Keywords: will power, will, success, apathy factor, random factor, characteristic function, life story
Procedia PDF Downloads 3794426 In vitro Evaluation of Prebiotic Potential of Wheat Germ
Authors: Lígia Pimentel, Miguel Pereira, Manuela Pintado
Abstract:
Wheat germ is a by-product of wheat flour refining. Despite this by-product being a source of proteins, lipids, fibres and complex carbohydrates, and consequently a valuable ingredient to be used in Food Industry, only few applications have been studied. The main goal of this study was to assess the potential prebiotic effect of natural wheat germ. The prebiotic potential was evaluated by in vitro assays with individual microbial strains (Lactobacillus paracasei L26 and Lactobacillus casei L431). A simulated model of the gastrointestinal digestion was also used including the conditions present in the mouth (artificial saliva), oesophagus–stomach (artificial gastric juice), duodenum (artificial intestinal juice) and ileum. The effect of natural wheat germ and wheat germ after digestion on the growth of lactic acid bacteria was studied by growing those microorganisms in de Man, Rogosa and Sharpe (MRS) broth (with 2% wheat germ and 1% wheat germ after digestion) and incubating at 37 ºC for 48 h with stirring. A negative control consisting of MRS broth without glucose was used and the substrate was also compared to a commercial prebiotic fructooligosaccharides (FOS). Samples were taken at 0, 3, 6, 9, 12, 24 and 48 h for bacterial cell counts (CFU/mL) and pH measurement. Results obtained showed that wheat germ has a stimulatory effect on the bacteria tested, presenting similar (or even higher) results to FOS, when comparing to the culture medium without glucose. This was demonstrated by the viable cell counts and also by the decrease on the medium pH. Both L. paracasei L26 and L. casei L431 could use these compounds as a substitute for glucose with an enhancement of growth. In conclusion, we have shown that wheat germ stimulate the growth of probiotic lactic acid bacteria. In order to understand if the composition of gut bacteria is altered and if wheat germ could be used as potential prebiotic, further studies including faecal fermentations should be carried out. Nevertheless, wheat germ seems to have potential to be a valuable compound to be used in Food Industry, mainly in the Bakery Industry.Keywords: by-products, functional ingredients, prebiotic potential, wheat germ
Procedia PDF Downloads 4874425 Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier
Authors: Amit Verma, Simranjeet Kaur, Sandeep Kaur
Abstract:
Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases.Keywords: test case prioritization, classification, artificial neural networks, TF-IDF
Procedia PDF Downloads 3974424 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 3324423 Latency-Based Motion Detection in Spiking Neural Networks
Authors: Mohammad Saleh Vahdatpour, Yanqing Zhang
Abstract:
Understanding the neural mechanisms underlying motion detection in the human visual system has long been a fascinating challenge in neuroscience and artificial intelligence. This paper presents a spiking neural network model inspired by the processing of motion information in the primate visual system, particularly focusing on the Middle Temporal (MT) area. In our study, we propose a multi-layer spiking neural network model to perform motion detection tasks, leveraging the idea that synaptic delays in neuronal communication are pivotal in motion perception. Synaptic delay, determined by factors like axon length and myelin insulation, affects the temporal order of input spikes, thereby encoding motion direction and speed. Overall, our spiking neural network model demonstrates the feasibility of capturing motion detection principles observed in the primate visual system. The combination of synaptic delays, learning mechanisms, and shared weights and delays in SMD provides a promising framework for motion perception in artificial systems, with potential applications in computer vision and robotics.Keywords: neural network, motion detection, signature detection, convolutional neural network
Procedia PDF Downloads 874422 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms
Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama
Abstract:
Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.Keywords: machine learning, ChatGPT, education, learning, implications
Procedia PDF Downloads 2324421 Artificial Neural Network Regression Modelling of GC/MS Retention of Terpenes Present in Satureja montana Extracts Obtained by Supercritical Carbon Dioxide
Authors: Strahinja Kovačević, Jelena Vladić, Senka Vidović, Zoran Zeković, Lidija Jevrić, Sanja Podunavac Kuzmanović
Abstract:
Supercritical extracts of highly valuated medicinal plant Satureja montana were prepared by application of supercritical carbon dioxide extraction in the carbon dioxide pressure range from 125 to 350 bar and temperature range from 40 to 60°C. Using GC/MS method of analysis chemical profiles (aromatic constituents) of S. montana extracts were obtained. Self-training artificial neural networks were applied to predict the retention time of the analyzed terpenes in GC/MS system. The best ANN model obtained was multilayer perceptron (MLP 11-11-1). Hidden activation was tanh and output activation was identity with Broyden–Fletcher–Goldfarb–Shanno training algorithm. Correlation measures of the obtained network were the following: R(training) = 0.9975, R(test) = 0.9971 and R(validation) = 0.9999. The comparison of the experimental and predicted retention times of the analyzed compounds showed very high correlation (R = 0.9913) and significant predictive power of the established neural network.Keywords: ANN regression, GC/MS, Satureja montana, terpenes
