Search results for: placental mesenchymal dysplasisa
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 157

Search results for: placental mesenchymal dysplasisa

37 Potential Serological Biomarker for Early Detection of Pregnancy in Cows

Authors: Shveta Bathla, Preeti Rawat, Sudarshan Kumar, Rubina Baithalu, Jogender Singh Rana, Tushar Kumar Mohanty, Ashok Kumar Mohanty

Abstract:

Pregnancy is a complex process which includes series of events such as fertilization, formation of blastocyst, implantation of embryo, placental formation and development of fetus. The success of these events depends on various interactions which are synchronized by endocrine interaction between a receptive dam and competent embryo. These interactions lead to change in expression of hormones and proteins. But till date no protein biomarker is available which can be used to detect successful completion of these events. We employed quantitative proteomics approach to develop putative serological biomarker which has diagnostic applicability for early detection of pregnancy in cows. For this study, sera were collected from control (non-pregnant, n=6) and pregnant animals on successive days of pregnancy (7, 19, 45, n=6). The sera were subjected to depletion for removal of albumin using Norgen depletion kit. The tryptic peptides were labeled with iTRAQ. The peptides were pooled and fractionated using bRPLC over 80 min gradient. Then 12 fractions were injected to nLC for identification and quantitation in DDA mode using ESI. Identification using Mascot search revealed 2056 proteins out of which 352 proteins were differentially expressed. Twenty proteins were upregulated and twelve proteins were down-regulated with fold change > 1.5 and < 0.6 respectively (p < 0.05). The gene ontology studies of DEPs using Panther software revealed that majority of proteins are actively involved in catalytic activities, binding and enzyme regulatory activities. The DEP'S such as NF2, MAPK, GRIPI, UGT1A1, PARP, CD68 were further subjected to pathway analysis using KEGG and Cytoscape plugin Cluego that showed involvement of proteins in successful implantation, maintenance of pluripotency, regulation of luteal function, differentiation of endometrial macrophages, protection from oxidative stress and developmental pathways such as Hippo. Further efforts are continuing for targeted proteomics, western blot to validate potential biomarkers and development of diagnostic kit for early pregnancy diagnosis in cows.

Keywords: bRPLC, Cluego, ESI, iTRAQ, KEGG, Panther

Procedia PDF Downloads 449
36 RhoA Regulates E-Cadherin Intercellular Junctions in Oral Squamous Carcinoma Cells

Authors: Ga-Young Lee, Hyun-Man Kim

Abstract:

The modulation of the cell-cell junction is critical in epithelial-mesenchymal transition during tumorigenesis. As RhoA activity is known to be up-regulated to dissociate cell-cell junction by contracting acto-myosin complex in various cancer cells, the present study investigated if RhoA activity was also associated with the disruption of the cell-cell junction of oral cancer cells. We studied SCC-25 cells which are established from oral squamous cell carcinoma if their E-cadherin junction (ECJ) was under control of RhoA. Interestingly, development of ECJ of SCC-25 cells depended on the amount of fibronectin (FN) coated on the culture dishes. Seeded cells promptly aggregated to develop ECJ on the substrates coated with a low amount of FN, whereas they were retarded in the development of ECJ on the substrates coated with a high amount of FN. However, it was an unexpected finding that total RhoA activity was lower in the dissociated cells on the substrates of high FN than in the aggregated cells on the substrates of low FN. Treating the dissociated cells on the substrates of high FN with LPA, a RhoA activator, promoted the development to ECJ. In contrast, treating the aggregated cells on the substrates of low FN with Clostridium botulinum C3, a toxin decreasing RhoA activity, dissociated cells concomitant with the disruption of ECJ. Genetical knockdown of RhoA expression by transfecting RhoA siRNA also down-regulated the development of ECJ in SCC-25 cells. Furthermore, PMA, an activator of protein kinase C (PKC), down-regulated the development of ECJ junction of SCC-25 cells on the substrates coated with low FN. In contrast, GO6976, a PKC inhibitor, up-regulated the development of ECJ of SCC-25 cells with the activation of RhoA on the substrates coated with high FN. In conclusion, in the present study, we demonstrated unexpected results that the activation of RhoA promotes the development of ECJ, whereas the inhibition of RhoA retards the development of ECJ in SCC-25 cells.

