Search results for: rough kernel
336 Transdermal Delivery of Sodium Diclofenac from Palm Kernel Oil Esteres Nanoemulsions
Authors: Malahat Rezaee, Mahiran Basri, Abu Bakar Salleh, Raja Noor Zaliha Raja Abdul Rahman
Abstract:
Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that has been progressively considered in pharmaceutical science for transdermal delivery of the drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using the surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils, contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research aimed to study the effect of terpene type and concentration on sodium diclofenac permeation from palm kernel oil esters nanoemulsions and physicochemical properties of the nanoemulsions systems. The effect of various terpenes of geraniol, menthone, menthol, cineol and nerolidol at different concentrations of 0.5, 1.0, 2.0, and 4.0% on permeation of sodium diclofenac were evaluated using Franz diffusion cells and rat skin as permeation membrane. The results of this part demonstrated that all terpenes showed promoting effect on sodium diclofenac penetration. However, menthol and menthone at all concentrations showed significant effects (<0.05) on drug permeation. The most outstanding terpene was menthol with the most significant effect for skin permeability of sodium diclofenac. The effect of terpenes on physicochemical properties of nanoemulsion systems was investigated on the parameters of particle size, zeta potential, pH, viscosity and electrical conductivity. The result showed that all terpenes had the significant effect on particle size and non-significant effects on the zeta potential of the nanoemulsion systems. The effect of terpenes was significant on pH, excluding the menthone at concentrations of 0.5 and 1.0%, and cineol and nerolidol at the concentration of 2.0%. Terpenes also had significant effect on viscosity of nanoemulsions exception of menthone and cineol at the concentration of 0.5%. The result of conductivity measurements showed that all terpenes at all concentration except cineol at the concentration of 0.5% represented significant effect on electrical conductivity.Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, terpenes, skin permeation
Procedia PDF Downloads 421335 General Purpose Graphic Processing Units Based Real Time Video Tracking System
Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai
Abstract:
Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.Keywords: connected components, embrace threads, local weighted kernel, structuring elements
Procedia PDF Downloads 440334 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection
Authors: Hamidullah Binol, Abdullah Bal
Abstract:
Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods
Procedia PDF Downloads 431333 Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow
Authors: Kirti Singh, Kesheo Prasad
Abstract:
A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region.Keywords: turbulence, bed roughness, logarithmic law, shear stress correlations, ADV, Reynolds shear stress
Procedia PDF Downloads 107332 Median-Based Nonparametric Estimation of Returns in Mean-Downside Risk Portfolio Frontier
Authors: H. Ben Salah, A. Gannoun, C. de Peretti, A. Trabelsi
Abstract:
The Downside Risk (DSR) model for portfolio optimisation allows to overcome the drawbacks of the classical mean-variance model concerning the asymetry of returns and the risk perception of investors. This model optimization deals with a positive definite matrix that is endogenous with respect to portfolio weights. This aspect makes the problem far more difficult to handle. For this purpose, Athayde (2001) developped a new recurcive minimization procedure that ensures the convergence to the solution. However, when a finite number of observations is available, the portfolio frontier presents an appearance which is not very smooth. In order to overcome that, Athayde (2003) proposed a mean kernel estimation of the returns, so as to create a smoother portfolio frontier. This technique provides an effect similar to the case in which we had continuous observations. In this paper, taking advantage on the the robustness of the median, we replace the mean estimator in Athayde's model by a nonparametric median estimator of the returns. Then, we give a new version of the former algorithm (of Athayde (2001, 2003)). We eventually analyse the properties of this improved portfolio frontier and apply this new method on real examples.Keywords: Downside Risk, Kernel Method, Median, Nonparametric Estimation, Semivariance
Procedia PDF Downloads 492331 A Calibration Method of Portable Coordinate Measuring Arm Using Bar Gauge with Cone Holes
Authors: Rim Chang Hyon, Song Hak Jin, Song Kwang Hyok, Jong Ki Hun
Abstract:
The calibration of the articulated arm coordinate measuring machine (AACMM) is key to improving calibration accuracy and saving calibration time. To reduce the time consumed for calibration, we should choose the proper calibration gauges and develop a reasonable calibration method. In addition, we should get the exact optimal solution by accurately removing the rough errors within the experimental data. In this paper, we present a calibration method of the portable coordinate measuring arm (PCMA) using the 1.2m long bar guage with cone-holes. First, we determine the locations of the bar gauge and establish an optimal objective function for identifying the structural parameter errors. Next, we make a mathematical model of the calibration algorithm and present a new mathematical method to remove the rough errors within calibration data. Finally, we find the optimal solution to identify the kinematic parameter errors by using Levenberg-Marquardt algorithm. The experimental results show that our calibration method is very effective in saving the calibration time and improving the calibration accuracy.Keywords: AACMM, kinematic model, parameter identify, measurement accuracy, calibration