Procedia PDF Downloads 4524420 The Role of Disturbed Dry Afromontane Forest of Ethiopia for Biodiversity Conservation and Carbon Storage
Authors: Mindaye Teshome, Nesibu Yahya, Carlos Moreira Miquelino Eleto Torres, Pedro Manuel Villaa, Mehari Alebachew
Abstract:
Arbagugu forest is one of the remnant dry Afromontane forests under severe anthropogenic disturbances in central Ethiopia. Despite this fact, up-to-date information is lacking about the status of the forest and its role in climate change mitigation. In this study, we evaluated the woody species composition, structure, biomass, and carbon stock in this forest. We employed a systematic random sampling design and established fifty-three sample plots (20 × 100 m) to collect the vegetation data. A total of 37 woody species belonging to 25 families were recorded. The density of seedlings, saplings, and matured trees were 1174, 101, and 84 stems ha-1, respectively. The total basal area of trees with DBH (diameter at breast height) ≥ 2 cm was 21.3 m2 ha-1. The characteristic trees of dry Afromontane Forest such as Podocarpus falcatus, Juniperus procera, and Olea europaea subsp. cuspidata exhibited a fair regeneration status. On the contrary, the least abundant species Lepidotrichilia volkensii, Canthium oligocarpum, Dovyalis verrucosa, Calpurnia aurea, and Maesa lanceolata exhibited good regeneration status. Some tree species such as Polyscias fulva, Schefflera abyssinica, Erythrina brucei, and Apodytes dimidiata lack regeneration. The total carbon stored in the forest ranged between 6.3 Mg C ha-1 and 835.6 Mg C ha-1. This value is equivalent to 639.6 Mg C ha-1. The forest had a very low number of woody species composition and diversity. The regeneration study also revealed that a significant number of tree species had unsatisfactory regeneration status. Besides, the forest had a lower carbon stock density compared with other dry Afromontane forests. This implies the urgent need for forest conservation and restoration activities by the local government, conservation practitioners, and other concerned bodies to maintain the forest and sustain the various ecosystem goods and services provided by the Arbagugu forest.Keywords: aboveground biomass, forest regeneration, climate change, biodiversity conservation, restoration
Procedia PDF Downloads 1104419 Strategic Orientation of Islamic Banks: A Review of Strategy Language
Authors: Imam Uddin, Imtiaz Ahmed Memon
Abstract:
This paper analyzes the ideological contextuality of market oriented strategy language used by Industry leaders to envision the future of Islamic financial Institutions (IFIs) in the light of Wittgenstein language-games and Foucault’s power-discourse framework. The analysis infers that the explicit market orientation of strategy language and modern knowledge of finance now defines various concepts related of Islamic finance, let alone Islamic finance theory itself. Theorizing and practicing Islamic finance therefore under the dominant influence of modern strategy discourse and modern knowledge of finance has significant implications for developing an ethical and spiritual orientation of Islamic banks. The concerned academia and scholarship therefore need to review such trends and work around the possible degradation to the public image of IFIs and resulting disappointments of religiously inspired customers.Keywords: Islamic finance discourse, strategy discourse, language games, strategic intent, productive misunderstanding
Procedia PDF Downloads 4074418 Maximizing Giant Prawn Resource Utilization in Banjar Regency, Indonesia: A CPUE and MSY Analysis
Authors: Ahmadi, Iriansyah, Raihana Yahman
Abstract:
The giant freshwater prawn (Macrobrachium rosenbergii de Man, 1879) is a valuable species for fisheries and aquaculture, especially in Southeast Asia, including Indonesia due to their high market demand and potential for export. The growing demand for prawns is straining the sustainability of the Banjar Regency fishery. To ensure the long-term sustainability and economic viability of the prawn fishing in this region, it is imperative to implement evidence-based management practices. This requires comprehensive data on the Catch per Unit Effort (CPUE), Maximum Sustainable Yield (MSY) and the current rate of prawn resource exploitation. it analyzed five years of prawn catch data (2019-2023) obtained from South Kalimantan Marine and Fisheries Services. Fishing gears (e.g. hook & line and cast net) were first standardized with Fishing Power Index, and then calculated effort and MSY. The intercept (a) and the slope (b) values of regression curve were used to estimate the catch-maximum sustainable yield (CMSY) and optimal fishing effort (Fopt) levels within the framework of the Surplus Production Model. The estimated rates of resource utilization were then compared to the criteria of The National Commission of Marine Fish Stock Assessment. The findings showed that the CPUE value peaked in 2019 at 33.48 kg/trip, while the lowest value observed in 2022 at 5.12 kg/trip. The CMSY value was estimated to be 17,396 kg/year, corresponding to the Fopt level of 1,636 trips/year. The highest utilization rate was 56.90% recorded in 2020, while the lowest rate was observed in 2021 at 46.16%. The annual utilization rates were classified as “medium”, suggesting that increasing fishing effort by 45% could potentially maximize prawn catches at an optimum level. These findings provide a baseline for sustainable fisheries management in the region.Keywords: giant prawns, CPUE, fishing power index, sustainable potential, utilization rate