Keywords: E-cadherin junction, oral squamous cell carcinoma, PKC, RhoA, SCC-25

Procedia PDF Downloads 322
35 Epoxomicin Affects Proliferating Neural Progenitor Cells of Rat

Authors: Bahaa Eldin A. Fouda, Khaled N. Yossef, Mohamed Elhosseny, Ahmed Lotfy, Mohamed Salama, Mohamed Sobh

Abstract:

Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on the brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have their maximum effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS e.g. lead, however; most of the agents cannot be identified with certainty due the defective nature of predictive toxicology models used. A novel alternative method that can overcome most of the limitations of conventional techniques is the use of 3D neurospheres system. This in-vitro system can recapitulate most of the changes during the period of brain development making it an ideal model for predicting neurotoxic effects. In the present study, we verified the possible DNT of epoxomicin which is a naturally occurring selective proteasome inhibitor with anti-inflammatory activity. Rat neural progenitor cells were isolated from rat embryos (E14) extracted from placental tissue. The cortices were aseptically dissected out from the brains of the fetuses and the tissues were triturated by repeated passage through a fire-polished constricted Pasteur pipette. The dispersed tissues were allowed to settle for 3 min. The supernatant was, then, transferred to a fresh tube and centrifuged at 1,000 g for 5 min. The pellet was placed in Hank’s balanced salt solution cultured as free-floating neurospheres in proliferation medium. Two doses of epoxomicin (1µM and 10µM) were used in cultured neuropsheres for a period of 14 days. For proliferation analysis, spheres were cultured in proliferation medium. After 0, 4, 5, 11, and 14 days, sphere size was determined by software analyses. The diameter of each neurosphere was measured and exported to excel file further to statistical analysis. For viability analysis, trypsin-EDTA solution were added to neurospheres for 3 min to dissociate them into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Epoxomicin was found to affect proliferation and viability of neuropsheres, these effects were positively correlated to doses and progress of time. This study confirms the DNT effects of epoxomicin on 3D neurospheres model. The effects on proliferation suggest possible gross morphologic changes while the decrease in viability propose possible focal lesion on exposure to epoxomicin during early childhood.

Keywords: neural progentor cells, epoxomicin, neurosphere, medical and health sciences

Procedia PDF Downloads 415
34 Evaluation of the Relationship between Fluorosis and Stylohyoid Ligament Calcification Detected on Panoramic Radiograph

Authors: Recep Duzsoz, Ozlem Gormez, Umit Memis, Selma Demer, Hikmet Orhan

Abstract:

Stylohyoid ligament is a connective tissue extending from apex of the styloid process to small horn of the hyoid bone. The normal length of styloid process ranges from 20 to 30 mm and measurements more than 30 mm is named stylohyoid ligament calcification (SLC). Fluorosis is a health problem that arises in individuals who intake large amounts of fluor long periods of time. The aim of this study was to investigate the effects of fluorosis on SLC. This study has been conducted on 100 patients who had SLC detected on panoramic radiograph. The study group was consisted of 50 patients with dental fluorosis and control group was consisted of 50 patients without dental fluorosis. Length and thickness of SLC were measured and the type of SLC was determined on panoramic radiographs. There was no statistically significant differences between the study and control group for SLC length, thickness and type. The thickness of left and right SLC of severe dental fluorosis group was statistically significant higher than moderate dental fluorosis group (p < 0,05). Cervicopharyngeal trauma, tonsillectomy, endocrine disease in menopause, persistent mesenchymal tissue, mechanical stress have reported as etiology of SLC in the literature and studies are still ongoing. It was reported that fluorosis as a factor on calcification of some ligaments in body (posterior longitudunal ligament, ligamentum flavum and transverse atlantal ligament) previously but relationship between fluorosis with SLC was not investigated. Our study is unique because it is the first study on SLC thickness measurements on panoramic radiographs and the relationship between fluorosis and SLC to our knowledge. According to the obtained results, it is thought that fluorosis may have an effect on SLC in thickness due to the relationship between dental fluorosis severity with SLC thickness and this study will contribute to the progress of the future studies.

Keywords: calcification, fluorosis, ligament, stylohyoid

Procedia PDF Downloads 220
33 Plasma Engineered Nanorough Substrates for Stem Cells in vitro Culture

Authors: Melanie Macgregor-Ramiasa, Isabel Hopp, Patricia Murray, Krasimir Vasilev

Abstract:

Stem cells based therapies are one of the greatest promises of new-age medicine due to their potential to help curing most dreaded conditions such as cancer, diabetes and even auto-immune disease. However, establishing suitable in vitro culture materials allowing to control the fate of stem cells remain a challenge. Amongst the factor influencing stem cell behavior, substrate chemistry and nanotopogaphy are particularly critical. In this work, we used plasma assisted surface modification methods to produce model substrates with tailored nanotopography and controlled chemistry. Three different sizes of gold nanoparticles were bound to amine rich plasma polymer layers to produce homogeneous and gradient surface nanotopographies. The outer chemistry of the substrate was kept constant for all substrates by depositing a thin layer of our patented biocompatible polyoxazoline plasma polymer on top of the nanofeatures. For the first time, protein adsorption and stem cell behaviour (mouse kidney stem cells and mesenchymal stem cells) were evaluated on nanorough plasma deposited polyoxazoline thin films. Compared to other nitrogen rich coatings, polyoxazoline plasma polymer supports the covalent binding of proteins. Moderate surface nanoroughness, in both size and density, triggers cell proliferation. In association with polyoxazoline coating, cell proliferation is further enhanced on nanorough substrates. Results are discussed in term of substrates wetting properties. These findings provide valuable insights on the mechanisms governing the interactions between stem cells and their growth support.

