Search results for: symptom cluster
1042 Building User Behavioral Models by Processing Web Logs and Clustering Mechanisms
Authors: Madhuka G. P. D. Udantha, Gihan V. Dias, Surangika Ranathunga
Abstract:
Today Websites contain very interesting applications. But there are only few methodologies to analyze User navigations through the Websites and formulating if the Website is put to correct use. The web logs are only used if some major attack or malfunctioning occurs. Web Logs contain lot interesting dealings on users in the system. Analyzing web logs has become a challenge due to the huge log volume. Finding interesting patterns is not as easy as it is due to size, distribution and importance of minor details of each log. Web logs contain very important data of user and site which are not been put to good use. Retrieving interesting information from logs gives an idea of what the users need, group users according to their various needs and improve site to build an effective and efficient site. The model we built is able to detect attacks or malfunctioning of the system and anomaly detection. Logs will be more complex as volume of traffic and the size and complexity of web site grows. Unsupervised techniques are used in this solution which is fully automated. Expert knowledge is only used in validation. In our approach first clean and purify the logs to bring them to a common platform with a standard format and structure. After cleaning module web session builder is executed. It outputs two files, Web Sessions file and Indexed URLs file. The Indexed URLs file contains the list of URLs accessed and their indices. Web Sessions file lists down the indices of each web session. Then DBSCAN and EM Algorithms are used iteratively and recursively to get the best clustering results of the web sessions. Using homogeneity, completeness, V-measure, intra and inter cluster distance and silhouette coefficient as parameters these algorithms self-evaluate themselves to input better parametric values to run the algorithms. If a cluster is found to be too large then micro-clustering is used. Using Cluster Signature Module the clusters are annotated with a unique signature called finger-print. In this module each cluster is fed to Associative Rule Learning Module. If it outputs confidence and support as value 1 for an access sequence it would be a potential signature for the cluster. Then the access sequence occurrences are checked in other clusters. If it is found to be unique for the cluster considered then the cluster is annotated with the signature. These signatures are used in anomaly detection, prevent cyber attacks, real-time dashboards that visualize users, accessing web pages, predict actions of users and various other applications in Finance, University Websites, News and Media Websites etc.Keywords: anomaly detection, clustering, pattern recognition, web sessions
Procedia PDF Downloads 2881041 Using Group Concept Mapping to Identify a Pharmacy-Based Trigger Tool to Detect Adverse Drug Events
Authors: Rodchares Hanrinth, Theerapong Srisil, Peeraya Sriphong, Pawich Paktipat
Abstract:
The trigger tool is the low-cost, low-tech method to detect adverse events through clues called triggers. The Institute for Healthcare Improvement (IHI) has developed the Global Trigger Tool for measuring and preventing adverse events. However, this tool is not specific for detecting adverse drug events. The pharmacy-based trigger tool is needed to detect adverse drug events (ADEs). Group concept mapping is an effective method for conceptualizing various ideas from diverse stakeholders. This technique was used to identify a pharmacy-based trigger to detect adverse drug events (ADEs). The aim of this study was to involve the pharmacists in conceptualizing, developing, and prioritizing a feasible trigger tool to detect adverse drug events in a provincial hospital, the northeastern part of Thailand. The study was conducted during the 6-month period between April 1 and September 30, 2017. Study participants involved 20 pharmacists (17 hospital pharmacists and 3 pharmacy lecturers) engaging in three concept mapping workshops. In this meeting, the concept mapping technique created by Trochim, a highly constructed qualitative group technic for idea generating and sharing, was used to produce and construct participants' views on what triggers were potential to detect ADEs. During the workshops, participants (n = 20) were asked to individually rate the feasibility and potentiality of each trigger and to group them into relevant categories to enable multidimensional scaling and hierarchical cluster analysis. The outputs of analysis included the trigger list, cluster list, point map, point rating map, cluster map, and cluster rating map. The three workshops together resulted in 21 different triggers that were structured in a framework forming 5 clusters: drug allergy, drugs induced diseases, dosage adjustment in renal diseases, potassium concerning, and drug overdose. The first cluster is drug allergy such as the doctor’s orders for dexamethasone injection combined with chlorpheniramine injection. Later, the diagnosis of drug-induced hepatitis in a patient taking anti-tuberculosis drugs is one trigger in the ‘drugs induced diseases’ cluster. Then, for the third cluster, the doctor’s orders for enalapril combined with ibuprofen in a patient with chronic kidney disease is the example of a trigger. The doctor’s orders for digoxin in a patient with hypokalemia is a trigger in a cluster. Finally, the doctor’s orders for naloxone with narcotic overdose was classified as a trigger in a cluster. This study generated triggers that are similar to some of IHI Global trigger tool, especially in the medication module such as drug allergy and drug overdose. However, there are some specific aspects of this tool, including drug-induced diseases, dosage adjustment in renal diseases, and potassium concerning which do not contain in any trigger tools. The pharmacy-based trigger tool is suitable for pharmacists in hospitals to detect potential adverse drug events using clues of triggers.Keywords: adverse drug events, concept mapping, hospital, pharmacy-based trigger tool
Procedia PDF Downloads 1631040 Spatio-Temporal Changes of Rainfall in São Paulo, Brazil (1973-2012): A Gamma Distribution and Cluster Analysis
Authors: Guilherme Henrique Gabriel, Lucí Hidalgo Nunes
Abstract:
An important feature of rainfall regimes is the variability, which is subject to the atmosphere’s general and regional dynamics, geographical position and relief. Despite being inherent to the climate system, it can harshly impact virtually all human activities. In turn, global climate change has the ability to significantly affect smaller-scale rainfall regimes by altering their current variability patterns. In this regard, it is useful to know if regional climates are changing over time and whether it is possible to link these variations to climate change trends observed globally. This study is part of an international project (Metropole-FAPESP, Proc. 2012/51876-0 and Proc. 2015/11035-5) and the objective was to identify and evaluate possible changes in rainfall behavior in the state of São Paulo, southeastern Brazil, using rainfall data from 79 rain gauges for the last forty years. Cluster analysis and gamma distribution parameters were used for evaluating spatial and temporal trends, and the outcomes are presented by means of geographic information systems tools. Results show remarkable changes in rainfall distribution patterns in São Paulo over the years: changes in shape and scale parameters of gamma distribution indicate both an increase in the irregularity of rainfall distribution and the probability of occurrence of extreme events. Additionally, the spatial outcome of cluster analysis along with the gamma distribution parameters suggest that changes occurred simultaneously over the whole area, indicating that they could be related to remote causes beyond the local and regional ones, especially in a current global climate change scenario.Keywords: climate change, cluster analysis, gamma distribution, rainfall
Procedia PDF Downloads 3191039 Networks in the Tourism Sector in Brazil: Proposal of a Management Model Applied to Tourism Clusters
Authors: Gysele Lima Ricci, Jose Miguel Rodriguez Anton
Abstract:
Companies in the tourism sector need to achieve competitive advantages for their survival in the market. In this way, the models based on association, cooperation, complementarity, distribution, exchange and mutual assistance arise as a possibility of organizational development, taking as reference the concept of networks. Many companies seek to partner in local networks as clusters to act together and associate. The main objective of the present research is to identify the specificities of management and the practices of cooperation in the tourist destination of São Paulo - Brazil, and to propose a new management model with possible cluster of tourism. The empirical analysis was carried out in three phases. As a first phase, a research was made by the companies, associations and tourism organizations existing in São Paulo, analyzing the characteristics of their business. In the second phase, the management specificities and cooperation practice used in the tourist destination. And in the third phase, identifying the possible strengths and weaknesses that potential or potential tourist cluster could have, proposing the development of the management model of the same adapted to the needs of the companies, associations and organizations. As a main result, it has been identified that companies, associations and organizations could be looking for synergies with each other and collaborate through a Hiperred organizational structure, in which they share their knowledge, try to make the most of the collaboration and to benefit from three concepts: flexibility, learning and collaboration. Finally, it is concluded that, the proposed tourism cluster management model is viable for the development of tourism destinations because it makes it possible to strategically address agents which are responsible for public policies, as well as public and private companies and organizations in their strategies competitiveness and cooperation.Keywords: cluster, management model, networks, tourism sector
Procedia PDF Downloads 2841038 Examining Gender Bias in the Sport Concussion Assessment Tool 3 (SCAT3): A Differential Item Functioning Analysis in NCAA Sports
Authors: Rachel M. Edelstein, John D. Van Horn, Karen M. Schmidt, Sydney N. Cushing
Abstract:
As a consequence of sports-related concussions, female athletes have been documented as reporting more symptoms than their male counterparts, in addition to incurring longer periods of recovery. However, the role of sex and its potential influence on symptom reporting and recovery outcomes in concussion management has not been completely explored. The present aims to investigate the relationship between female concussion symptom severity and the presence of assessment bias. The Sport Concussion Assessment Tool 3 (SCAT3), collected by the NCAA and DoD CARE Consortium, was quantified at five different time points post-concussion. N= 1,258 NCAA athletes, n= 473 female (soccer, rugby, lacrosse, ice hockey) and n=785 male athletes (football, rugby, lacrosse, ice hockey). A polytomous Item Response Theory (IRT) Graded Response Model (GRM) was used to assess the relationship between sex and symptom reporting. Differential Item Functioning (DIF) and Differential Group Functioning (DGF) were used to examine potential group-level bias. Interactions for DIF were utilized to explore the impact of sex on symptom reporting among NCAA male and female athletes throughout and after their concussion recovery. DIF was significantly detected after B-H corrections displayed in limited items; however, one symptom, “Pressure in Head” (-0.29, p=0.04 vs -0.20, p =0.04), was statistically significant at both < 6 hours and 24-48 hours. Thus, implies that at < 6 hours, males were 29% less likely to indicate “Pressure in the Head” compared to female athletes and 20% less likely at 24-48 hours. Overall, the DGF suggested significant group differences, suggesting that male athletes might be at a higher risk for returning to play prematurely (logits = -0.38, p < 0.001). However, after analyzing the SCAT 3, a clinically relevant trend was discovered. Twelve out of the twenty-two symptoms suggest higher difficulty in female athletes within three or more of the five-time points. These symptoms include Balance Problems, Blurry Vision, Confusion, Dizziness, Don’t Feel Right, Feel in Fog, Feel Slow Down, Low Energy, Neck Pain, Sensitivity to Light, Sensitivity to Noise, Trouble Falling Asleep. Despite a lack of statistical significance, this tendency is contrary to current literature stating that males may be unclear on symptoms, but females may be more honest in reporting symptoms. Further research, which includes possible modifying socioecological factors, is needed to determine whether females may consistently experience more symptoms and require longer recovery times or if, parsimoniously, males tend to present their symptoms and readiness for play differently than females. Such research will help to improve the validity of current assumptions concerning male as compared to female head injuries and optimize individualized treatments for sports-related head injuries.Keywords: female athlete, sports-related concussion, item response theory, concussion assessment
Procedia PDF Downloads 771037 On the Cluster of the Families of Hybrid Polynomial Kernels in Kernel Density Estimation
Authors: Benson Ade Eniola Afere
Abstract:
Over the years, kernel density estimation has been extensively studied within the context of nonparametric density estimation. The fundamental components of kernel density estimation are the kernel function and the bandwidth. While the mathematical exploration of the kernel component has been relatively limited, its selection and development remain crucial. The Mean Integrated Squared Error (MISE), serving as a measure of discrepancy, provides a robust framework for assessing the effectiveness of any kernel function. A kernel function with a lower MISE is generally considered to perform better than one with a higher MISE. Hence, the primary aim of this article is to create kernels that exhibit significantly reduced MISE when compared to existing classical kernels. Consequently, this article introduces a cluster of hybrid polynomial kernel families. The construction of these proposed kernel functions is carried out heuristically by combining two kernels from the classical polynomial kernel family using probability axioms. We delve into the analysis of error propagation within these kernels. To assess their performance, simulation experiments, and real-life datasets are employed. The obtained results demonstrate that the proposed hybrid kernels surpass their classical kernel counterparts in terms of performance.Keywords: classical polynomial kernels, cluster of families, global error, hybrid Kernels, Kernel density estimation, Monte Carlo simulation
Procedia PDF Downloads 931036 Comparative Analysis of the Computer Methods' Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea
Authors: Pavel Shcherban, Vlad Golovanov
Abstract:
Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed.Keywords: cluster analysis, computer modelling of deposits, correction of the feasibility study, offshore hydrocarbon fields
Procedia PDF Downloads 1661035 Approaches to Inducing Obsessional Stress in Obsessive-Compulsive Disorder (OCD): An Empirical Study with Patients Undergoing Transcranial Magnetic Stimulation (TMS) Therapy
Authors: Lucia Liu, Matthew Koziol
Abstract:
Obsessive-compulsive disorder (OCD), a long-lasting anxiety disorder involving recurrent, intrusive thoughts, affects over 2 million adults in the United States. Transcranial magnetic stimulation (TMS) stands out as a noninvasive, cutting-edge therapy that has been shown to reduce symptoms in patients with treatment-resistant OCD. The Food and Drug Administration (FDA) approved protocol pairs TMS sessions with individualized symptom provocation, aiming to improve the susceptibility of brain circuits to stimulation. However, limited standardization or guidance exists on how to conduct symptom provocation and which methods are most effective. This study aims to compare the effect of internal versus external techniques to induce obsessional stress in a clinical setting during TMS therapy. Two symptom provocation methods, (i) Asking patients thought-provoking questions about their obsessions (internal) and (ii) Requesting patients to perform obsession-related tasks (external), were employed in a crossover design with repeated measurement. Thirty-six treatments of NeuroStar TMS were administered to each of two patients over 8 weeks in an outpatient clinic. Patient One received 18 sessions of internal provocation followed by 18 sessions of external provocation, while Patient Two received 18 sessions of external provocation followed by 18 sessions of internal provocation. The primary outcome was the level of self-reported obsessional stress on a visual analog scale from 1 to 10. The secondary outcome was self-reported OCD severity, collected biweekly in a four-level Likert-scale (1 to 4) of bad, fair, good and excellent. Outcomes were compared and tested between provocation arms through repeated measures ANOVA, accounting for intra-patient correlations. Ages were 42 for Patient One (male, White) and 57 for Patient Two (male, White). Both patients had similar moderate symptoms at baseline, as determined through the Yale-Brown Obsessive Compulsive Scale (YBOCS). When comparing obsessional stress induced across the two arms of internal and external provocation methods, the mean (SD) was 6.03 (1.18) for internal and 4.01 (1.28) for external strategies (P=0.0019); ranges were 3 to 8 for internal and 2 to 8 for external strategies. Internal provocation yielded 5 (31.25%) bad, 6 (33.33%) fair, 3 (18.75%) good, and 2 (12.5%) excellent responses for OCD status, while external provocation yielded 5 (31.25%) bad, 9 (56.25%) fair, 1 (6.25%) good, and 1 (6.25%) excellent responses (P=0.58). Internal symptom provocation tactics had a significantly stronger impact on inducing obsessional stress and led to better OCD status (non-significant). This could be attributed to the fact that answering questions may prompt patients to reflect more on their lived experiences and struggles with OCD. In the future, clinical trials with larger sample sizes are warranted to validate this finding. Results support the increased integration of internal methods into structured provocation protocols, potentially reducing the time required for provocation and achieving greater treatment response to TMS.Keywords: obsessive-compulsive disorder, transcranial magnetic stimulation, mental health, symptom provocation
Procedia PDF Downloads 571034 Effects of Heart Rate Variability Biofeedback to Improve Autonomic Nerve Function, Inflammatory Response and Symptom Distress in Patients with Chronic Kidney Disease: A Randomized Control Trial
Authors: Chia-Pei Chen, Yu-Ju Chen, Yu-Juei Hsu
Abstract:
The prevalence and incidence of end-stage renal disease in Taiwan ranks the highest in the world. According to the statistical survey of the Ministry of Health and Welfare in 2019, kidney disease is the ninth leading cause of death in Taiwan. It leads to autonomic dysfunction, inflammatory response and symptom distress, and further increases the damage to the structure and function of the kidneys, leading to increased demand for renal replacement therapy and risks of cardiovascular disease, which also has medical costs for the society. If we can intervene in a feasible manual to effectively regulate the autonomic nerve function of CKD patients, reduce the inflammatory response and symptom distress. To prolong the progression of the disease, it will be the main goal of caring for CKD patients. This study aims to test the effect of heart rate variability biofeedback (HRVBF) on improving autonomic nerve function (Heart Rate Variability, HRV), inflammatory response (Interleukin-6 [IL-6], C reaction protein [CRP] ), symptom distress (Piper fatigue scale, Pittsburgh Sleep Quality Index [PSQI], and Beck Depression Inventory-II [BDI-II] ) in patients with chronic kidney disease. This study was experimental research, with a convenience sampling. Participants were recruited from the nephrology clinic at a medical center in northern Taiwan. With