Procedia PDF Downloads 164417 Conceptualization of Value Co-Creation for Shrimp Products in Bangladesh
Authors: Subarna Ferdous, Mitsuru Ikeda
Abstract:
For the shrimp companies to remain relevant to its local and international consumers, they must offer new shrimp product and services. It must work actively not just to create value for the consumer, but to involve the consumer in co-creating value for shrimp product innovation in the market. In this theoretical work, we conceptualize the business concept of value co-creation in the context of shrimp products, and propose a framework of value co-creation for shrimp product innovation in shrimp industries. With guidance on value co-creation in in shrimp industry, and shrimp value chain actors mapped to the co-creation cycle, companies can use the framework to offer new shrimp product to consumer communities. Although customer co-creation is known approach in the world, it is not commonly used by the companies in Bangladesh. This paper makes an original contribution by conceptualizing co-creation and set the examples of best co-creation practices in food sector. The results of the study provide management with guidelines for successful co-creation projects with an innovation- and market-oriented approach. The framework also provides a basis for further research in this area.Keywords: bangladesh, shrimp industry, value co-creation, shrimp product
Procedia PDF Downloads 5144416 Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, NDT, artificial defect, ultrasonic testing
Procedia PDF Downloads 4754415 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts
Authors: Akhila Potluru
Abstract:
Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.Keywords: artificial intelligence, machine learning, transboundary water conflict, water management
Procedia PDF Downloads 1054414 A Guide to User-Friendly Bash Prompt: Adding Natural Language Processing Plus Bash Explanation to the Command Interface
Authors: Teh Kean Kheng, Low Soon Yee, Burra Venkata Durga Kumar
Abstract:
In 2022, as the future world becomes increasingly computer-related, more individuals are attempting to study coding for themselves or in school. This is because they have discovered the value of learning code and the benefits it will provide them. But learning coding is difficult for most people. Even senior programmers that have experience for a decade year still need help from the online source while coding. The reason causing this is that coding is not like talking to other people; it has the specific syntax to make the computer understand what we want it to do, so coding will be hard for normal people if they don’t have contact in this field before. Coding is hard. If a user wants to learn bash code with bash prompt, it will be harder because if we look at the bash prompt, we will find that it is just an empty box and waiting for a user to tell the computer what we want to do, if we don’t refer to the internet, we will not know what we can do with the prompt. From here, we can conclude that the bash prompt is not user-friendly for new users who are learning bash code. Our goal in writing this paper is to give an idea to implement a user-friendly Bash prompt in Ubuntu OS using Artificial Intelligent (AI) to lower the threshold of learning in Bash code, to make the user use their own words and concept to write and learn Bash code.Keywords: user-friendly, bash code, artificial intelligence, threshold, semantic similarity, lexical similarity
Procedia PDF Downloads 1424413 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques
Authors: Kouzi Katia
Abstract:
This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table
Procedia PDF Downloads 3454412 The Pricing-Out Phenomenon in the U.S. Housing Market
Authors: Francesco Berald, Yunhui Zhao
Abstract:
The COVID-19 pandemic further extended the multi-year housing boom in advanced economies and emerging markets alike against massive monetary easing during the pandemic. In this paper, we analyze the pricing-out phenomenon in the U.S. residential housing market due to higher house prices associated with monetary easing. We first set up a stylized general equilibrium model and show that although monetary easing decreases the mortgage payment burden, it would raise house prices and lower housing affordability for first-time homebuyers (through the initial housing wealth channel and the liquidity constraint channel that increases repeat buyers’ housing demand), and increase housing wealth inequality between first-time and repeat homebuyers. We then use the U.S. household-level data to quantify the effect of the house price change on housing affordability relative to that of the interest rate change. We find evidence of the