Keywords: nanotopography, stem cells, differentiation, plasma polymer, oxazoline, gold nanoparticles

Procedia PDF Downloads 272
32 Role of Micro-Patterning on Stem Cell-Material Interaction Modulation and Cell Fate

Authors: Lay Poh Tan, Chor Yong Tay, Haiyang Yu

Abstract:

Micro-contact printing is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact technique. Here, we adopt this method to print proteins of different dimensions on our biodegradable polymer substrates. We started off with printing 20-500 μm scale lanes of fibronectin to engineer the shape of bone marrow derived human mesenchymal stem cell (hMSCs). After 8 hours of culture, the hMSCs adopted elongated shapes, and upon analysis of the gene expressions, genes commonly associated with myogenesis (GATA-4, MyoD1, cTnT and β-MHC) and neurogenesis (NeuroD, Nestin, GFAP, and MAP2) were up-regulated but gene expression associated to osteogenesis (ALPL, RUNX2, and SPARC) were either down modulated or remained at the nominal level. This is the first evidence that cellular morphology control via micropatterning could be used to modulate stem cell fate without external biochemical stimuli. We further our studies to modulate the focal adhesion (FA) instead of the macro shape of cells. Micro-contact printed islands of different smaller dimensions were investigated. We successfully regulated the FAs into dense FAs and elongated FAs by micropatterning. Additionally, the combined effects of hard (40.4 kPa), and intermediate (10.6 kPa) PA gel and FAs patterning on hMSCs differentiation were studied. Results showed that FA and matrix compliance plays an important role in hMSCs differentiation, and there is a cross-talk between different physical stimulants and the significance of these stimuli can only be realized if they are combined at the optimum level.

Keywords: micro-contact printing, polymer substrate, cell-material interaction, stem cell differentiation

Procedia PDF Downloads 166
31 A pilot Study of Umbilical Cord Mini-Clamp

Authors: Seng Sing Tan

Abstract:

Clamping of the umbilical cord after birth is widely practiced as a part of labor management. Further improvements were proposed to produce a smaller, lighter and more comfortable clamp while still maintaining current standards of clamping. A detachable holder was also developed to facilitate the clamping process. This pilot study on the efficacy of the mini-clamp was conducted to evaluate a tightness of the seal and a firm grip of the clamp on the umbilical cord. The study was carried out at National University Hospital, using 5 sets of placental cord. 18 samples of approximate 10 cm each were harvested. The test results showed that the mini-clamp was able to stop the flow through the cord after clamping without rupturing the cord. All slip tests passed with a load of 0.2 kg. In the pressure testing, 30kPa of saline was exerted into the umbilical veins. Although there was no physical sign of fluid leaking through the end secured by the mini-clamp, the results showed the pressure was not able to sustain the pressure set during the tests. 12 out of the 18 test samples have more than 7% of pressure drop in 30 seconds. During the pressure leak test, it was observed on several samples that when pressurized, small droplets of saline were growing on the outer surface of the cord lining membrane. It was thus hypothesized that the pressure drop was likely caused by the perfusion of the injected saline through the Wharton’s jelly and the cord lining membrane. The average pressure in the umbilical vein is roughly 2.67kPa (20 mmHg), less than 10% of 30kPa (~225mmHg), set for the pressure testing. As such, the pressure set could be over-specified, leading to undesirable outcomes. The development of the mini-clamp was an attempt to increase the comfort of newly born babies while maintaining the usability and efficacy of hospital grade umbilical cord clamp. The pressure leak in this study would be unfair to fully attribute it to the design and efficacy of the mini-clamp. Considering the unexpected leakage of saline through the umbilical membrane due to over-specified pressure exerted on the umbilical veins, improvements can definitely be made to the existing experimental setup to obtain a more accurate and conclusive outcome. If proven conclusive and effective, the mini-clamp with a detachable holder could be a smaller and potentially cheaper alternative to existing umbilical cord clamps. In addition, future clinical trials could be conducted to determine the user-friendliness of the mini-clamp and evaluate its practicality in the clinical setting by labor ward clinicians. A further potential improvement could be proposed on the sustainability factor of the mini-clamp. A biodegradable clamp would revolutionise the industry in this increasingly environmentally sustainability world.