Procedia PDF Downloads 83330 Physically Informed Kernels for Wave Loading Prediction
Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross
Abstract:
Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design
Procedia PDF Downloads 192329 Home Range and Spatial Interaction Modelling of Black Bears
Authors: Fekadu L. Bayisa, Elvan Ceyhan, Todd D. Steury
Abstract:
Interaction between individuals within the same species is an important component of population dynamics. An interaction can be either static (based on spatial overlap) or dynamic (based on movement interactions). Using GPS collar data, we can quantify both static and dynamic interactions between black bears. The goal of this work is to determine the level of black bear interactions using the 95% and 50% home ranges, as well as to model black bear spatial interactions, which could be attraction, avoidance/repulsion, or a lack of interaction at all, to gain new insights and improve our understanding of ecological processes. Recent methodological developments in home range estimation, inhomogeneous multitype/cross-type summary statistics, and envelope testing methods are explored to study the nature of black bear interactions. Our findings, in general, indicate that the black bears of one type in our data set tend to cluster around another type.Keywords: autocorrelated kernel density estimator, cross-type summary function, inhomogeneous multitype Poisson process, kernel density estimator, minimum convex polygon, pointwise and global envelope tests
Procedia PDF Downloads 81328 Numerical Multi-Scale Modeling of Rubber Friction on Rough Pavements Using Finite Element Method
Authors: Ashkan Nazari, Saied Taheri
Abstract:
Knowledge of tire-pavement interaction plays a crucial role in designing safer and more reliable tires. Characterizing the tire-pavement frictional interaction leads to a better understanding of vehicle performance in braking and acceleration. In this work, we devise a multi-scale simulation approach to incorporate the effect of pavement surface asperities in different length-scales. We construct two- and three-dimensional Finite Element (FE) models to simulate the interaction between a rubber block and a rough pavement surface with asperities in different scales. To achieve this, the road profile is scanned via a laser profilometer and the obtained asperities are implemented in an FE software (ABAQUS) in micro and macro length-scales. The hysteresis friction, which is due to the dissipative nature of rubber, is the main component of the friction force and therefore is the subject of study in this work. Using different scales not only will assist in characterizing the pavement asperities with sufficient details but also, it is highly effective in preventing extreme local deformations and stress gradients which results in divergence in FE simulations. The simulation results will be validated with experimental results as well as the results reported in the literature.Keywords: friction, finite element, multi-scale modeling, rubber
Procedia PDF Downloads 136327 Non-Linear Transformation of Bulk Acoustic Waves at Oblique Incidence on Plane Solid Boundary
Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy
Abstract:
The transformation of two types of acoustic waves can occur on a flat interface between two solids at oblique incidence of longitudinal and shear bulk acoustic waves (BAW). This paper presents the results of experimental studies of the properties of reflection and propagation of longitudinal wave and generation of second and third longitudinal and shear harmonics of BAW at oblique incidence of longitudinal BAW on a flat rough boundary between two solids. The experimental sample was a rectangular isosceles pyramid made of D16 aluminum alloy with the plane parallel bases cylinder made of D16 aluminum alloy pressed to the base. The piezoelectric lithium niobate transducer with a resonance frequency of 5 MHz was secured to one face of the pyramid to generate a longitudinal wave. Longitudinal waves emitted by this transducer felt at an angle of 45° to the interface between two solids and reflected at the same angle. On the opposite face of the pyramid, and on the flat side of the cylinder was attached longitudinal transducer with resonance frequency of 10 MHz or the shear transducer with resonance frequency of 15 MHz. These transducers also effectively received signal at a frequency of 5 MHz. In the spectrum of the transmitted and reflected BAW was observed shear and longitudinal waves at a frequency of 5 MHz, as well as longitudinal harmonic at a frequency harmonic of 10 MHz and a shear harmonic at frequency of 15 MHz. The effect of reversing changing of external pressure applied to the rough interface between two solids on the value of the first and higher harmonics of the BAW at oblique incidence on the interface of the longitudinal BAW was experimentally investigated. In the spectrum of the reflected signal from the interface, there was a decrease of amplitudes of the first harmonics of the signal, and non-monotonic dependence of the second and third harmonics of shear wave with an increase of the static pressure applied to the interface. In the spectrum of the transmitted signal growth of the first longitudinal and shear harmonic amplitude and non-monotonic dependence - first increase and then decrease in the amplitude of the second and third longitudinal shear harmonic with increasing external static pressure was observed. These dependencies were hysteresis at reversing changing of external pressure. When pressure applied to the border increased, acoustic contact between the surfaces improves. This increases the energy of the transmitted elastic wave and decreases the energy of the reflected wave. The second longitudinal acoustic harmonics generation was associated with the Hertz nonlinearity on the interface of two pressed rough surfaces, the generation of the third harmonic was caused by shear hysteresis nonlinearity due to dry friction on a rough interface. This study was supported by the Russian Science Foundation (project №14-22-00042).Keywords: generation of acoustic harmonics, hysteresis nonlinearity, Hertz nonlinearity, transformation of acoustic waves
