Search results for: trees pruning
499 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis
Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan
Abstract:
We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.
Procedia PDF Downloads 139498 Improved FP-Growth Algorithm with Multiple Minimum Supports Using Maximum Constraints
Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam
Abstract:
Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FP-growth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.Keywords: association rules, FP-growth, multiple minimum supports, Weka tool
Procedia PDF Downloads 485497 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth
Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova
Abstract:
Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.Keywords: treeline, dynamic, climate, modeling
Procedia PDF Downloads 82496 Dynamic of an Invasive Insect Gut Microbiome When Facing to Abiotic Stress
Authors: Judith Mogouong, Philippe Constant, Robert Lavallee, Claude Guertin
Abstract:
The emerald ash borer (EAB) is an exotic wood borer insect native from China, which is associated with important environmental and economic damages in North America. Beetles are known to be vectors of microbial communities related to their adaptive capacities. It is now established that environmental stress factors may induce physiological events on the host trees, such as phytochemical changes. Consequently, that may affect the establishment comportment of herbivorous insect. Considering the number of insects collected on ash trees (insects’ density) as an abiotic factor related to stress damage, the aim of our study was to explore the dynamic of EAB gut microbial community genome (microbiome) when facing that factor and to monitor its diversity. Insects were trapped using specific green Lindgren© traps. A gradient of the captured insect population along the St. Lawrence River was used to create three levels of insects’ density (low, intermediate, and high). After dissection, total DNA extracted from insect guts of each level has been sent for amplicon sequencing of bacterial 16S rRNA gene and fungal ITS2 region. The composition of microbial communities among sample appeared largely diversified with the Simpson index significantly different across the three levels of density for bacteria. Add to that; bacteria were represented by seven phyla and twelve classes, whereas fungi were represented by two phyla and seven known classes. Using principal coordinate analysis (PCoA) based on Bray Curtis distances of 16S rRNA sequences, we observed a significant variation between the structure of the bacterial communities depending on insects’ density. Moreover, the analysis showed significant correlations between some bacterial taxa and the three classes of insects’ density. This study is the first to present a complete overview of the bacterial and fungal communities associated with the gut of EAB base on culture-independent methods, and to correlate those communities with a potential stress factor of the host trees.Keywords: gut microbiome, DNA, 16S rRNA sequences, emerald ash borer
Procedia PDF Downloads 403495 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 149494 The Role of Disturbed Dry Afromontane Forest of Ethiopia for Biodiversity Conservation and Carbon Storage
Authors: Mindaye Teshome, Nesibu Yahya, Carlos Moreira Miquelino Eleto Torres, Pedro Manuel Villaa, Mehari Alebachew
Abstract:
Arbagugu forest is one of the remnant dry Afromontane forests under severe anthropogenic disturbances in central Ethiopia. Despite this fact, up-to-date information is lacking about the status of the forest and its role in climate change mitigation. In this study, we evaluated the woody species composition, structure, biomass, and carbon stock in this forest. We employed a systematic random sampling design and established fifty-three sample plots (20 × 100 m) to collect the vegetation data. A total of 37 woody species belonging to 25 families were recorded. The density of seedlings, saplings, and matured trees were 1174, 101, and 84 stems ha-1, respectively. The total basal area of trees with DBH (diameter at breast height) ≥ 2 cm was 21.3 m2 ha-1. The characteristic trees of dry Afromontane Forest such as Podocarpus falcatus, Juniperus procera, and Olea europaea subsp. cuspidata exhibited a fair regeneration status. On the contrary, the least abundant species Lepidotrichilia volkensii, Canthium oligocarpum, Dovyalis verrucosa, Calpurnia aurea, and Maesa lanceolata exhibited good regeneration status. Some tree species such as Polyscias fulva, Schefflera abyssinica, Erythrina brucei, and Apodytes dimidiata lack regeneration. The total carbon stored in the forest ranged between 6.3 Mg C ha-1 and 835.6 Mg C ha-1. This value is equivalent to 639.6 Mg C ha-1. The forest had a very low number of woody species composition and diversity. The regeneration study also revealed that a significant number of tree species had unsatisfactory regeneration status. Besides, the forest had a lower carbon stock density compared with other dry Afromontane forests. This implies the urgent need for forest conservation and restoration activities by the local government, conservation practitioners, and other concerned bodies to maintain the forest and sustain the various ecosystem goods and services provided by the Arbagugu forest.Keywords: aboveground biomass, forest regeneration, climate change, biodiversity conservation, restoration