Keywords: leak test, mini-clamp, slip test, umbilical cord

Procedia PDF Downloads 127
30 Prenatal Use of Serotonin Reuptake Inhibitors (SRIs) and Congenital Heart Anomalies (CHA): An Exploratory Pharmacogenetics Study

Authors: Aizati N. A. Daud, Jorieke E. H. Bergman, Wilhelmina S. Kerstjens-Frederikse, Pieter Van Der Vlies, Eelko Hak, Rolf M. F. Berger, Henk Groen, Bob Wilffert

Abstract:

Prenatal use of SRIs was previously associated with Congenital Heart Anomalies (CHA). The aim of the study is to explore whether pharmacogenetics plays a role in this teratogenicity using a gene-environment interaction study. A total of 33 case-mother dyads and 2 mother-only (children deceased) registered in EUROCAT Northern Netherlands were included in a case-only study. Five case-mother dyads and two mothers-only were exposed to SRIs (paroxetine=3, fluoxetine=2, venlafaxine=1, paroxetine and venlafaxine=1) in the first trimester of pregnancy. The remaining 28 case-mother dyads were not exposed to SRIs. Ten genes that encode the enzymes or proteins important in determining fetal exposure to SRIs or its mechanism of action were selected: CYPs (CYP1A2, CYP2C9, CYP2C19, CYP2D6), ABCB1 (placental P-glycoprotein), SLC6A4 (serotonin transporter) and serotonin receptor genes (HTR1A, HTR1B, HTR2A, and HTR3B). All included subjects were genotyped for 58 genetic variations in these ten genes. Logistic regression analyses were performed to determine the interaction odds ratio (OR) between genetic variations and SRIs exposure on the risk of CHA. Due to low phenotype frequencies of CYP450 poor metabolizers among exposed cases, the OR cannot be calculated. For ABCB1, there was no indication of changes in the risk of CHA with any of the ABCB1 SNPs in the children and their mothers. Several genetic variations of the serotonin transporter and receptors (SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 & rs6298, HTR3B rs1176744) were associated with an increased risk of CHA, but with too limited sample size to reach statistical significance. For SLC6A4 genetic variations, the mean genetic scores of the exposed case-mothers tended to be higher than the unexposed mothers (2.5 ± 0.8 and 1.88 ± 0.7, respectively; p=0.061). For SNPs of the serotonin receptors, the mean genetic score for exposed cases (children) tended to be higher than the unexposed cases (3.4 ± 2.2, and 1.9 ± 1.6, respectively; p=0.065). This study might be among the first to explore the potential gene-environment interaction between pharmacogenetic determinants and SRIs use on the risk of CHA. With small sample sizes, it was not possible to find a significant interaction. However, there were indications for a role of serotonin receptor polymorphisms in fetuses exposed to SRIs on fetal risk of CHA which warrants further investigation.

Keywords: gene-environment interaction, heart defects, pharmacogenetics, serotonin reuptake inhibitors, teratogenicity

Procedia PDF Downloads 215
29 Biologically Synthesised Silver Nanoparticles Induces Autophagy and JNK Signaling as a Pro-Survival Response by Abrogating Reactive Oxygen Species Accumulation in Cancer Cells

Authors: Sudeshna Mukherjee, Leena Fageria, R. Venkataramana Dilip, Rajdeep Chowdhury, Jitendra Panwar

Abstract:

Metal nanoparticles in recent years have gained importance in cancer therapy due to their enhanced permeability retention effect. Among various nanomaterials, silver nanoparticles (AgNPs) have received considerable attention due to their unique properties like conductivity, chemical stability, relative lower toxicity and outstanding therapeutic potential, such as anti-inflammatory, antimicrobial and anti-cancerous activities. In this study, we took a greener approach to synthesize silver nanoparticle from fungus and analyze its effects on both epithelial and mesenchymal derived cancer cells. Much research has been done on nanoparticle-induced apoptosis, but little is known about its role in autophagy. In our study, the silver nanoparticles were seen to induce autophagy which was analyzed by studying the expression of several autophagy markers like, LC3B-II and ATG genes. Monodansylcadaverine (MDC) assay also revealed the induction of autophagy upon treatment with AgNPs. Inhibition of autophagy by chloroquine resulted in increased cell death suggesting autophagy as a survival strategy adopted by the cells. In parallel to autophagy induction, silver nanoparticles induced ROS accumulation. Interestingly, autophagy inhibition by chloroquine increased ROS level, resulting in enhanced cell death. We further analyzed MAPK signaling upon AgNP treatment. It was observed that along with autophagy, activation of JNK signaling served as pro-survival while ERK signaling served as a pro-death signal. Our results provide valuable insights into the role of autophagy upon AgNP exposure and provide cues to probabilistic strategies to effectively sensitize cancer cells.