Procedia PDF Downloads 378326 Opportunity Development and Entrepreneurial Process
Authors: Abosede Mosunmola Odeseye
Abstract:
The sustainability of nations’ economies today have proven to be unrealistic in a constantly changing world without appropriate accordance to entrepreneurship role and its processes. This role has therefore proven to be a product of the available and discoverable opportunities by an individual/organisation in any pattern – innovation, discovery, diffusion, imitation amidst possible challenges. In light of these, this paper examined the relationship between opportunity development and entrepreneurial processes as well as the factors determining individual’s opportunity development and the success of entrepreneurial processes. Systematic review method was adopted for selecting relevant academic materials. The theoretical base of this paper was anchored on Schumpeter’s entrepreneurial innovation model and Drucker and Stevenson’s opportunity-based entrepreneurship theory. Based on the reviewed literature, it was discovered that rough business idea “opportunity” in any form – techniques/product encounter various obstacles to achieve its development, acceptability and sustainability. In essence, the findings revealed that the birth of every opportunity is as a result of the individual/organisation and environmental factors to be able to scale through the whole process successfully. Due to the outcome of this paper, it was recommended that the organisations/government should endeavour to create an enabling environment for a rough business idea to come to life amidst the hurdles of the entrepreneurial process.Keywords: entrepreneurial process, entrepreneurship, opportunity, opportunity development, organisation, sustainability
Procedia PDF Downloads 240325 Comparison of Receiver Operating Characteristic Curve Smoothing Methods
Authors: D. Sigirli
Abstract:
The Receiver Operating Characteristic (ROC) curve is a commonly used statistical tool for evaluating the diagnostic performance of screening and diagnostic test with continuous or ordinal scale results which aims to predict the presence or absence probability of a condition, usually a disease. When the test results were measured as numeric values, sensitivity and specificity can be computed across all possible threshold values which discriminate the subjects as diseased and non-diseased. There are infinite numbers of possible decision thresholds along the continuum of the test results. The ROC curve presents the trade-off between sensitivity and the 1-specificity as the threshold changes. The empirical ROC curve which is a non-parametric estimator of the ROC curve is robust and it represents data accurately. However, especially for small sample sizes, it has a problem of variability and as it is a step function there can be different false positive rates for a true positive rate value and vice versa. Besides, the estimated ROC curve being in a jagged form, since the true ROC curve is a smooth curve, it underestimates the true ROC curve. Since the true ROC curve is assumed to be smooth, several smoothing methods have been explored to smooth a ROC curve. These include using kernel estimates, using log-concave densities, to fit parameters for the specified density function to the data with the maximum-likelihood fitting of univariate distributions or to create a probability distribution by fitting the specified distribution to the data nd using smooth versions of the empirical distribution functions. In the present paper, we aimed to propose a smooth ROC curve estimation based on the boundary corrected kernel function and to compare the performances of ROC curve smoothing methods for the diagnostic test results coming from different distributions in different sample sizes. We performed simulation study to compare the performances of different methods for different scenarios with 1000 repetitions. It is seen that the performance of the proposed method was typically better than that of the empirical ROC curve and only slightly worse compared to the binormal model when in fact the underlying samples were generated from the normal distribution.Keywords: empirical estimator, kernel function, smoothing, receiver operating characteristic curve
Procedia PDF Downloads 152324 The Impact of HKUST-1 Metal-Organic Framework Pretreatment on Dynamic Acetaldehyde Adsorption
Authors: M. François, L. Sigot, C. Vallières
Abstract:
Volatile Organic Compounds (VOCs) are a real health issue, particularly in domestic indoor environments. Among these VOCs, acetaldehyde is frequently monitored in dwellings ‘air, especially due to smoking and spontaneous emissions from the new wall and soil coverings. It is responsible for respiratory complaints and is classified as possibly carcinogenic to humans. Adsorption processes are commonly used to remove VOCs from the air. Metal-Organic Frameworks (MOFs) are a promising type of material for high adsorption performance. These hybrid porous materials composed of metal inorganic clusters and organic ligands are interesting thanks to their high porosity and surface area. The HKUST-1 (also referred to as MOF-199) is a copper-based MOF with the formula [Cu₃(BTC)₂(H₂O)₃]n (BTC = benzene-1,3,5-tricarboxylate) and exhibits unsaturated metal sites that can be attractive sites for adsorption. The objective of this study is to investigate the impact of HKUST-1 pretreatment on acetaldehyde adsorption. Thus, dynamic adsorption experiments were conducted in 1 cm diameter glass column packed with 2 cm MOF bed height. MOF were sieved to 630 µm - 1 mm. The feed gas (Co = 460 ppmv ± 5 ppmv) was obtained by diluting a 1000 ppmv acetaldehyde gas cylinder in air. The gas flow rate was set to 0.7 L/min (to guarantee a suitable linear velocity). Acetaldehyde concentration was monitored online by gas chromatography coupled with a flame ionization detector (GC-FID). Breakthrough curves must allow to understand the interactions between the MOF and the pollutant as well as the impact of the HKUST-1 humidity in the adsorption process. Consequently, different MOF water content conditions were tested, from a dry material with 7 % water content (dark blue color) to water saturated state with approximately 35 % water content (turquoise color). The rough material – without any pretreatment – containing 30 % water serves as a reference. First, conclusions can be drawn from the comparison of the evolution of the ratio of the column outlet concentration (C) on the inlet concentration (Co) as a function of time for different HKUST-1 pretreatments. The shape of the breakthrough curves is significantly different. The saturation of the rough material is slower (20 h to reach saturation) than that of the dried material (2 h). However, the breakthrough time defined for C/Co = 10 % appears earlier in the case of the rough material (0.75 h) compared to the dried HKUST-1 (1.4 h). Another notable difference is the shape of the curve before the breakthrough at 10 %. An abrupt increase of the outlet concentration is observed for the material with the lower humidity in comparison to a smooth increase for the rough material. Thus, the water content plays a significant role on the breakthrough kinetics. This study aims to understand what can explain the shape of the breakthrough curves associated to the pretreatments of HKUST-1 and which mechanisms take place in the adsorption process between the MOF, the pollutant, and the water.Keywords: acetaldehyde, dynamic adsorption, HKUST-1, pretreatment influence
Procedia PDF Downloads 237323 Come Play with Me: An Exploration of Rough-and-Tumble Play Interactions in Australian Families
Authors: Erin Louise Robinson, Emily Elsa Freeman
Abstract:
Rough-and-tumble play (RTP) is a physical and competitive type of play that parents engage in with their children. While past research has reported RTP to be the preferred play type for western fathers, the frequency of these interactions in Australian families have not been explored. With parental perceptions of play importance playing a major role in the frequency of activity engagement, the present study investigated how perceptions and parent gender impact on RTP play frequency. By utilising child gender in our approach, we also examined the historical trend of boys receiving more physical play interactions with their parents. Three hundred and seventy-nine respondents completed the study with their 0–10-year-old children. The results indicated that, in line with past research, parents engaged more frequently in RTP with their sons than their daughters. While, both mothers and fathers participated in RTP with their children, fathers perceived RTP to be of greater important to their child’s development than mothers did. Moreover, supporting previous findings, this more positive perception of the play was related to greater frequency of RTP in these father-child dyads. Although RTP literature remains heavily focussed on fathers, the fact that mothers are engaging in these interactions as well, establishes the need to explore maternal influences in future research.Keywords: parenting, play, child development, family, Australia
Procedia PDF Downloads 196322 Stability and Rheology of Sodium Diclofenac-Loaded and Unloaded Palm Kernel Oil Esters Nanoemulsion Systems
Authors: Malahat Rezaee, Mahiran Basri, Raja Noor Zaliha Raja Abdul Rahman, Abu Bakar Salleh
Abstract:
Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that have been progressively considered in pharmaceutical science for transdermal delivery of drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils; contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research was aimed to study the effect of O/S ratio on stability and rheological behavior of sodium diclofenac loaded and unloaded palm kernel oil esters nanoemulsion systems. The effect of different O/S ratio of 0.25, 0.50, 0.75, 1.00 and 1.25 on stability of the drug-loaded and unloaded nanoemulsion formulations was evaluated by centrifugation, freeze-thaw cycle and storage stability tests. Lecithin and cremophor EL were used as surfactant. The stability of the prepared nanoemulsion formulations was assessed based on the change in zeta potential and droplet size as a function of time. Instability mechanisms including coalescence and Ostwald ripening for the nanoemulsion system were discussed. In comparison between drug-loaded and unloaded nanoemulsion formulations, drug-loaded formulations represented smaller particle size and higher stability. In addition, the O/S ratio of 0.5 was found to be the best ratio of oil and surfactant for production of a nanoemulsion with the highest stability. The effect of O/S ratio on rheological properties of drug-loaded and unloaded nanoemulsion systems was studied by plotting the flow curves of shear stress (τ) and viscosity (η) as a function of shear rate (γ). The data were fitted to the Power Law model. The results showed that all nanoemulsion formulations exhibited non-Newtonian flow behaviour by displaying shear thinning behaviour. Viscosity and yield stress were also evaluated. The nanoemulsion formulation with the O/S ratio of 0.5 represented higher viscosity and K values. In addition, the sodium diclofenac loaded formulations had more viscosity and higher yield stress than drug-unloaded formulations.Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, rheoligy, stability