Procedia PDF Downloads 110493 A Critical Geography of Reforestation Program in Ghana
Authors: John Narh
Abstract:
There is high rate of deforestation in Ghana due to agricultural expansion, illegal mining and illegal logging. While it is attempting to address the illegalities, Ghana has also initiated a reforestation program known as the Modified Taungya System (MTS). Within the MTS framework, farmers are allocated degraded forestland and provided with tree seedlings to practice agroforestry until the trees form canopy. Yet, the political, ecological and economic models that inform the selection of tree species, the motivations of participating farmers as well as the factors that accounts for differential access to the land and performance of farmers engaged in the program lie underexplored. Using a sequential explanatory mixed methods approach in five forest-fringe communities in the Eastern Region of Ghana, the study reveals that economic factors and Ghana’s commitment to international conventions on the environment underpin the selection of tree species for the MTS program. Social network and access to remittances play critical roles in having access to, and enhances poor farmers’ chances in the program respectively. Farmers are more motivated by the access to degraded forestland to cultivate food crops than having a share in the trees that they plant. As such, in communities where participating farmers are not informed about their benefit in the tree that they plant, the program is largely unsuccessful.Keywords: translocality, deforestation, forest management, social network
Procedia PDF Downloads 97492 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements
Authors: Ebru Turgal, Beyza Doganay Erdogan
Abstract:
Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data
Procedia PDF Downloads 203491 Modelling and Management of Vegetal Pest Based On Case of Xylella Fastidiosa in Alicante
Authors: Maria Teresa Signes Pont, Jose Juan Cortes Plana
Abstract:
Our proposal provides suitable modelling to the spread of plant pest and particularly to the propagation of Xylella fastidiosa in the almond trees. We compared the impact of temperature and humidity on the propagation of Xylella fastidiosa in various subspecies. Comparison between Balearic Islands and Alicante (Spain). Most sharpshooter and spittlebug species showed peaks in population density during the month of higher mean temperature and relative humidity (April-October), except for the splittlebug Clastoptera sp.1, whose adult population peaked from September-October (late summer and early autumn). The critical season is from when they hatch from the eggs until they are in the pre-reproductive season (January -April) to expand. We focused on winters in the egg state, which normally hatches in early March. The nymphs secrete a foam (mucilage) in which they live and that protects them from natural enemies of temperature changes and prevents dry as long as the humidity is above 75%. The interaction between the life cycles of vectors and vegetation influences the food preferences of vectors and is responsible for the general seasonal shift of the population from vegetation to trees and vice versa, In addition to the temperature maps, we have observed humidity as it affects the spread of the pest Xylella fastidiosa (Xf).Keywords: xylella fastidiosa, almod tree, temperature, humidity, environmental model
Procedia PDF Downloads 175490 Conical Spouted Bed Combustor for Combustion of Vine Shoots Wastes
Authors: M. J. San José, S. Alvarez, R. López
Abstract:
In order to prove the applicability of a conical spouted bed combustor for the thermal exploitation of vineyard pruning wastes, the flow regimes of beds consisting of vine shoot beds and an inert bed were established under different operating conditions. The effect of inlet air temperature on the minimum spouted velocity was evaluated. Batch combustion of vine shoots in a conical spouted bed combustor was conducted at temperatures in the range 425-550 ºC with an inert bed. The experimental values of combustion efficiency of vine shoot calculated from the concentration the exhaust gases were assessed. The high experimental combustion efficiency obtained evidenced the proper suitability of the conical spouted bed combustor for the thermal combustion of vine shoots.Keywords: biomass wastes, thermal combustion, conical spouted beds, vineyard wastes