Keywords: autophagy, JNK signalling, reactive oxygen species, silver nanoparticles

Procedia PDF Downloads 350
28 First-Trimester Screening of Preeclampsia in a Routine Care

Authors: Tamar Grdzelishvili, Zaza Sinauridze

Abstract:

Introduction: Preeclampsia is a complication of the second trimester of pregnancy, which is characterized by high morbidity and multiorgan damage. Many complex pathogenic mechanisms are now implicated to be responsible for this disease (1). Preeclampsia is one of the leading causes of maternal mortality worldwide. Statistics are enough to convince you of the seriousness of this pathology: about 100,000 women die of preeclampsia every year. It occurs in 3-14% (varies significantly depending on racial origin or ethnicity and geographical region) of pregnant women, in 75% of cases - in a mild form, and in 25% - in a severe form. During severe pre-eclampsia-eclampsia, perinatal mortality increases by 5 times and stillbirth by 9.6 times. Considering that the only way to treat the disease is to end the pregnancy, the main thing is timely diagnosis and prevention of the disease. Identification of high-risk pregnant women for PE and giving prophylaxis would reduce the incidence of preterm PE. First-trimester screening model developed by the Fetal Medicine Foundation (FMF), which uses the Bayes-theorem to combine maternal characteristics and medical history together with measurements of mean arterial pressure, uterine artery pulsatility index, and serum placental growth factor, has been proven to be effective and have superior screening performance to that of traditional risk factor-based approach for the prediction of PE (2) Methods: Retrospective single center screening study. The study population consisted of women from the Tbilisi maternity hospital “Pineo medical ecosystem” who met the following criteria: they spoke Georgian, English, or Russian and agreed to participate in the study after discussing informed consent and answering questions. Prior to the study, the informed consent forms approved by the Institutional Review Board were obtained from the study subjects. Early assessment of preeclampsia was performed between 11-13 weeks of pregnancy. The following were evaluated: anamnesis, dopplerography of the uterine artery, mean arterial blood pressure, and biochemical parameter: Pregnancy-associated plasma protein A (PAPP-A). Individual risk assessment was performed with performed by Fast Screen 3.0 software ThermoFisher scientific. Results: A total of 513 women were recruited and through the study, 51 women were diagnosed with preeclampsia (34.5% in the pregnant women with high risk, 6.5% in the pregnant women with low risk; P<0.000 1). Conclusions: First-trimester screening combining maternal factors with uterine artery Doppler, blood pressure, and pregnancy-associated plasma protein-A is useful to predict PE in a routine care setting. More patient studies are needed for final conclusions. The research is still ongoing.

Keywords: first-trimester, preeclampsia, screening, pregnancy-associated plasma protein

Procedia PDF Downloads 69
27 Outcomes of Pregnancy in Women with TPO Positive Status after Appropriate Dose Adjustments of Thyroxin: A Prospective Cohort Study

Authors: Revathi S. Rajan, Pratibha Malik, Nupur Garg, Smitha Avula, Kamini A. Rao

Abstract:

This study aimed to analyse the pregnancy outcomes in patients with TPO positivity after appropriate L-Thyroxin supplementation with close surveillance. All pregnant women attending the antenatal clinic at Milann-The Fertility Center, Bangalore, India- from Aug 2013 to Oct 2014 whose booking TSH was more than 2.5 mIU/L were included along with those pregnant women with prior hypothyroidism who were TPO positive. Those with TPO positive status were vigorously managed with appropriate thyroxin supplementation and the doses were readjusted every 3 to 4 weeks until delivery. Women with recurrent pregnancy loss were also tested for TPO positivity and if tested positive, were monitored serially with TSH and fT4 levels every 3 to 4 weeks and appropriately supplemented with thyroxin when the levels fluctuated. The testing was done after an informed consent in all these women. The statistical software namely SAS 9.2, SPSS 15.0, Stata 10.1, MedCalc 9.0.1, Systat 12.0 and R environment ver.2.11.1 were used for the analysis of the data. 460 pregnant women were screened for thyroid dysfunction at booking of which 52% were hypothyroid. Majority of them (31.08%) were subclinically hypothyroid and the remaining were overt. 25% of the total no. of patients screened were TPO positive. The various pregnancy complications that were observed in the TPO positive women were gestational glucose intolerance [60%], threatened abortion [21%], midtrimester abortion [4.3%], premature rupture of membranes [4.3%], cervical funneling [4.3%] and fetal growth restriction [3.5%]. 95.6% of the patients who followed up till the end delivered beyond 30 weeks. 42.6% of these patients had previous history of recurrent abortions or adverse obstetric outcome and 21.7% of the delivered babies required NICU admission. Obstetric outcomes in our study in terms of midtrimester abortions, placental abruption, and preterm delivery improved for the better after close monitoring of the thyroid hormone [TSH and fT4] levels every 3 to 4 weeks with appropriate dose adjustment throughout pregnancy. Euthyroid women with TPO positive status enrolled in the study incidentally were those with recurrent abortions/infertility and required thyroxin supplements due to elevated Thyroid hormone (TSH, fT4) levels during the course of their pregnancy. Significant associations were found with age>30 years and Hyperhomocysteinemia [p=0.017], recurrent pregnancy loss or previous adverse obstetric outcomes [p=0.067] and APLA [p=0.029]. TPO antibody levels >600 I U/ml were significantly associated with development of gestational hypertension [p=0.041] and fetal growth restriction [p=0.082]. Euthyroid women with TPO positivity were also screened periodically to counter fluctuations of the thyroid hormone levels with appropriate thyroxin supplementation. Thus, early identification along with aggressive management of thyroid dysfunction and stratification of these patients based on their TPO status with appropriate thyroxin supplementation beginning in the first trimester will aid risk modulation and also help avert complications.