pricing-out effect for all homebuyers; moreover, we find that the pricing-out effect is stronger for first-time homebuyers than for repeat homebuyers. The paper highlights the importance of accounting for general equilibrium effects and distributional implications of monetary policy while assessing housing affordability. It also calls for complementing monetary easing with well-targeted policy measures that can boost housing affordability, particularly for first-time and lower-income households. Such measures are also needed during aggressive monetary tightening, given that the fall in house prices may be insufficient or too slow to fully offset the immediate adverse impact of higher rates on housing affordability.Keywords: pricing-out, U.S. housing market, housing affordability, distributional effects, monetary policy
Procedia PDF Downloads 344411 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting
Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas
Abstract:
The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation
Procedia PDF Downloads 2454410 The Mediating Role of Artificial Intelligence (AI) Driven Customer Experience in the Relationship Between AI Voice Assistants and Brand Usage Continuance
Authors: George Cudjoe Agbemabiese, John Paul Kosiba, Michael Boadi Nyamekye, Vanessa Narkie Tetteh, Caleb Nunoo, Mohammed Muniru Husseini
Abstract:
The smartphone industry continues to experience massive growth, evidenced by expanding markets and an increasing number of brands, models and manufacturers. As technology advances rapidly, manufacturers of smartphones are consistently introducing new innovations to keep up with the latest evolving industry trends and customer demand for more modern devices. This study aimed to assess the influence of artificial intelligence (AI) voice assistant (VA) on improving customer experience, resulting in the continuous use of mobile brands. Specifically, this article assesses the role of hedonic, utilitarian, and social benefits provided by AIVA on customer experience and the continuance intention to use mobile phone brands. Using a primary data collection instrument, the quantitative approach was adopted to examine the study's variables. Data from 348 valid responses were used for the analysis based on structural equation modeling (SEM) with AMOS version 23. Three main factors were identified to influence customer experience, which results in continuous usage of mobile phone brands. These factors are social benefits, hedonic benefits, and utilitarian benefits. In conclusion, a significant and positive relationship exists between the factors influencing customer experience for continuous usage of mobile phone brands. The study concludes that mobile brands that invest in delivering positive user experiences are in a better position to improve usage and increase preference for their brands. The study recommends that mobile brands consider and research their prospects' and customers' social, hedonic, and utilitarian needs to provide them with desired products and experiences.Keywords: artificial intelligence, continuance usage, customer experience, smartphone industry
Procedia PDF Downloads 804409 Integrating AI into Breast Cancer Diagnosis: Aligning Perspectives for Effective Clinical Practice
Authors: Mehrnaz Mostafavi, Mahtab Shabani, Alireza Azani, Fatemeh Ghafari
Abstract:
Artificial intelligence (AI) can transform breast cancer diagnosis and therapy by providing sophisticated solutions for screening, imaging interpretation, histopathological analysis, and treatment planning. This literature review digs into the many uses of AI in breast cancer treatment, highlighting the need for collaboration between AI scientists and healthcare practitioners. It emphasizes advances in AI-driven breast imaging interpretation, such as computer-aided detection and diagnosis (CADe/CADx) systems and deep learning algorithms. These have shown significant potential for improving diagnostic accuracy and lowering radiologists' workloads. Furthermore, AI approaches such as deep learning have been used in histopathological research to accurately predict hormone receptor status and categorize tumor-associated stroma from regular H&E stains. These AI-powered approaches simplify diagnostic procedures while providing insights into tumor biology and prognosis. As AI becomes more embedded in breast cancer care, it is crucial to ensure its ethical, efficient, and patient-focused implementation to improve outcomes for breast cancer patients ultimately.Keywords: breast cancer, artificial intelligence, cancer diagnosis, clinical practice
Procedia PDF Downloads 694408 Halal Authentication for Some Product Collected from Jordanian Market Using Real-Time PCR
Authors: Omar S. Sharaf
Abstract:
The mitochondrial 12s rRNA (mt-12s rDNA) gene for pig-specific was developed to detect material from pork species in different products collected from Jordanian market. The amplification PCR products of 359 bp and 531 bp were successfully amplified from the cyt b gene of pig the amplification product using mt-12S rDNA gene were successfully produced a single band with a molecular size of 456 bp. In the present work, the PCR amplification of mtDNA of cytochrome b has been shown as a suitable tool for rapid detection of pig DNA. 100 samples from different dairy, gelatin and chocolate based products and 50 samples from baby food formula were collected and tested to a presence of any pig derivatives. It was found that 10% of chocolate based products, 12% of gelatin and 56% from dairy products and 5.2% from baby food formula showed single band from mt-12S rDNA gene.Keywords: halal food, baby infant formula, chocolate based products, PCR, Jordan