Procedia PDF Downloads 199489 Wood Diversity and Carbon Stock in Evergreen Forests in Cameroon: Case of the Ngambe-Ndom-Nyanon Communal Forest
Authors: Maffo Maffo Nicole Liliane, Mounmemi Kpoumie Hubert, Libalah Moses, Ouandji Angele, Zapfack Louis
Abstract:
Forest degradation causes biodiversity and carbon loss and thus indirectly contributes to climate change. In order to assess the contribution of forests to climate change mitigation, the present study was conducted in the Ngambe-Ndom-Nyanon Communal Forest with the main objective of assessing the floristic diversity and estimating the carbon stock in the different reservoirs of the said forest. Nine plots of 2000 m² each were installed in 3 TOSs of the forest (young secondary forests, gallery forests and fallow lands) with a total area of 18,000 m² or 1,8 ha. All trees with a Diameter at Breast Height (DBH) ≥ 5 cm were inventoried at 1.30 m from the ground in each plot. Species richness, floristic diversity indices, and structural parameters were studied. 1542 trees divided into 162 species, 122 genera and 44 families were identified. The most important families were listed: Myristicaceae (30.22%), Apocynaceae (25.20%), Fabaceae (24.41%), Euphorbiaceae (22.91%) and Phyllanthaceae (20.23%). The richest genera are: Cola, Macaranga, Oncoba (4 species each); the genera Diospyros, Trichilia, Vitex and Zanthoxylum (3 species each). The ecologically important species within the forest studied are: Funtumia africana (26.14%), Coelocaryon preussii (18.46%), Pycnanthus angolensis (15.57%), Tabernaemontana crassa (14.85%) and Olax subscorpioidea (13.04%). Assessment of carbon stocks in the six forest reservoirs studied (living trees and roots, understorey, dead wood, litter and rootlets) shows that they vary according to the land-use types. It is 119.41 t.C.ha-¹ in gallery forest, 115.2 t.C.ha-¹ in young secondary forest and 90.56 t.C.ha-¹ in fallow. The Wilcoxon statistical test shows that the carbon in the young secondary forest is identical to that in the fallow, which is identical to the carbon in the gallery forest. At the individual species level, the largest diameter class [25-35[ sequesters the most carbon (232.94 tC/ha). This work shows that the quantity of carbon sequestered by a biotope is a function of the age of the stand.Keywords: floristic diversity, carbon stocks, evergreen forests, communal forest, Ngambé-Ndom-Nyanon
Procedia PDF Downloads 52488 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.
Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis
Abstract:
Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8
Procedia PDF Downloads 113487 Polyphenols from Winery Wastes as Potential Source of Antioxidants
Authors: Lucia Gharwalova, Irena Kolouchova, Jan Masak
Abstract:
A large amount of waste products is generated throughout the whole winemaking process as well as during work in the vineyard. This waste is as a source of phenolic compounds, such as resveratrol and polydatin, which possess a strong antioxidant capacity. Changes in the amounts of phenols were compared depending on the growing conditions and wine variety. Wastes (grape stems, marc and shoots) from two wineries in the Czech Republic were analyzed. Phenols from these samples were extracted by 40% ethanol. The amount of polyphenols in these extracts was determined by HPLC and their antioxidant capacity by DPPH. We compared changes in the amounts of phenols depending on the type of waste and the wine variety. The most significant source of stilbenoids was waste from pruning (shoots). These results show that winery waste could be further reused thanks to their antioxidant content.Keywords: antioxidants, polyphenols, resveratrol, winery waste
Procedia PDF Downloads 408486 Assessing the Channel Design of the Eco-Friendly ‘Falaj’ Water System in Meeting the Optimal Water Demand: A Case Study of Falaj Al-Khatmain, Sultanate of Oman
Authors: Omer Al-Kaabi, Ahmed Nasr, Abdullah Al-Ghafri, Mohammed Abdelfattah
Abstract:
The Falaj system, derived from natural water sources, is a man-made canal system designed to supply communities of farmers with water for domestic and agricultural purposes. For thousands of years, Falaj has served communities by harnessing the force of gravity; it persists as a vital water management system in numerous regions across the Sultanate of Oman. Remarkably, predates the establishment of many fundamental hydraulic principles used today. Al-Khatmain Falaj, with its accessibility and historical significance spanning over 2000 years, was chosen as the focal point of this study. The research aimed to investigate the efficiency of Al-Khatmain Falaj in meeting specific water demands. The HEC-RAS model was utilized to visualize