Keywords: TPO antibody, subclinical hypothyroidism, anti nuclear antibody, thyroxin

Procedia PDF Downloads 317
26 Phenotypic Characterization of Dental Pulp Stem Cells Isolated from Irreversible Pulpitis with Dental Pulp Stem Cells from Impacted Teeth

Authors: Soumya S., Manju Nidagodu Jayakumar, Vellore Kannan Gopinath

Abstract:

Dental pulp inflammation resulting from dental caries often leads to a pathologic condition known as irreversible pulpitis and the currently managed by root canal treatment. Extirpation of the entire pulp tissue is done during this procedure, and the canal space is filled with synthetic materials. Recent studies in the stem cell biology state that some portion of the irreversibly inflamed pulp tissue could be viable with progenitor cells, having the properties similar to that of Mesenchymal stem cells. Hence, we aim to isolate Dental Pulp Stem Cells (DPSCs) from patients diagnosed with severe irreversible pulpitis and characterize the cells for the MSC specific markers. The pulp tissue was collected from the dental clinic and subjected to collagenase/dispase digestion. The isolated cells were expanded in culture, and the phenotypic characterization was done using flow cytometry. MSC specific markers such as CD-90, CD-73, and CD-105 were analysed along with negative markers such as CD-14 and CD-45. The isolated cells expressed positive expression for CD markers with CD90 and CD105 ( > 95%) and CD73 (19%). The cells did not express the negative markers CD-14 and CD-45. The commercially available DPSCs from vital extracted teeth, preferably molar/wisdom teeth with large pulp cavity or incomplete root growth in young patients (aged 15-30 years) showed more than 90% expression for all the CD markers such as CD-90, 73 and 105, whereas negative for CD-14 and CD-45. The DPSCs isolated from inflamed pulp tissue showed a less expression for CD-73 compared to the commercially available DPSCs whereas, as the other two markers were found to show similar percentage of positive expression. This could be attributed to the fact that the pulp population is very heterogeneous and we used the pooled tissue from different patients. Hence the phenotypic characterization and comparison with the commercially available DPSCs proved that the inflamed pulp tissue is a good source of MSC like cells which can be utilized further for regenerative application.

Keywords: collagenase/dispase, dental pulp stem cells, flow cytometry, irreversible pulpitis

Procedia PDF Downloads 244
25 The Physiological Effects of Thyriod Disorders During the Gestatory Period on Fetal Neurological Development: A Descriptive Review

Authors: Vanessa Bennemann, Gabriela Laste, Márcia Inês Goettert

Abstract:

The gestational period is a phase in which the pregnant woman undergoes constant physiological and hormonal changes, which are part of the woman’s biological cycle, the development of the fetus, childbirth, and lactation. These are factors of response to the immunological adaptation of the human reproductive process that is directly related to the pregnancy’s well-being and development. Although most pregnancies occur without complications, about 15% of pregnant women will develop potentially fatal complications, implying maternal and fetal risk. Therefore, requiring specialized care for high-risk pregnant women (HRPW) with obstetric interventions for the survival of the mother and/or fetus. Among the risk factors that characterize HRPW are the women's age, gestational diabetes mellitus (GDM), autoimmune diseases, infectious diseases such as syphilis and HIV, hypertension (SAH), preeclampsia, eclampsia, HELLP syndrome, uterine contraction abnormalities, and premature placental detachment (PPD), thyroid disorders, among others. Thus, pregnancy has an impact on the thyroid gland causing changes in the functioning of the mother's thyroid gland, altering the thyroid hormone (TH) profiles and production as pregnancy progresses. Considering, throughout the gestational period, the interpretation of the results of the tests to evaluate the thyroid functioning depends on the stage in which the pregnancy is. Thyroid disorders are directly related to adverse obstetric outcomes and in child development. Therefore, the adequate release of TH is important for a pregnancy without complications and optimal fetal growth and development. Objective: Investigate the physiological effects caused by thyroid disorders in the gestational period. Methods: A search for articles indexed in PubMed, Scielo, and MDPI databases, was performed using the term “AND”, with the descriptors: Pregnancy, Thyroid. With several combinations that included: Melatonin, Thyroidopathy, Inflammatory processes, Cytokines, Anti-inflammatory, Antioxidant, High-risk pregnancy. Subsequently, the screening was performed through the analysis of titles and/or abstracts. The criteria were: including clinical studies in general, randomized or not, in the period of 10 years prior to the research, in the English literature; excluded: experimental studies, case reports, research in the development phase. Results: In the preliminary results, a total of studies (n=183) were found, (n=57) excluded, such as studies of cancer, diabetes, obesity, and skin diseases. Conclusion: To date, it has been identified that thyroid diseases can impair the fetus’s brain development. Further research is suggested on this matter to identify new substances that may have a potential therapeutic effect to aid the gestational period with thyroid diseases.