signed informed consent, participants were randomly assigned to the HRVBF or control group by using the Excel BINOMDIST function. The HRVBF group received four weekly hospital-based HRVBF training, and 8 weeks of home-based self-practice was done with StressEraser. The control group received usual care. We followed all participants for 3 months, in which we repeatedly measured their autonomic nerve function (HRV), inflammatory response (IL-6, CRP), and symptom distress (Piper fatigue scale, PSQI, and BDI-II) on their first day of study participation (baselines), 1 month, and 3 months after the intervention to test the effects of HRVBF. The results were analyzed by SPSS version 23.0 statistical software. The data of demographics, HRV, IL-6, CRP, Piper fatigue scale, PSQI, and BDI-II were analyzed by descriptive statistics. To test for differences between and within groups in all outcome variables, it was used by paired sample t-test, independent sample t-test, Wilcoxon Signed-Rank test and Mann-Whitney U test. Results: Thirty-four patients with chronic kidney disease were enrolled, but three of them were lost to follow-up. The remaining 31 patients completed the study, including 15 in the HRVBF group and 16 in the control group. The characteristics of the two groups were not significantly different. The four-week hospital-based HRVBF training combined with eight-week home-based self-practice can effectively enhance the parasympathetic nerve performance for patients with chronic kidney disease, which may against the disease-related parasympathetic nerve inhibition. In the inflammatory response, IL-6 and CRP in the HRVBF group could not achieve significant improvement when compared with the control group. Self-reported fatigue and depression significantly decreased in the HRVBF group, but they still failed to achieve a significant difference between the two groups. HRVBF has no significant effect on improving the sleep quality for CKD patients.Keywords: heart rate variability biofeedback, autonomic nerve function, inflammatory response, symptom distress, chronic kidney disease
Procedia PDF Downloads 1801033 Harmful Algal Poisoning Symptoms in Coastal Areas of Nigeria
Authors: Medina Kadiri
Abstract:
Nigeria has an extensive coastline of 853 km long between latitude 4°10′ to 6°20′ N and longitude 2°45′ to 8°35′ E and situated in the Gulf of Guinea within the Guinea Current Large Marine Ecosystem. There is a substantial coastal community relying on this region for their livelihood of fishing, aquaculture, mariculture for various sea foods either for consumption or economic sustenance or both. Socio-economic study was conducted, using questionnaires and interview, to investigate the health symptoms of harmful algae experienced by these communities on consumption of sea foods. Eighteen symptoms were recorded. Of the respondents who experienced symptoms after consumption of sea foods, overall, more people (33.5%) experienced vomiting as a symptom, followed by nausea (14.03%) and then diarrhea (13.57%). Others were headache (9.95%), mouth tingling (8.6%) and tiredness (7.24%).The least were muscle pain, rashes, confusion, chills, burning sensation, breathing difficulty and balance difficulty which represented 0.45% each and the rest (dizziness, digestive tract tumors, itching, memory loss, & stomach pain) were less than 3% each. In terms of frequency, the most frequent symptom was diarrhea with 87.5% occurrence, closely followed by vomiting with 81.3%. Tiredness was 75% while nausea was 62.5% and headache 50%. Others such as dizziness, itching, memory loss, mouth tingling and stomach pain had about 40% occurrence or less. The least occurring symptoms were muscle pain, rashes, confusion, chills and balance difficulty and burning sensation occurring only once i.e 6.3%. Breathing difficulty was last but one with 12.5%. Visible symptom from seafood and the particular seafood consumed that prompted the visible symptoms, shows that 3.5% of the entire respondents who ate crab experienced various symptoms ranging from vomiting (2.4%), itching (0.5%) and headache (0.4%). For periwinkle, vomiting had 1.7%, while 1.2% represented diarrhea and nausea symptom comprised 0.8% of all the respondents who ate periwinkle. Some respondents who consumed fish shows that 0.4% of the respondents had Itching. From the respondents who preferred to consume shrimps/crayfish and crab, shrimps/crayfish, crab and periwinkle, the most common illness was tiredness (1.2%), while 0.5% had experienced diarrhea and many others. However, for most respondents who claimed to have no preference for any seafood, with 55.7% affirming this with vomiting being the highest (6.1%), followed closely by mouth tingling/ burning sensation (5.8%). Examining the seasonal influence on visible symptoms revealed that vomiting occurred more in the month of January with 5.5%, while headache and itching were predominant in October with (2.8%). Nausea has 3.1% in January than any season of the year, 2.6% of the entire respondents opined to have experience diarrhea in October than in any other season of the year. Regular evaluation of harmful algal poisoning symptoms is recommended for coastal communities.Keywords: coastal, harmful algae, human poisoning symptoms, Nigeria, phycotoxins
Procedia PDF Downloads 2861032 Institutional Segmantation and Country Clustering: Implications for Multinational Enterprises Over Standardized Management
Authors: Jung-Hoon Han, Jooyoung Kwak
Abstract:
Distances between cultures, institutions are gaining academic attention once again since the classical debate on the validity of globalization. Despite the incessant efforts to define international segments with various concepts, no significant attempts have been made considering the institutional dimensions. Resource-based theory and institutional theory provides useful insights in assessing market environment and understanding when and how MNEs loose or gain advantages. This study consists of two parts: identifying institutional clusters and predicting the effect of MNEs’ origin on the applicability of competitive advantages. MNEs in one country cluster are expected to use similar management systems.Keywords: institutional theory, resource-based theory, institutional environment, cultural dimensions, cluster analysis, standardized management
Procedia PDF Downloads 4891031 Care: A Cluster Based Approach for Reliable and Efficient Routing Protocol in Wireless Sensor Networks
Authors: K. Prasanth, S. Hafeezullah Khan, B. Haribalakrishnan, D. Arun, S. Jayapriya, S. Dhivya, N. Vijayarangan
Abstract:
The main goal of our approach is to find the optimum positions for the sensor nodes, reinforcing the communications in points where certain lack of connectivity is found. Routing is the major problem in sensor network’s data transfer between nodes. We are going to provide an efficient routing technique to make data signal transfer to reach the base station soon without any interruption. Clustering and routing are the two important key factors to be considered in case of WSN. To carry out the communication from the nodes to their cluster head, we propose a parameterizable protocol so that the developer can indicate if the routing has to be sensitive to either the link quality of the nodes or the their battery levels.Keywords: clusters, routing, wireless sensor networks, three phases, sensor networks
Procedia PDF Downloads 5051030 A Spatial Autocorrelation Analysis of Women’s Mental Health and Walkability Index in Mashhad City, Iran, and Recommendations to Improve It
Authors: Mohammad Rahim Rahnama, Lia Shaddel
Abstract:
Today, along with the development of urbanism, its negative consequences on the health of citizens are emerging. Mental disorders are common in the big cities, while mental health enables individuals to become active citizens. Meanwhile, women have a larger share of mental problems. Depression and anxiety disorders have a higher prevalence rate among women and these disorders affect the health of future generations, too. Therefore, improving women’s mental health through the potentials offered by urban spaces are of paramount importance. The present study aims to first, evaluate the spatial autocorrelation of women’s mental health and walkable spaces and then present solutions, based on the findings, to improve the walkability index. To determine the spatial distribution of women’s mental health in Mashhad, Moran's I was used and 1000 questionnaire were handed out in various sub-districts of Mashhad. Moran's I was calculated to be 0.18 which indicates a cluster distribution pattern. The walkability index was calculated using the four variables pertaining to the length of walkable routes, mixed land use, retail floor area ratio, and household density. To determine spatial autocorrelation of mental health and the walkability index, bivariate Moran’s I was calculated. Moran's I was determined to be 0.37 which shows a direct spatial relationship between variables; 4 clusters in 9 sub-districts of Mashhad were created. In High-Low cluster, there was a negative spatial relationship and hence, to identify factors affecting walkability in urban spaces semi-structures interviews were conducted with 21 women in this cluster. The findings revealed that security is the major factor influencing women’s walking behavior in this cluster. In accordance with the findings, some suggestions are offered to improve the presence of women in this sub-district.Keywords: Mashhad, spatial autocorrelation, women’s mental health, walkability index
Procedia PDF Downloads 1341029 Prevalence of Menopausal Women with Clinical Symptoms of Allergy and Evaluation the Effect of Sex Hormone Combined with Anti-Allergy Treatment
Authors: Yang Wei, Xueyan Wang, Hui Zou
Abstract:
Objective: Investigation the prevalence of menopausal symptoms in patients with allergic symptoms, evaluation of the effect of sex hormones combined with anti-allergic therapy in these patients. Method: Age of 45-65 years old women with allergic symptoms at the same time in gynecological-endocrinology clinic in our hospital were selected from Feb 1 to May 31, 2010, randomly. The patients were given oral estradiol valerate plus progestin pills combined with anti-allergy treatment and then evaluated twice a week and one month later. Evaluation criterion: Menopause Rating Scale (MRS) and the degree of clinical symptoms were used to evaluate menopause and allergy separately. Results: 1) There were 195 cases of patients with menopausal symptoms at the age. Their MRS were all over 15. 2) Among them 45 patients were with allergic symptom accounted for 23% which were diagnosed by allergic department. 3) Evaluated after one week: the menopausal symptoms were improved and MRS were less than or equal to 5 in all these patients; the skin symptom of allergic symptoms vanished completely. 4) Evaluated after one month: Menopause symptoms were improved steadily; other clinical symptoms of allergy were also improved or without recurrence. Conclusion: The incidence rate of menopausal women with clinical symptoms of allergic diseases is high and it needs attention. The effect of sex hormones combined with anti-allergic therapy is obvious.Keywords: menopausal, allergy, sex hormone, anti-allergy treatment
Procedia PDF Downloads 2721028 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India
Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi
Abstract:
River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.Keywords: cluster analysis, multivariate statistical techniques, river Hindon, water quality
Procedia PDF Downloads 4671027 Acute Asthma in Emergency Department, Prevalence of Respiratory and Non-Respiratory Symptoms
Authors: Sherif Refaat, Hassan Aref
Abstract:
Background: Although asthma is a well-identified presentation to the emergency department, little is known about the frequency and percentage of respiratory and non-respiratory symptoms in patients with acute asthma in the emergency department (ED). Objective: The aim of this study is to identify the relationship between acute asthma exacerbation and different respiratory and non-respiratory symptoms including chest pain encountered by patients visiting the emergency department. Subjects and methods: Prospective study included 169 (97 females and 72 males) asthmatic patients who were admitted to emergency department of two tertiary care facility hospitals for asthma exacerbation from the period of September 2010 to August 2013, an anonyms questionnaire was used to collect symptoms and analysis of symptoms. Results: Females were 97 (57%) of the patients, mean age was 35.6 years; dyspnea on exertion was the commonest symptom accounting for 161 (95.2%) of patients, followed by dyspnea at rest 155 (91.7%), wheezing in 152 (89.9%), chest pain was present in 82 patients (48.5%), the pain was burning in 36 (43.9%) of the total patients with chest pain. Non-respiratory symptoms were seen frequently in acute asthma in ED. Conclusions: Dyspnea was the commonest chest symptoms encountered in patients with acute asthma followed by wheezing. Chest pain in acute asthma is a common symptom and should be fully studied to exclude misdiagnosis as of cardiac origin; there is a need for a better dissemination of knowledge about this disease association with chest pain. It was also noted that other non-respiratory symptoms are frequently encountered with acute asthma in emergency department.Keywords: asthma, emergency department, respiratory symptoms, non respiratory system
Procedia PDF Downloads 4251026 Percolation Transition in an Agglomeration of Spherical Particles
Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin
Abstract:
Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility.Keywords: binary system, maximum cluster size, percolation, polydisperse
Procedia PDF Downloads 611025 Analysis of Expert Information in Linguistic Terms
Authors: O. Poleshchuk, E. Komarov
Abstract:
In this paper, semantic spaces with the properties of completeness and orthogonality (complete orthogonal semantic spaces) were chosen as models of expert evaluations. As the theoretical and practical studies have shown all the properties of complete orthogonal semantic spaces correspond to the thinking activity of experts that is why these semantic spaces were chosen for modeling. Two methods of construction such spaces were proposed. Models of comparative and fuzzy cluster analysis of expert evaluations were developed. The practical application of the developed methods has demonstrated their viability and validity.Keywords: expert evaluation, comparative analysis, fuzzy cluster analysis, theoretical and practical studies
Procedia PDF Downloads 5311024 Investigation of Clusters of MRSA Cases in a Hospital in Western Kenya
Authors: Lillian Musila, Valerie Oundo, Daniel Erwin, Willie Sang
Abstract:
Staphylococcus aureus infections are a major cause of nosocomial infections in Kenya. Methicillin resistant S. aureus (MRSA) infections are a significant burden to public health and are associated with considerable morbidity and mortality. At a hospital in Western Kenya two clusters of MRSA cases emerged within short periods of time. In this study we explored whether these clusters represented a nosocomial outbreak by characterizing the isolates using phenotypic and molecular assays and examining epidemiological data to identify possible transmission patterns. Specimens from the site of infection of the subjects were collected, cultured and S. aureus isolates identified phenotypically and confirmed by APIStaph™. MRSA were identified by cefoxitin disk screening per CLSI guidelines. MRSA were further characterized based on their antibiotic susceptibility patterns and spa gene typing. Characteristics of cases with MRSA isolates were compared with those with MSSA isolated around the same time period. Two cases of MRSA infection were identified in the two week period between 21 April and 4 May 2015. A further 2 MRSA isolates were identified on the same day on 7 September 2015. The antibiotic resistance patterns of the two MRSA isolates in the 1st cluster of cases were different suggesting that these were distinct isolates. One isolate had spa type t2029 and the other had a novel spa type. The 2 isolates were obtained from urine and an open skin wound. In the 2nd cluster of MRSA isolates, the antibiotic susceptibility patterns were similar but isolates had different spa types: one was t037 and the other a novel spa type different from the novel MRSA spa type in the first cluster. Both cases in the second cluster were admitted into the hospital but one infection was community- and the other hospital-acquired. Only one of the four MRSA cases was classified as an HAI from an infection acquired post-operatively. When compared to other S. aureus strains isolated within the same time period from the same hospital only one spa type t2029 was found in both MRSA and non-MRSA strains. None of the cases infected with MRSA in the two clusters shared any common epidemiological characteristic such as age, sex or known risk factors for MRSA such as prolonged hospitalization or institutionalization. These data suggest that the observed MRSA clusters were multi strain clusters and not an outbreak of a single strain. There was no clear relationship between the isolates by spa type suggesting that no transmission was occurring within the hospital between these cluster cases but rather that the majority of the MRSA strains were circulating in the community. There was high diversity of spa types among the MRSA strains with none of the isolates sharing spa types. Identification of disease clusters in space and time is critical for immediate infection control action and patient management. Spa gene typing is a rapid way of confirming or ruling out MRSA outbreaks so that costly interventions are applied only when necessary.Keywords: cluster, Kenya, MRSA, spa typing
Procedia PDF Downloads 3301023 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1571022 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism
Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng
Abstract:
Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition
Procedia PDF Downloads 1831021 A Literature Review on the Effect of Industrial Clusters and the Absorptive Capacity on Innovation
Authors: Enrique Claver Cortés, Bartolomé Marco Lajara, Eduardo Sánchez García, Pedro Seva Larrosa, Encarnación Manresa Marhuenda, Lorena Ruiz Fernández, Esther Poveda Pareja
Abstract:
In recent decades, the analysis of the effects of clustering as an essential factor for the development of innovations and the competitiveness of enterprises has raised great interest in different areas. Nowadays, companies have access to almost all tangible and intangible resources located and/or developed in any country in the world. However, despite the obvious advantages that this situation entails for companies, their geographical location has shown itself, increasingly clearly, to be a fundamental factor that positively influences their innovative performance and competitiveness. Industrial clusters could represent a unique level of analysis, positioned between the individual company and the industry, which makes them an ideal unit of analysis to determine the effects derived from company membership of a cluster. Also, the absorptive capacity (hereinafter 'AC') can mediate the process of innovation development by companies located in a cluster. The transformation and exploitation of knowledge could have a mediating effect between knowledge acquisition and innovative performance. The main objective of this work is to determine the key factors that affect the degree of generation and use of knowledge from the environment by companies and, consequently, their innovative performance and competitiveness. The elements analyzed are the companies' membership of a cluster and the AC. To this end, 30 most relevant papers published on this subject in the "Web of Science" database have been reviewed. Our findings show that, within a cluster, the knowledge coming from the companies' environment can significantly influence their innovative performance and competitiveness, although in this relationship, the degree of access and exploitation of the companies to this knowledge plays a fundamental role, which depends on a series of elements both internal and external to the company.Keywords: absorptive capacity, clusters, innovation, knowledge
Procedia PDF Downloads 1311020 Improved Color-Based K-Mean Algorithm for Clustering of Satellite Image
Authors: Sangeeta Yadav, Mantosh Biswas