Procedia PDF Downloads 5344407 Investigation of the Level of Physical and Mental Health of Patients Undergoing in Chronic or Transient Hemodialysis at Artificial Kidney Unit
Authors: Styliani Kotrotsiou, Evagelia Kotrotsiou, Fani Mokia, Theodosis Paralikas, Konstantinos Tsaras
Abstract:
Objective: The objective of this study was the investigation of the mental health of patients undergoing chronic or transient hemodialysis at Artificial Kidney Unit, as well as its relationship to the demographic characteristic of patients. Material and Method: The study took place in Larisa during the month of December in 2016 and the sample was composed of 60 patients undergoing in chronic or transient hemodialysis at Artificial Kidney Unit of the University General Hospital of Larisa. For the investigation of the physical and mental health of patients who participated in the study, the tool measurement << General Health Questionnaire- 28 >> (GHQ-28) was used. The questionnaires were administered with the interview method during the hemodialysis. This survey is designed for the existence or not of a mental disorder. It examines four factors (physical symptoms, anxiety, social dysfunction and depression). Results: The hemodialysis patients gave the following scores: -to the physical symptoms, women showed a higher average value than men (1,16 ± 1,26 against 0,49 ± 0,93), -at the anxiety scale, it seems that women are superior to men (1,68 ± 1,20 against 0,90 ± 1,22), -at the social dysfunction scale, the elderly patients ( > 65 years old) were presented a with higher average (2,59), and -at the depression scale, patients with a higher average value were those who lived in non-urban areas. The appearance of mental disorder, in relation to patient characteristics, did not show significant statistical correlation. The sex, the age and the place of residence affect more the assessment of mental health, while education did not seem to have any significant effect on the other. Conclusions: The hemodialysis process can significantly affect the patient’s Quality of Life and it can bring adverse changes in lifestyle, affecting the physical, social and psychological state of the individual. For that reason, hemodialysis should be aimed not only at extending life but in upgrading the Quality of Life.Keywords: hemodialysis, chronic kidney disease, depression, social dysfunction, physical condition
Procedia PDF Downloads 1644406 A Platform for Managing Residents' Carbon Trajectories Based on the City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xuerui, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
Climate change is a global problem facing humanity and this is now the consensus of the mainstream scientific community. In accordance with the carbon peak and carbon neutral targets and visions set out in the United Nations Framework Convention on Climate Change, the Kyoto Protocol and the Paris Agreement, this project uses the City Intelligent Model (CIM) and Artificial Intelligence Machine Vision (ICR) as the core technologies to accurately quantify low carbon behaviour into green corn, which is a means of guiding ecologically sustainable living patterns. Using individual communities as management units and blockchain as a guarantee of fairness in the whole cycle of green currency circulation, the project will form a modern resident carbon track management system based on the principle of enhancing the ecological resilience of communities and the cohesiveness of community residents, ultimately forming an ecologically sustainable smart village that can be self-organised and managed.Keywords: urban planning, urban governance, CIM, artificial Intelligence, sustainable development
Procedia PDF Downloads 834405 Combining a Continuum of Hidden Regimes and a Heteroskedastic Three-Factor Model in Option Pricing
Authors: Rachid Belhachemi, Pierre Rostan, Alexandra Rostan
Abstract:
This paper develops a discrete-time option pricing model for index options. The model consists of two key ingredients. First, daily stock return innovations are driven by a continuous hidden threshold mixed skew-normal (HTSN) distribution which generates conditional non-normality that is needed to fit daily index return. The most important feature of the HTSN is the inclusion of a latent state variable with a continuum of states, unlike the traditional mixture distributions where the state variable is discrete with little number of states. The HTSN distribution belongs to the class of univariate probability distributions where parameters of the distribution capture the dependence between the variable of interest and the continuous latent state variable (the regime). The distribution has an interpretation in terms of a mixture distribution with time-varying mixing probabilities. It has been shown empirically that this distribution outperforms its main competitor, the mixed normal (MN) distribution, in terms of capturing the stylized facts known for stock returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence. Second, heteroscedasticity