Keywords: pregnancy, thyroid, melatonin, high-risk pregnancy

Procedia PDF Downloads 131
24 Poly-ε-Caprolactone Nanofibers with Synthetic Growth Factor Enriched Liposomes as Controlled Drug Delivery System

Authors: Vera Sovkova, Andrea Mickova, Matej Buzgo, Karolina Vocetkova, Eva Filova, Evzen Amler

Abstract:

PCL (poly-ε-caprolactone) nanofibrous scaffolds with adhered liposomes were prepared and tested as a possible drug delivery system for various synthetic growth factors. TGFβ, bFGF, and IGF-I have been shown to increase hMSC (human mesenchymal stem cells) proliferation and to induce hMSC differentiation. Functionalized PCL nanofibers were prepared with synthetic growth factors encapsulated in liposomes adhered to them in three different concentrations. Other samples contained PCL nanofibers with adhered, free synthetic growth factors. The synthetic growth factors free medium served as a control. The interaction of liposomes with the PCL nanofibers was visualized by SEM, and the release kinetics were determined by ELISA testing. The potential of liposomes, immobilized on the biodegradable scaffolds, as a delivery system for synthetic growth factors, and as a suitable system for MSCs adhesion, proliferation and differentiation in vitro was evaluated by MTS assay, dsDNA amount determination, confocal microscopy, flow cytometry and real-time PCR. The results showed that the growth factors adhered to the PCL nanofibers stimulated cell proliferation mainly up to day 11 and that subsequently their effect was lower. By contrast, the release of the lowest concentration of growth factors from liposomes resulted in gradual proliferation of MSCs throughout the experiment. Moreover, liposomes, as well as free growth factors, stimulated type II collagen production, which was confirmed by immunohistochemical staining using monoclonal antibody against type II collagen. The results of this study indicate that growth factors enriched liposomes adhered to surface of PCL nanofibers could be useful as a drug delivery instrument for application in short timescales, be combined with nanofiber scaffolds to promote local and persistent delivery while mimicking the local microenvironment. This work was supported by project LO1508 from the Ministry of Education, Youth and Sports of the Czech Republic

Keywords: drug delivery, growth factors, hMSC, liposomes, nanofibres

Procedia PDF Downloads 286
23 Ageing Gingiva: A New Hope for Autologous Stem Cell Therapy

Authors: Ankush M. Dewle, Suditi Bhattacharya, Prachi R. Abhang, Savita Datar, Ajay J. Jog, Rupesh K. Srivastava, Geetanjali Tomar

Abstract:

Objectives: The aim of this study was to investigate the quality of mesenchymal stem cells (MSCs) obtained from ageing gingival tissues, in order to suggest their potential role in autologous stem cell therapy for old individuals. Methods: MSCs were isolated from gingival tissues of young (18-45 years) and old (above 45 years) donors by enzymatic digestion. MSCs were analysed for cfu-f, surface marker expression by flow-cytometry and multilineage differentiation potential. The angiogenic potential was compared in a chick embryo yolk sac membrane model. The aging and differentiation markers including SA-β-galactosidase and p21 respectively were analysed by staining and flow-cytometry analysis. Additionally, osteogenic markers such as glucocorticoid receptor (GR), vitamin D receptor (VDR) were measured by flow-cytometry and RT-qPCR was performed for quantification of osteogenic gene expression. Alizarin Red S and alkaline phosphatase (ALP) activity were also quantitated. Results: Gingival MSCs (GMSCs) from both the age groups were similar in their morphology and displayed cfu-f. They had similar expression of MSC surface markers and p21, comparable rate of proliferation and differentiated to all the four lineages. GMSCs from young donors had a higher adipogenic differentiation potential as compared to the old GMSCs. Moreover, these cells did not display a significant difference in ALP activity probably due to comparable expression of GR, VDR, and osteogenic genes. Conclusions: Ageing of GMSCs occurs at a much slower rate than stem cells from other sources. Thus we suggest GMSCs as an excellent candidate for autologous stem cell therapy in degenerative diseases of elderly individuals. Clinical Significance: GMSCs could help overcome the setbacks in clinical implementation of autologous stem cell therapy for regenerative medicine in all age group of patient.