Abstract:
In this paper, we proposed an improved color based K-mean algorithm for clustering of satellite Image (SAR). Our method comprises of two stages. The first step is an interactive selection process where users are required to input the number of colors (ncolor), number of clusters, and then they are prompted to select the points in each color cluster. In the second step these points are given as input to K-mean clustering algorithm that clusters the image based on color and Minimum Square Euclidean distance. The proposed method reduces the mixed pixel problem to a great extent.Keywords: cluster, ncolor method, K-mean method, interactive selection process
Procedia PDF Downloads 2971019 A Bayesian Hierarchical Poisson Model with an Underlying Cluster Structure for the Analysis of Measles in Colombia
Authors: Ana Corberan-Vallet, Karen C. Florez, Ingrid C. Marino, Jose D. Bermudez
Abstract:
In 2016, the Region of the Americas was declared free of measles, a viral disease that can cause severe health problems. However, since 2017, measles has reemerged in Venezuela and has subsequently reached neighboring countries. In 2018, twelve American countries reported confirmed cases of measles. Governmental and health authorities in Colombia, a country that shares the longest land boundary with Venezuela, are aware of the need for a strong response to restrict the expanse of the epidemic. In this work, we apply a Bayesian hierarchical Poisson model with an underlying cluster structure to describe disease incidence in Colombia. Concretely, the proposed methodology provides relative risk estimates at the department level and identifies clusters of disease, which facilitates the implementation of targeted public health interventions. Socio-demographic factors, such as the percentage of migrants, gross domestic product, and entry routes, are included in the model to better describe the incidence of disease. Since the model does not impose any spatial correlation at any level of the model hierarchy, it avoids the spatial confounding problem and provides a suitable framework to estimate the fixed-effect coefficients associated with spatially-structured covariates.Keywords: Bayesian analysis, cluster identification, disease mapping, risk estimation
Procedia PDF Downloads 1511018 A Statistical Approach to Classification of Agricultural Regions
Authors: Hasan Vural
Abstract:
Turkey is a favorable country to produce a great variety of agricultural products because of her different geographic and climatic conditions which have been used to divide the country into four main and seven sub regions. This classification into seven regions traditionally has been used in order to data collection and publication especially related with agricultural production. Afterwards, nine agricultural regions were considered. Recently, the governmental body which is responsible of data collection and dissemination (Turkish Institute of Statistics-TIS) has used 12 classes which include 11 sub regions and Istanbul province. This study aims to evaluate these classification efforts based on the acreage of ten main crops in a ten years time period (1996-2005). The panel data grouped in 11 subregions has been evaluated by cluster and multivariate statistical methods. It was concluded that from the agricultural production point of view, it will be rather meaningful to consider three main and eight sub-agricultural regions throughout the country.Keywords: agricultural region, factorial analysis, cluster analysis,
Procedia PDF Downloads 4161017 Cross-Cultural Analysis of the Impact of Project Atmosphere on Project Success and Failure
Authors: Omer Livvarcin, Mary Kay Park, Michael Miles
Abstract:
The current literature includes a few studies that mention the impact of relations between teams, the business environment, and experiences from previous projects. There is, however, limited research that treats the phenomenon of project atmosphere (PA) as a whole. This is especially true of research identifying parameters and sub-parameters, which allow project management (PM) teams to build a project culture that ultimately imbues project success. This study’s findings identify a number of key project atmosphere parameters and sub-parameters that affect project management success. One key parameter identified in the study is a cluster related to cultural concurrence, including artifacts such as policies and mores, values, perceptions, and assumptions. A second cluster centers on motivational concurrence, including such elements as project goals and team-member expectations, moods, morale, motivation, and organizational support. A third parameter cluster relates to experiential concurrence, with a focus on project and organizational memory, previous internal PM experience, and external environmental PM history and experience). A final cluster of parameters is comprised of those falling in the area of relational concurrence, including inter/intragroup relationships, role conflicts, and trust. International and intercultural project management data was collected and analyzed from the following countries: Canada, China, Nigeria, South Korea and Turkey. The cross-cultural nature of the data set suggests increased confidence that the findings will be generalizable across cultures and thus applicable for future international project management success. The intent of the identification of project atmosphere as a critical project management element is that a clear understanding of the dynamics of its sub-parameters upon projects may significantly improve the odds of success of future international and intercultural projects.Keywords: project management, project atmosphere, cultural concurrence, motivational concurrence, relational concurrence
Procedia PDF Downloads 3181016 Genetic Divergence and Morphogenic Analysis of Sugarcane Red Rot Pathogen Colletotrichum falcatum under South Gujarat Condition
Authors: Prittesh Patel, Ramar Krishnamurthy
Abstract:
In the present study, nine strains of C. falcatum obtained from different places and cultivars were characterized for sporulation, growth rate, and 18S rRNA gene sequence. All isolates had characteristic fast-growing sparse and fleecy aerial mycelia on potato dextrose agar with sickle shape conidia (length x width: varied from 20.0 X 3.89 to 25.52 X 5.34 μm) and blackish to orange acervuli with setae (length x width: varied from 112.37X 2.78 to 167.66 X 6.73 μm). They could be divided into two groups on the base of morphology; P1, dense mycelia with concentric growth and P2, sparse mycelia with uneven growth. Genomic DNA isolation followed by PCR amplification with ITS1 and ITS4 primer produced ~550bp amplicons for all isolates. Phylogeny generated by 18S rRNA gene sequence confirmed the variation in isolates and mainly grouped into two clusters; cluster 1 contained CoC671 isolates (cfNAV and cfPAR) and Co86002 isolate (cfTIM). Other isolates cfMAD, cfKAM, and cfMAR were grouped into cluster 2. Remaining isolates did not fall into any cluster. Isolate cfGAN, collected from Co86032 was found highly diverse of all the nine isolates. In a nutshell, we found considerable genetic divergence and morphological variation within C. falcatum accessions collected from different areas of south Gujarat, India and these can be used for the breeding program.Keywords: Colletotrichum falcatum, ITS, morphology, red rot, sugarcane