water flow dynamics within the Falaj channels, accompanied by graphical representations of pertinent variables. The application of HEC-RAS helped to measure different water flow scenarios within the channel, enabling a clear comparison with the demand area catchment. The cultivated land of Al-Khatmain is 723,124 m² and consists of 16,873 palm trees representing 91% of the total area and the remaining 9% is mixed types of trees counted 3,920 trees. The study revealed a total demand of 8,244 m³ is required to irrigate the cultivated land. Through rigorous analysis, the study has proven that the Falaj system in Al-Khatmain operates with high efficiency, as the average annual water supply is 9676.8 m3/day. Additionally, the channel designed at 0.6m width x 0.3m height efficiently holds the optimal water supply, with an average flow depth of 0.21m. Also, the system includes an overflow drainage channel to mitigate floods and prevent crop damage based on seasonal requirements. This research holds promise for examining diverse hydrological conditions and devising effective strategies to manage scenarios of both high and low flow rates.Keywords: Al-Khatmain, sustainability, Falaj, HEC-RAS, water management system
Procedia PDF Downloads 44485 Effect of Heat Stress on the Physiology of the Cork Oak
Authors: J. Zekri, N. Souilah, W. Abdelaziz, D. Alatou
Abstract:
Our study shall focus on the ability of trees cork oak that showed vis-à-vis sensitivity to climate change, including late spring frosts. The combination of these factors resulted in damage alarmed, therefore forest ecosystems weakened trees that can affect their ability to support other abiotic and biotic stresses, For this we tested its tolerance to thermal variations and cold weather conditions by estimating some stress markers (quantification of proteins, RNA, soluble sugars) that are quantified to evaluate the cold tolerance of seedlings. Sowing of cork oak (Quercus suber L.) is grown in controlled conditions at 25° C ± 2° C in long days 16h. These seedlings are transferred at low temperatures between 5° C and -6° C for a period of 3 hours. Biochemical analyzes were performed in the various organs of the cork oak seedlings. Cool temperatures induced a significant accumulation of proline in different organs of seedlings and the optimum concentrations were observed in the roots with very high concentrations (4 times larger than those of the control). The accumulation of soluble sugars is significantly in stems and roots at 0° C. Protein concentrations are very high in leaves of both growth and high waves in rod at -4° C to -2° C. Tolerance cork oak seems to be at the thermal limit of -2°C. The concentration of these metabolites in the various organs showed the ability oak cork hardening during the winter.Keywords: climate change, thermal change, semi-aride, biochemical markers, heat stress
Procedia PDF Downloads 249484 Training for Safe Tree Felling in the Forest with Symmetrical Collaborative Virtual Reality
Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti
Abstract:
One of the most common pieces of equipment still used today for pruning, felling, and processing trees is the chainsaw in forestry. However, chainsaw use highlights dangers and one of the highest rates of accidents in both professional and non-professional work. Felling is proportionally the most dangerous phase, both in severity and frequency, because of the risk of being hit by the plant the operator wants to cut down. To avoid this, a correct sequence of chainsaw cuts must be taught concerning the different conditions of the tree. Virtual reality (VR) makes it possible to virtually simulate chainsaw use without danger of injury. The limitations of the existing applications are as follow. The existing platforms are not symmetrical collaborative because the trainee is only in virtual reality, and the trainer can only see the virtual environment on a laptop or PC, and this results in an inefficient teacher-learner relationship. Therefore, most applications only involve the use of a virtual chainsaw, and the trainee thus cannot feel the real weight and inertia of a real chainsaw. Finally, existing applications simulate only a few cases of tree felling. The objectives of this research were to implement and test a symmetrical collaborative training application based on VR and mixed reality (MR) with the overlap between real and virtual chainsaws in MR. The research and training platform was developed for the Meta quest 2 head-mounted display. The research and training platform application is based on the Unity 3D engine, and Present Platform Interaction SDK (PPI-SDK) developed by Meta. PPI-SDK avoids the use of controllers and enables hand tracking and MR. With the combination of these two technologies, it was possible to overlay a virtual chainsaw with a real chainsaw in MR and synchronize