in the model is captured by a threeexogenous-factor GARCH model (GARCHX), where the factors are taken from the principal components analysis of various world indices and presents an application to option pricing. The factors of the GARCHX model are extracted from a matrix of world indices applying principal component analysis (PCA). The empirically determined factors are uncorrelated and represent truly different common components driving the returns. Both factors and the eight parameters inherent to the HTSN distribution aim at capturing the impact of the state of the economy on price levels since distribution parameters have economic interpretations in terms of conditional volatilities and correlations of the returns with the hidden continuous state. The PCA identifies statistically independent factors affecting the random evolution of a given pool of assets -in our paper a pool of international stock indices- and sorting them by order of relative importance. The PCA computes a historical cross asset covariance matrix and identifies principal components representing independent factors. In our paper, factors are used to calibrate the HTSN-GARCHX model and are ultimately responsible for the nature of the distribution of random variables being generated. We benchmark our model to the MN-GARCHX model following the same PCA methodology and the standard Black-Scholes model. We show that our model outperforms the benchmark in terms of RMSE in dollar losses for put and call options, which in turn outperforms the analytical Black-Scholes by capturing the stylized facts known for index returns, namely, volatility clustering, leverage effect, skewness, kurtosis and regime dependence.Keywords: continuous hidden threshold, factor models, GARCHX models, option pricing, risk-premium
Procedia PDF Downloads 2974404 The Actuation of Semicrystalline Poly(Vinylidene Fluoride) Tie Molecules: A Computational and Experimental Study
Authors: Abas Mohsenzadeh, Tariq Bashir, Waseen Tahir, Ulf Stigh, Mikael Skrifvars, Kim Bolton
Abstract:
The area of artificial muscles has received significant attention from many research domains including soft robotics, biomechanics and smart textiles in recent years. Poly(vinylidene fluoride) (PVDF) has been used to form artificial muscles since it contracts upon heating when under load. In this study, PVDF fibers were produced by melt spinning technique at different solid state draw ratios and then actuation mechanism for PVDF tie molecules within the semicrystalline region of PVDF polymer has been investigated using molecular dynamics simulations. Tie molecules are polymer chains that link two (or more) crystalline regions in semicrystalline polymers. The changes in fiber length upon heating have been investigated using a novel simulation technique. The results show that conformational changes of the tie molecules from the longer all-trans conformation at low temperature (β structure) to the shorter conformation (α structure) at higher temperature accrue by increasing the temperature. These results may be applied to understand the actuation observed for PVDF upon heating.Keywords: poly(vinylidene fluoride), molecular dynamics, simulation, actuators, tie molecules, semicrystalline
Procedia PDF Downloads 3084403 The Senior Traveler Market as a Competitive Advantage for the Luxury Hotel Sector in the UK Post-Pandemic
Authors: Feyi Olorunshola
Abstract:
Over the last few years, the senior travel market has been noted for its potential in the wider tourism industry. The tourism sector includes the hotel and hospitality, travel, transportation, and several other subdivisions to make it economically viable. In particular, the hotel attracts a substantial part of the expenditure in tourism activities as when people plan to travel, suitable accommodation for relaxation, dining, entertainment and so on is paramount to their decision-making. The global retail value of the hotel as of 2018 was significant for tourism. But, despite indications of the hotel to the tourism industry at large, very few empirical studies are available to establish how this sector can leverage on the senior demographic to achieve competitive advantage. Predominantly, studies on the mature market have focused on destination tourism, with a limited investigation on the hotel which makes a significant contribution to tourism. Also, several scholarly studies have demonstrated the importance of the senior travel market to the hotel, yet there is very little empirical research in the field which has explored the driving factors that will become the accepted new normal for this niche segment post-pandemic. Giving that the hotel already operates in a highly saturated business environment, and on top of this pre-existing challenge, the ongoing global health outbreak has further put the sector in a vulnerable position. Therefore, the hotel especially the full-service luxury category must evolve rapidly for it to survive in the current business environment. The hotel can no longer rely on corporate travelers to generate higher revenue since the unprecedented wake of the pandemic in 2020 many organizations have invented a different approach of conducting their businesses online, therefore, the hotel needs to anticipate a significant drop in business travellers. However, the rooms and the rest of the facilities must be