Procedia PDF Downloads 423321 Support Vector Machine Based Retinal Therapeutic for Glaucoma Using Machine Learning Algorithm
Authors: P. S. Jagadeesh Kumar, Mingmin Pan, Yang Yung, Tracy Lin Huan
Abstract:
Glaucoma is a group of visual maladies represented by the scheduled optic nerve neuropathy; means to the increasing dwindling in vision ground, resulting in loss of sight. In this paper, a novel support vector machine based retinal therapeutic for glaucoma using machine learning algorithm is conservative. The algorithm has fitting pragmatism; subsequently sustained on correlation clustering mode, it visualizes perfect computations in the multi-dimensional space. Support vector clustering turns out to be comparable to the scale-space advance that investigates the cluster organization by means of a kernel density estimation of the likelihood distribution, where cluster midpoints are idiosyncratic by the neighborhood maxima of the concreteness. The predicted planning has 91% attainment rate on data set deterrent on a consolidation of 500 realistic images of resolute and glaucoma retina; therefore, the computational benefit of depending on the cluster overlapping system pedestal on machine learning algorithm has complete performance in glaucoma therapeutic.Keywords: machine learning algorithm, correlation clustering mode, cluster overlapping system, glaucoma, kernel density estimation, retinal therapeutic
Procedia PDF Downloads 254320 Multi-Criteria Test Case Selection Using Ant Colony Optimization
Authors: Niranjana Devi N.
Abstract:
Test case selection is to select the subset of only the fit test cases and remove the unfit, ambiguous, redundant, unnecessary test cases which in turn improve the quality and reduce the cost of software testing. Test cases optimization is the problem of finding the best subset of test cases from a pool of the test cases to be audited. It will meet all the objectives of testing concurrently. But most of the research have evaluated the fitness of test cases only on single parameter fault detecting capability and optimize the test cases using a single objective. In the proposed approach, nine parameters are considered for test case selection and the best subset of parameters for test case selection is obtained using Interval Type-2 Fuzzy Rough Set. Test case selection is done in two stages. The first stage is the fuzzy entropy-based filtration technique, used for estimating and reducing the ambiguity in test case fitness evaluation and selection. The second stage is the ant colony optimization-based wrapper technique with a forward search strategy, employed to select test cases from the reduced test suite of the first stage. The results are evaluated using the Coverage parameters, Precision, Recall, F-Measure, APSC, APDC, and SSR. The experimental evaluation demonstrates that by this approach considerable computational effort can be avoided.Keywords: ant colony optimization, fuzzy entropy, interval type-2 fuzzy rough set, test case selection
Procedia PDF Downloads 668319 Hardware Implementation on Field Programmable Gate Array of Two-Stage Algorithm for Rough Set Reduct Generation
Authors: Tomasz Grzes, Maciej Kopczynski, Jaroslaw Stepaniuk
Abstract:
The rough sets theory developed by Prof. Z. Pawlak is one of the tools that can be used in the intelligent systems for data analysis and processing. Banking, medicine, image recognition and security are among the possible fields of utilization. In all these fields, the amount of the collected data is increasing quickly, but with the increase of the data, the computation speed becomes the critical factor. Data reduction is one of the solutions to this problem. Removing the redundancy in the rough sets can be achieved with the reduct. A lot of algorithms of generating the reduct were developed, but most of them are only software implementations, therefore have many limitations. Microprocessor uses the fixed word length, consumes a lot of time for either fetching as well as processing of the instruction and data; consequently, the software based implementations are relatively slow. Hardware systems don’t have these limitations and can process the data faster than a software. Reduct is the subset of the decision attributes that provides the discernibility of the objects. For the given decision table there can be more than one reduct. Core is the set of all indispensable condition attributes. None of its elements can be removed without affecting the classification power of all condition attributes. Moreover, every reduct consists of all the attributes from the core. In this paper, the hardware implementation of the two-stage greedy algorithm to find the one reduct is presented. The decision table is used as an input. Output of the algorithm is the superreduct which is the reduct with some additional removable