Procedia PDF Downloads 1271015 Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis
Authors: Madhat Abu Al-Naeem, Ismail Yusoff, Ng Tham Fatt, Yatimah Alias
Abstract:
Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process.Keywords: dendrogram and cluster analysis, water facies, Eocene saline invasion and sea water invasion, nitrification and denitrification
Procedia PDF Downloads 3651014 A 30 Year Audit of the Vascular Complications of Ports: Permanent Intravascular Access Devices
Authors: S. Kershaw, P. J. Barry, K. Webb
Abstract:
Background: Cystic Fibrosis (CF) is a chronic lung disease where patients have chronic lung infection punctuated by acute exacerbations that require intermittent intravenous (IV) antibiotics during their lives. With time, peripheral venous access can become difficult and limited. Accessing these veins can become arduous, traumatic, painful and unworkable. A permanent intravascular access device or Port is a small device that is inserted into the central venous system that allows the delivery of medicine eliminating the need for peripheral venous access. Ports represent a convenient and efficient method when venous access is required on a permanent basis however they are also associated with significant vascular complications. Superior Vena Cava Obstruction (SVCO) is a rare but significant vascular complication of ports in this setting. Objective: We aimed to look at a single CF centre’s experience of port-related SVCO over a thirty year period. Methods: Retrospective data was extracted using patient’s notes, electronic radiological reports and local databases over a period in excess of 30 years from 1982 to 2014. Results: 13 patients were identified with SVCO as a result of their port. 11 patients had CF (9 female, 2 male), one male patient had Primary Ciliary Dyskinesia and one female patient had severe Asthma. The mean port function was 1532 days (range 110 – 4049) and the mean age at SVCO was 24 years (range 11.1 to 36.5 years). The most common symptoms were facial oedema (n=8, 61.5%) and dilated veins (n=6, 46.2%). 7 patients had their Ports removed after SVCO. 6 patients underwent attempted stenting (46.2%) and 6 did not. 4 out of the 6 who underwent stenting required/had re-intervention. 3 of the 6 patients who underwent stenting had symptom resolution, however, 4 of the 6 patients who were not stented had symptom resolution also. Symptom resolution was not guaranteed with stenting and required re-intervention in two-thirds. Conclusion: This case series represents the experience of one of the longest established CF units in the UK and represents the largest cohort ever reported in the literature.Keywords: ports, Superior Vena Cava Obstruction, cystic fibrosis, access devices
Procedia PDF Downloads 3221013 The Effect of Hypertrophy Strength Training Using Traditional Set vs. Cluster Set on Maximum Strength and Sprinting Speed
Authors: Bjornar Kjellstadli, Shaher A. I. Shalfawi
Abstract:
The aim of this study was to investigate the effect of strength training Cluster set-method compared to traditional set-method 30 m sprinting time and maximum strength in squats and bench-press. Thirteen Physical Education students, 7 males and 6 females between the age of 19-28 years old were recruited. The students were random divided in three groups. Traditional set group (TSG) consist of 2 males and 2 females aged (±SD) (22.3 ± 1.5 years), body mass (79.2 ± 15.4 kg) and height (177.5 ± 11.3 cm). Cluster set group (CSG) consist of 3 males and 2 females aged (22.4 ± 3.29 years), body mass (81.0 ± 24.0 kg) and height (179.2 ± 11.8 cm) and a control group (CG) consist of 2 males and 2 females aged (21.5 ± 2.4 years), body mass (82.1 ± 17.4 kg) and height (175.5 ± 6.7 cm). The intervention consisted of performing squat and bench press at 70% of 1RM (twice a week) for 8 weeks using 10 repetition and 4 sets. Two types of strength-training methods were used , cluster set (CS) where the participants (CSG) performed 2 reps 5 times with a 10 s recovery in between reps and 50 s recovery between sets, and traditional set (TS) where the participants (TSG) performed 10 reps each set with 90 s recovery in between sets. The pre-tests and post-tests conducted were 1 RM in both squats and bench press, and 10 and 30 m sprint time. The 1RM test were performed with Eleiko XF barbell (20 kg), Eleiko weight plates, rack and bench from Hammerstrength. The speed test was measured with the Brower speed trap II testing system (Brower Timing Systems, Utah, USA). The participants received an individualized training program based on the pre-test of the 1RM. In addition, a mid-term test of 1RM was carried out to adjust training intensity. Each training session were supervised by the researchers. Beast sensors (Milano, Italy) were also used to monitor and quantify the training load for the participants. All groups had a statistical significant improvement in bench press 1RM (TSG 1RM from 56.3 ± 28.9 to 66 ± 28.5 kg; CSG 1RM from 69.8 ± 33.5 to 77.2 ± 34.1 kg and CG 1RM from 67.8 ± 26.6 to 72.2 ± 29.1 kg), whereas only the TSG (1RM from 84.3 ± 26.8 to 114.3 ± 26.5 kg) and CSG (1RM from 100.4 ± 33.9 to 129 ± 35.1 kg) had a statistical significant improvement in Squats 1RM (P < 0.05). However, a between groups examination reveals that there were no marked differences in 1RM squat performance between TSG and CSG (P > 0.05) and both groups had a marked improvements compared to the CG (P < 0.05). On the other hand, no differences between groups were observed in Bench press 1RM. The within groups results indicate that none of the groups had any marked improvement in the distances from 0-10 m and 10-30 m except the CSG which had a notable improvement in the distance from 10-30 m (-0.07 s; P < 0.05). Furthermore, no differences in sprinting abilities were observed between groups. The results from this investigation indicate that traditional set strength training at 70% of 1RM gave close results compared to Cluster set strength training at the same intensity. However, the results indicate that the cluster set had an effect on flying time (10-30 m) indicating that the velocity at which those repetitions were performed could be the explanation factor of this this improvement.Keywords: physical performance, 1RM, pushing velocity, velocity based training
Procedia PDF Downloads 164