occupied to keep their business operating. The way forward for the hotel lies in the leisure sector, but the question now is to focus on the potential demographics of travelers, in this case, the seniors who have been repeatedly recognized as the lucrative market because of increase discretionary income, availability of time and the global population trends. To achieve the study objectives, a mixed-method approach will be utilized drawing on both qualitative (netnography) and quantitative (survey) methods, cognitive and decision-making theories (means-end chain) and competitive theories to identify the salient drivers explaining senior hotel choice and its influence on their decision-making. The target population are repeated seniors’ age 65 years and over who are UK resident, and from the top tourist market to the UK (USA, Germany, and France). Structural equation modelling will be employed to analyze the datasets. The theoretical implication is the development of new concepts using a robust research design, and as well as advancing existing framework to hotel study. Practically, it will provide the hotel management with the latest information to design a competitive marketing strategy and activities to target the mature market post-pandemic and over a long period.Keywords: competitive advantage, covid-19, full-service hotel, five-star, luxury hotels
Procedia PDF Downloads 1224402 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study
Authors: Si Mon Kueh, Tom J. Kazmierski
Abstract:
There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)
Procedia PDF Downloads 3214401 Exploring Behavioural Biases among Indian Investors: A Qualitative Inquiry
Authors: Satish Kumar, Nisha Goyal
Abstract:
In the stock market, individual investors exhibit different kinds of behaviour. Traditional finance is built on the notion of 'homo economics', which states that humans always make perfectly rational choices to maximize their wealth and minimize risk. That is, traditional finance has concern for how investors should behave rather than how actual investors are behaving. Behavioural finance provides the explanation for this phenomenon. Although finance has been studied for thousands of years, behavioural finance is an emerging field that combines the behavioural or psychological aspects with conventional economic and financial theories to provide explanations on how emotions and cognitive factors influence investors’ behaviours. These emotions and cognitive factors are known as behavioural biases. Because of these biases, investors make irrational investment decisions. Besides, the emotional and cognitive factors, the social influence of media as well as friends, relatives and colleagues also affect investment decisions. Psychological factors influence individual investors’ investment decision making, but few studies have used qualitative methods to understand these factors. The aim of this study is to explore the behavioural factors or biases that affect individuals’ investment decision making. For the purpose of this exploratory study, an in-depth interview method was used because it provides much more exhaustive information and a relaxed atmosphere in which people feel more comfortable to provide information. Twenty investment advisors having a minimum 5 years’ experience in securities firms were interviewed. In this study, thematic content analysis was used to analyse interview transcripts. Thematic content analysis process involves analysis of transcripts, coding and identification of themes from data. Based on the analysis we categorized the statements of advisors into various themes. Past market returns and volatility; preference for safe returns; tendency to believe they are better than others; tendency to divide their money into different accounts/assets; tendency to hold on to loss-making assets; preference to invest in familiar securities; tendency to believe that past events were predictable; tendency to rely on the reference point; tendency to rely on other sources of information; tendency to have regret for making past decisions; tendency to have more sensitivity towards losses than gains; tendency to rely on own skills; tendency to buy rising stocks with the expectation that this rise will continue etc. are some of the major concerns showed by experts about investors. The findings of the study revealed 13 biases such as overconfidence bias, disposition effect, familiarity bias, framing effect, anchoring bias, availability bias, self-attribution bias, representativeness, mental accounting, hindsight bias, regret aversion, loss aversion and herding bias/media biases present in Indian investors. These biases have a negative connotation because they produce a distortion in the calculation of an outcome. These biases are classified under three categories such as cognitive errors, emotional biases and social interaction. The findings of this study may assist both financial service providers and researchers to understand the various psychological biases of individual investors in investment decision making. Additionally, individual investors will also be aware of the behavioural biases that will aid them to make sensible and efficient investment decisions.Keywords: financial advisors, individual investors, investment decisions, psychological biases, qualitative thematic content analysis
Procedia PDF Downloads 169