attributes. First stage of the algorithm is calculating the core using the discernibility matrix. Second stage is generating the superreduct by enriching the core with the most common attributes, i.e., attributes that are more frequent in the decision table. Described above algorithm has two disadvantages: i) generating the superreduct instead of reduct, ii) additional first stage may be unnecessary if the core is empty. But for the systems focused on the fast computation of the reduct the first disadvantage is not the key problem. The core calculation can be achieved with a combinational logic block, and thus add respectively little time to the whole process. Algorithm presented in this paper was implemented in Field Programmable Gate Array (FPGA) as a digital device consisting of blocks that process the data in a single step. Calculating the core is done by the comparators connected to the block called 'singleton detector', which detects if the input word contains only single 'one'. Calculating the number of occurrences of the attribute is performed in the combinational block made up of the cascade of the adders. The superreduct generation process is iterative and thus needs the sequential circuit for controlling the calculations. For the research purpose, the algorithm was also implemented in C language and run on a PC. The times of execution of the reduct calculation in a hardware and software were considered. Results show increase in the speed of data processing.Keywords: data reduction, digital systems design, field programmable gate array (FPGA), reduct, rough set
Procedia PDF Downloads 219318 Characterising Stable Model by Extended Labelled Dependency Graph
Authors: Asraful Islam
Abstract:
Extended dependency graph (EDG) is a state-of-the-art isomorphic graph to represent normal logic programs (NLPs) that can characterize the consistency of NLPs by graph analysis. To construct the vertices and arcs of an EDG, additional renaming atoms and rules besides those the given program provides are used, resulting in higher space complexity compared to the corresponding traditional dependency graph (TDG). In this article, we propose an extended labeled dependency graph (ELDG) to represent an NLP that shares an equal number of nodes and arcs with TDG and prove that it is isomorphic to the domain program. The number of nodes and arcs used in the underlying dependency graphs are formulated to compare the space complexity. Results show that ELDG uses less memory to store nodes, arcs, and cycles compared to EDG. To exhibit the desirability of ELDG, firstly, the stable models of the kernel form of NLP are characterized by the admissible coloring of ELDG; secondly, a relation of the stable models of a kernel program with the handles of the minimal, odd cycles appearing in the corresponding ELDG has been established; thirdly, to our best knowledge, for the first time an inverse transformation from a dependency graph to the representing NLP w.r.t. ELDG has been defined that enables transferring analytical results from the graph to the program straightforwardly.Keywords: normal logic program, isomorphism of graph, extended labelled dependency graph, inverse graph transforma-tion, graph colouring
Procedia PDF Downloads 212317 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence
Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács
Abstract:
The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility
Procedia PDF Downloads 118316 Physical Properties and Resistant Starch Content of Rice Flour Residues Hydrolyzed by α-Amylase
Authors: Waranya Pongpaiboon, Warangkana Srichamnong, Supat Chaiyakul
Abstract:
Enzymatic modification of rice flour can produce highly functional derivatives use in food industries. This study aimed to evaluate the physical properties and resistant starch content of rice flour residues hydrolyzed by α-amylase. Rice flour hydrolyzed by α-amylase (60 and 300 u/g) for 1, 24 and 48 hours were investigated. Increasing enzyme concentration and hydrolysis time resulted in decreased rice flour residue’s lightness (L*) but increased redness (a*) and yellowness (b*) of rice flour residues. The resistant starch content and peak viscosity increased when hydrolysis time increased. Pasting temperature, trough viscosity, breakdown, final viscosity, setback and peak time of the hydrolyzed flours were not significantly different (p>0.05). The morphology of native flour was smooth without observable pores and polygonal with sharp angles and edges. However, after hydrolysis, granules with a slightly rough and porous surface were observed and a rough and porous surface was increased with increasing hydrolyzed time. The X-ray diffraction patterns of native flour showed A-type configuration, which hydrolyzed flour showed almost 0% crystallinity indicated that both amorphous and crystalline structures of starch were simultaneously hydrolyzed by α-amylase.Keywords: α-Amylase, enzymatic hydrolysis, pasting properties, resistant starch
Procedia PDF Downloads 219315 The Reproducibility and Repeatability of Modified Likelihood Ratio for Forensics Handwriting Examination
Authors: O. Abiodun Adeyinka, B. Adeyemo Adesesan
Abstract:
The forensic use of handwriting depends on the analysis, comparison, and evaluation decisions made by forensic document examiners. When using biometric technology in forensic applications, it is necessary to compute Likelihood Ratio (LR) for quantifying strength of evidence under two competing hypotheses, namely the prosecution and the defense hypotheses wherein a set of assumptions and methods for a given data set will be made. It is therefore important to know how repeatable and reproducible our estimated LR is. This paper evaluated the accuracy and reproducibility of examiners' decisions. Confidence interval for the estimated LR were presented so as not get an incorrect estimate that will be used to deliver wrong judgment in the court of Law. The estimate of LR is fundamentally a Bayesian concept and we used two LR estimators, namely Logistic Regression (LoR) and Kernel Density Estimator (KDE) for this paper. The repeatability evaluation was carried out by retesting the initial experiment after an interval of six months to observe whether examiners would repeat their decisions for the estimated LR. The experimental results, which are based on handwriting dataset, show that LR has different confidence intervals which therefore implies that LR cannot be estimated with the same certainty everywhere. Though the LoR performed better than the KDE when tested using the same dataset, the two LR estimators investigated showed a consistent region in which LR value can be estimated confidently. These two findings advance our understanding of LR when used in computing the strength of evidence in handwriting using forensics.Keywords: confidence interval, handwriting, kernel density estimator, KDE, logistic regression LoR, repeatability, reproducibility
Procedia PDF Downloads 124314 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: video tracking, particle filter, greedy snake, neural network
Procedia PDF Downloads 341313 A Dynamic Solution Approach for Heart Disease Prediction
Authors: Walid Moudani
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets
Procedia PDF Downloads 410312 An Improved Multiple Scattering Reflectance Model Based on Specular V-Cavity
Authors: Hongbin Yang, Mingxue Liao, Changwen Zheng, Mengyao Kong, Chaohui Liu
Abstract:
Microfacet-based reflection models are widely used to model light reflections for rough surfaces. Microfacet models have become the standard surface material building block for describing specular components with varying roughness; and yet, while they possess many desirable properties as well as produce convincing results, their design ignores important sources of scattering, which can cause a significant loss of energy. Specifically, they only simulate the single scattering on the microfacets and ignore the subsequent interactions. As the roughness increases, the interaction will become more and more important. So a multiple-scattering microfacet model based on specular V-cavity is presented for this important open problem. However, it spends much unnecessary rendering time because of setting the same number of scatterings for different roughness surfaces. In this paper, we design a geometric attenuation term G to compute the BRDF (Bidirectional reflection distribution function) of multiple scattering of rough surfaces. Moreover, we consider determining the number of scattering by deterministic heuristics for different roughness surfaces. As a result, our model produces a similar appearance of the objects with the state of the art model with significantly improved rendering efficiency. Finally, we derive a multiple scattering BRDF based on the original microfacet framework.Keywords: bidirectional reflection distribution function, BRDF, geometric attenuation term, multiple scattering, V-cavity model
Procedia PDF Downloads 115311 1H-NMR Spectra of Diesel-Biodiesel Blends to Evaluate the Quality and Determine the Adulteration of Biodiesel with Vegetable Oil
Authors: Luis F. Bianchessi, Gustavo G. Shimamoto, Matthieu Tubino
Abstract:
The use of biodiesel has been diffused in Brazil and all over the world by the trading of biodiesel (B100). In Brazil, the diesel oil currently being sold is a blend, containing 7% biodiesel (B7). In this context, it is necessary to develop methods capable of identifying this blend composition, especially regarding the biodiesel quality used for making these blends. In this study, hydrogen nuclear magnetic resonance spectra (1H-NMR) are proposed as a form of identifying and confirming the quality of type B10 blends (10% of biodiesel and 90% of diesel). Furthermore, the presence of vegetable oils, which may be from fuel adulteration or as an evidence of low degree of transesterification conversion during the synthesis of B100, may also be identified. Mixtures of diesel, vegetable oils and their respective biodiesel were prepared. Soybean oil and macauba kernel oil were used as raw material. The diesel proportion remained fixed at 90%. The other proportion (10%) was varied in terms of vegetable oil and biodiesel. The 1H-NMR spectra were obtained for each one of the mixtures, in order to find a correlation between the spectra and the amount of biodiesel, as well as the amount of residual vegetable oil. The ratio of the integral of the methylenic hydrogen H-2 of glycerol (exclusive of vegetable oil) with respect to the integral of the olefinic hydrogens (present in vegetable oil and biodiesel) was obtained. These ratios were correlated with the percentage of vegetable oil in each mixture, from 0% to 10%. The obtained correlation could be described by linear relationships with R2 of 0.9929 for soybean biodiesel and 0.9982 for macauba kernel biodiesel. Preliminary results show that the technique can be used to monitor the biodiesel quality in commercial diesel-biodiesel blends, besides indicating possible adulteration.Keywords: biodiesel, diesel, biodiesel quality, adulteration
Procedia PDF Downloads 623310 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 260309 Food Processing Technology and Packaging: A Case Study of Indian Cashew-Nut Industry
Authors: Parashram Jakappa Patil
Abstract:
India is the global leader in world cashew business and cashew-nut industry is one of the important food processing industries in world. However India is the largest producer, processor, exporter and importer eschew in the world. India is providing cashew to the rest of the world. India is meeting world demand of cashew. India has a tremendous potential of cashew production and export to other countries. Every year India earns more than 2000 cores rupees through cashew trade. Cashew industry is one of the important small scale industries in the country which is playing significant role in rural development. It is generating more than 400000 jobs at remote area and 95% cashew worker are women, it is giving income to poor cashew farmers, majority cashew processing units are small and cottage, it is helping to stop migration from young farmers for employment opportunities, it is motivation rural entrepreneurship development and it is also helping to environment protection etc. Hence India cashew business is very important agribusiness in India which has potential make inclusive development. World Bank and IMF recognized cashew-nut industry is one the important tool for poverty eradication at global level. It shows important of cashew business and its strong existence in India. In spite of such huge potential cashew processing industry is facing different problems such as lack of infrastructure ability, lack of supply of raw cashew, lack of availability of finance, collection of raw cashew, unavailability of warehouse, marketing of cashew kernels, lack of technical knowledge and especially processing technology and packaging of finished products. This industry has great prospects such as scope for more cashew cultivation and cashew production, employment generation, formation of cashew processing units, alcohols production from cashew apple, shield oil production, rural development, poverty elimination, development of social and economic backward class and environment protection etc. This industry has domestic as well as foreign market; India has tremendous potential in this regard. The cashew is a poor men’s crop but rich men’s food. The cashew is a source of income and livelihood for poor farmers. Cashew-nut industry may play very important role in the development of hilly region. The objectives of this paper are to identify problems of cashew processing and use of processing technology, problems of cashew kernel packaging, evolving of cashew processing technology over the year and its impact on final product and impact of good processing by adopting appropriate technology packaging on international trade of cashew-nut. The most important problem of cashew processing industry is that is processing and packaging. Bad processing reduce the quality of cashew kernel at large extent especially broken of cashew kernel which has very less price in market compare to whole cashew kernel and not eligible for export. On the other hand if there is no good packaging of cashew kernel will get moisture which destroy test of it. International trade of cashew-nut is depend of two things one is cashew processing and other is packaging. This study has strong relevance because cashew-nut industry is the labour oriented, where processing technology is not playing important role because 95% processing work is manual. Hence processing work was depending on physical performance of worker which makes presence of large workforce inevitable. There are many cashew processing units closed because they are not getting sufficient work force. However due to advancement in technology slowly this picture is changing and processing work get improve. Therefore it is interesting to explore all the aspects in context of cashew processing and packaging of cashew business.Keywords: cashew, processing technology, packaging, international trade, change
Procedia PDF Downloads 422308 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights
Authors: Nelson Bii, Christopher Ouma, John Odhiambo
Abstract:
Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths
Procedia PDF Downloads 137307 Design of a Real Time Closed Loop Simulation Test Bed on a General Purpose Operating System: Practical Approaches
Authors: Pratibha Srivastava, Chithra V. J., Sudhakar S., Nitin K. D.
Abstract:
A closed-loop system comprises of a controller, a response system, and an actuating system. The controller, which is the system under test for us, excites the actuators based on feedback from the sensors in a periodic manner. The sensors should provide the feedback to the System Under Test (SUT) within a deterministic time post excitation of the actuators. Any delay or miss in the generation of response or acquisition of excitation pulses may lead to control loop controller computation errors, which can be catastrophic in certain cases. Such systems categorised as hard real-time systems that need special strategies. The real-time operating systems available in the market may be the best solutions for such kind of simulations, but they pose limitations like the availability of the X Windows system, graphical interfaces, other user tools. In this paper, we present strategies that can be used on a general purpose operating system (Bare Linux Kernel) to achieve a deterministic deadline and hence have the added advantages of a GPOS with real-time features. Techniques shall be discussed how to make the time-critical application run with the highest priority in an uninterrupted manner, reduced network latency for distributed architecture, real-time data acquisition, data storage, and retrieval, user interactions, etc.Keywords: real time data acquisition, real time kernel preemption, scheduling, network latency
Procedia PDF Downloads 147