their movements in VR. This ensures that the user feels the weight of the actual chainsaw, tightens the muscles, and performs the appropriate movements during the test allowing the user to learn the correct body posture. The chainsaw works only if the right sequence of cuts is made to felling the tree. Contact detection is done by Unity's physics system, which allows the interaction of objects that simulate real-world behavior. Each cut of the chainsaw is defined by a so-called collider, and the felling of the tree can only occur if the colliders are activated in the right order simulating a safe technique felling. In this way, the user can learn how to use the chainsaw safely. The system is also multiplayer, so the student and the instructor can experience VR together in a symmetrical and collaborative way. The platform simulates the following tree-felling situations with safe techniques: cutting the tree tilted forward, cutting the medium-sized tree tilted backward, cutting the large tree tilted backward, sectioning the trunk on the ground, and cutting branches. The application is being evaluated on a sample of university students through a special questionnaire. The results are expected to test both the increase in learning compared to a theoretical lecture and the immersive and telepresence of the platform.Keywords: chainsaw, collaborative symmetric virtual reality, mixed reality, operator training
Procedia PDF Downloads 107483 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 125482 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 423481 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees
Authors: Alexandru-Ion Marinescu
Abstract:
There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution
Procedia PDF Downloads 117480 [Keynote Talk]: The Challenges and Solutions for Developing Mobile Apps in a Small University
Authors: Greg Turner, Bin Lu, Cheer-Sun Yang
Abstract:
As computing technology advances, smartphone applications can assist in student learning in a pervasive way. For example, the idea of using a mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. In the past, some researches study the mobile software Mobile Application Software Development Life Cycle (MADLC) including traditional models such as the waterfall model, or more recent Agile Methods. Others study the issues related to the software development process. Very little research is on the development of three heterogenous mobile systems simultaneously in a small university where the availability of developers is an issue. In this paper, we propose to use a hybride model of Waterfall Model and the Agile Model, known as the Relay Race Methodology (RRM) in practice, to reflect the concept of racing and relaying for scheduling. Based on the development project, we observe that the modeling of the transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the MADLC. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future work are presented.Keywords: agile methods, mobile apps, software process model, waterfall model
Procedia PDF Downloads 409479 Hazardous Vegetation Detection in Right-Of-Way Power Transmission Lines in Brazil Using Unmanned Aerial Vehicle and Light Detection and Ranging
Authors: Mauricio George Miguel Jardini, Jose Antonio Jardini
Abstract:
Transmission power utilities participate with kilometers of circuits, many with particularities in terms of vegetation growth. To control these rights-of-way, maintenance teams perform ground, and air inspections, and the identification method is subjective (indirect). On a ground inspection, when identifying an irregularity, for example, high vegetation threatening contact with the conductor cable, pruning or suppression is performed immediately. In an aerial inspection, the suppression team is mobilized to the identified point. This work investigates the use of 3D modeling of a transmission line segment using RGB (red, blue, and green) images and LiDAR (Light Detection and Ranging) sensor data. Both sensors are coupled to unmanned aerial vehicle. The goal is the accurate and timely detection of vegetation along the right-of-way that can cause shutdowns.Keywords: 3D modeling, LiDAR, right-of-way, transmission lines, vegetation
Procedia PDF Downloads 131478 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 142477 Segmentation of Liver Using Random Forest Classifier
Authors: Gajendra Kumar Mourya, Dinesh Bhatia, Akash Handique, Sunita Warjri, Syed Achaab Amir
Abstract:
Nowadays, Medical imaging has become an integral part of modern healthcare. Abdominal CT images are an invaluable mean for abdominal organ investigation and have been widely studied in the recent years. Diagnosis of liver pathologies is one of the major areas of current interests in the field of medical image processing and is still an open problem. To deeply study and diagnose the liver, segmentation of liver is done to identify which part of the liver is mostly affected. Manual segmentation of the liver in CT images is time-consuming and suffers from inter- and intra-observer differences. However, automatic or semi-automatic computer aided segmentation of the Liver is a challenging task due to inter-patient Liver shape and size variability. In this paper, we present a technique for automatic segmenting the liver from CT images using Random Forest Classifier. Random forests or random decision forests are an ensemble learning method for classification that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees. After comparing with various other techniques, it was found that Random Forest Classifier provide a better segmentation results with respect to accuracy and speed. We have done the validation of our results using various techniques and it shows above 89% accuracy in all the cases.Keywords: CT images, image validation, random forest, segmentation
Procedia PDF Downloads 313476 Research Project of National Interest (PRIN-PNRR) DIVAS: Developing Methods to Assess Tree Vitality after a Wildfire through Analyses of Cambium Sugar Metabolism
Authors: Claudia Cocozza, Niccolò Frassinelli, Enrico Marchi, Cristiano Foderi, Alessandro Bizzarri, Margherita Paladini, Maria Laura Traversi, Eleftherious Touloupakis, Alessio Giovannelli
Abstract:
The development of tools to quickly identify the fate of injured trees after stress is highly relevant when biodiversity restoration of damaged sites is based on nature-based solutions. In this context, an approach to assess irreversible physiological damages within trees could help to support planning management decisions of perturbed sites to restore biodiversity, for the safety of the environment and understanding functionality adjustments of the ecosystems. Tree vitality can be estimated by a series of physiological proxies like cambium activity, starch, and soluble sugars amount in C-sinks whilst the accumulation of ethanol within the cambial cells and phloem is considered an alert of cell death. However, their determination requires time-consuming laboratory protocols, which makes the approach unfeasible as a practical option in the field. The project aims to develop biosensors to assess the concentration of soluble sugars and ethanol in stem tissues. Soluble sugars and ethanol concentrations will be used to define injured trees to discriminate compromised and recovering trees in the forest directly. To reach this goal, we select study sites subjected to prescribed fires or recent wildfires as experimental set-ups. Indeed, in Mediterranean countries, forest fire is a recurrent event that must be considered as a central component of regional and global strategies in forest management and biodiversity restoration programs. A biosensor will be developed through a multistep process related to target analytes characterization, bioreceptor selection, and, finally, calibration/testing of the sensor. To validate biosensor signals, soluble sugars and ethanol will be quantified by HPLC and GC using synthetic media (in lab) and phloem sap (in field) whilst cambium vitality will be assessed by anatomical observations. On burnt trees, the stem growth will be monitored by dendrometers and/or estimated by tree ring analyses, whilst the tree response to past fire events will be assessed by isotopic discrimination. Moreover, the fire characterization and the visual assessment procedure will be used to assign burnt trees to a vitality class. At the end of the project, a well-defined procedure combining biosensor signal and visual assessment will be produced and applied to a study case. The project outcomes and the results obtained will be properly packaged to reach, engage and address the needs of the final users and widely shared with relevant stakeholders involved in the optimal use of biosensors and in the management of post-fire areas. This project was funded by National Recovery and Resilience Plan (NRRP), Mission 4, Component C2, Investment 1.1 - Call for tender No. 1409 of 14 September 2022 – ‘Progetti di Ricerca di Rilevante interesse Nazionale – PRIN’ of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Grant N° P2022Z5742, CUP B53D23023780001.Keywords: phloem, scorched crown, conifers, prescribed burning, biosensors
Procedia PDF Downloads 16475 Constraints and Opportunities of Wood Production Value Chain: Evidence from Southwest Ethiopia
Authors: Abduselam Faris, Rijalu Negash, Zera Kedir
Abstract:
This study was initiated to identify constraints and opportunities of the wood production value chain in Southwest Ethiopia. About 385 wood trees growing farmers were randomly interviewed. Similarly, about 30 small-scale wood processors, 30 retailers, 15 local collectors and 5 wholesalers were purposively included in the study. The results of the study indicated that 98.96 % of the smallholder farmers that engaged in the production of wood trees which is used for wood were male-headed, with an average age of 46.88 years. The main activity that the household engaged was agriculture (crop and livestock) which accounts for about 61.56% of the sample respondents. Through value chain mapping of actors, the major value chain participant and supporting actors were identified. On average, the tree-growing farmers generated gross income of 9385.926 Ethiopian birr during the survey year. Among the critical constraints identified along the wood production value chain was limited supply of credit, poor market information dissemination, high interference of brokers, and shortage of machines, inadequate working area and electricity. The availability of forest resources is the leading opportunity in the wood production value chain. Reinforcing the linkage among wood production value chain actors, providing skill training for small-scale processors, and developing suitable policy for wood tree wise use is key recommendations forward.Keywords: value chain analysis, wood production, southwest Ethiopia, constraints and opportunities
Procedia PDF Downloads 94474 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing
Authors: Adeiza Matthew, Oluwadamilola Abubakar
Abstract:
Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.Keywords: biomass, timber, charcoal, firewood
Procedia PDF Downloads 100473 Development and Characterization of Polymorphic Genomic-SSR Markers in Asian Long-Horned Beetle (Anoplophora glabripennis)
Authors: Zhao Yang Liu, Jing Tao
Abstract:
The Asian long-horned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiinae), is a wood-borer and polyphagous xylophages native to Asia and killing healthy trees. As it causes serious danger to trees, the beetle has been paid close attention in the world. However, the genetic markers limited, especially microsatellite. In this study, 24 novel simple sequence repeat (SSR) molecular markers, a powerful tool for genetic diversity studies and linkage map construction, were developed and characterized from whole genome shotgun sequences. We developed SSR loci of 2 to 6 repeated and perfect units including 9895 points, the density of SSRs was found one SSR per 56.57 kb and the abundance of SSR was 0.02/kb, besides 140 types of repeats motifs were found. Half of the 48 pairs SSR primers (containing 4 di-, 7 tri-, 2 tetra- and 11 hexamers SSRs) we selected randomly from 1222 pairs of primers were polymorphism. The number of alleles for these markers in 48 individuals varied from 3 to 21 with an average of 7.71, the number of effective alleles ranged from 1.22 to 9.97 with an average of 3.54. Besides this, the polymorphic information content (PIC) ranged from 0.18 to 0.89 with a mean of 0.65, And Shannon's Information index (I) ranged from 0.46 to 2.62 with an average of 1.44. The results suggest that the method for screening of SSR in the whole genome is feasible and efficient. SSR markers developed in this study can be used for population genetic studies of A. glabripennis. Moreover, they may also be helpful for the development of microsatellites for other Coleoptera.Keywords: SSR markers, Anoplophora glabripennis, genetic diversity, whole genome
Procedia PDF Downloads 389472 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential
Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen
Abstract:
Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance
Procedia PDF Downloads 393471 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria
Authors: Abdullahi Jibrin, Aishetu Abdulkadir
Abstract:
The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. The F-test value for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.Keywords: allometriy, biomass, carbon stock , model, regression equation, woodland, inventory
Procedia PDF Downloads 448470 The Investigation of Cadmium Pollution in the Metal Production Factory in Relation to Environmental Health
Authors: Seyed Armin Hashemi, Somayeh Rahimzadeh
Abstract:
Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stem, and roots of the trees planted inside the factory environment were estimated at 1.1 milligram/kilogram, 1.5 milligram/kilogram and 2.5 milligram/kilogram respectively and this indicated a significant difference with the observer region (P < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 milligram/kilogram in the depth of 0-10 centimeters beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 centimeters and 14.5 centimeters in the observer region which had a significant difference with the observer region (P < 0.05). The quantity of soil resources and spruce species’ pollution with cadmium in the region has been influenced by the production processes in the factory.Keywords: cadmium pollution, spruce, soil pollution, the factory of producing alloy metals
Procedia PDF Downloads 332