Keywords: bone regeneration, cell therapy, senescence, stem cell

Procedia PDF Downloads 174
22 Pregnancy Outcomes in Women With History of COVID-19 in Alexandria, Egypt

Authors: Nermeen Elbeltagy, Helmy abd Elsatar, Sara Hassan, Mohamed Darwish

Abstract:

Introduction: with the inial appearance in Wuhan, China, in December 2019, the coronavirus disease-related respiratory infection (COVID-19) has rapidly spread among people all over the world. The WHO considered it a pandemic in March 2020. The severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have proved that pregnant females as well as their fetuses are exposed to adverse outcomes, including high rates of intensive care unit (ICU) admission and case fatality. Physiological changes occurring during pregnancy such as the increased transverse diameter of the thoracic cage as well as the elevation of the diaphragm can expose the mother to severe infections because of her decreased tolerance for hypoxia. Furthermore, vasodilation and changes in lung capacity can cause mucosal edema and an increase in upper respiratory tract secretions. In addition, the increased susceptibility to infection is enhanced by changes in cellmediated immunity. Aim of the work: to study the effect of COVID-19 on pregnant females admitted to El-Shatby Maternity University Hospital regarding maternal antepartum, intrapartum and postpartum adverse effects on the mothers and their neonates. Method: A retrospective cohort study was done between October 2020 and October 2022. Maternal characteristics and associated health conditions of COVID-19 positive parents were investigated. Also, the severity of their conditions and me of infection (first or second or third trimester)were explored. Cases were diagnosed based on presence of symptoms suggestive of COVID-19, laboratory tests (other than PCR) and radiological findings.all cases were confirmed by positive PCR test results. Results: The most common adverse maternal outcomes were pre-term labor (11.6%) followed by premature rupture of membranes (5.7%), post-partum hemorrhage (5.4%), preeclampsia (5.0%) and placental abrupon (4.3%). One sixth of the neonates of the studied paents were admied to NICUs and 6.5% of them had respiratory distress with no neonatal deaths. The majority of neonates (85.4%) had a birth weight of 2500- 4000g (normal range). Most of the neonates (77.9%) had an APGAR score of equal or more than 7 in 5 minutes. Conclusion: the most common comorbidity that might increase the incidence of COVID-19 before pregnancy were diabetes, cardiac disorders/ chronic hypertension and chronic obstructive lung diseases (non-asthma). During pregnancy, anemia followed by gestational diabetes and pre-eclampsia/gestational hypertension were the most prevalent comorbidity. So, severity of infection can be reduced by good antenatal care.

Keywords: COVID-19, pregnancy outcome, complicated pregnancy., COVID in Egypt

Procedia PDF Downloads 71
21 Comparison Study of 70% Ethanol Effect on Direct and Retrival Culture of Contaminated Umblical Cord Tissue for Expansion of Mesenchymal Stem Cells

Authors: Ganeshkumar, Ashika, Valavan, Ramesh, Thangam, Chirayu

Abstract:

MSCs are found in much higher concentration in the Wharton’s jelly compared to the umbilical cord blood, which is a rich source of hematopoietic stem cells. Umbilical cord tissue is collected at the time of birth; it is processed and stored in liquid nitrogen for future therapeutical purpose. The source of contamination might be either from vaginal tract of mother or from hospital environment or from personal handling during cord tissue sample collection. If the sample were contaminated, decontamination procedure will be done with 70% ethanol (1 minute) in order to avoid sample rejection. Ethanol is effective against a wide range of bacteria, protozoa and fungi and has low toxicity to humans. Among the 1954 samples taken for the study, 24 samples were found to be contaminated with microorganism. The organisms isolated from the positive samples were found to be E. coli, Stenotrophomonas maltophilia, Pseudomonas aueroginosa, Enterococcus fecalis, Acinetobacter bowmani, Staphylococcus epidermidis, Enterobacter cloacae, and Proteus mirabilis. Among these organisms 70% ethanol successfully eliminated E. coli, Enterococcus fecalis, Acinetobacter bowmani, Staphylococcus epidermidis, and Proteus mirabilis. 70% ethanol was unsuccessful in eliminating Stenotrophomonas maltophilia, Pseudomonas aueroginosa, and Enterobacter cloacae. Stenotrophomonas maltophilia and Pseudomonas aueroginosa have the ability to form biofilm that make them resistant to alcohol. Biofilm act as protective layer for bacteria and which protects them from host defense and antibiotic wash. Finally it was found 70% ethanol wash saved 58.3% cord tissue samples from rejection and it is ineffective against 41% of the samples. The contamination rate can be reduced by maintaining proper aseptic techniques during sample collection and processing.

Keywords: umblical cord tissue, decontamination, 70% ethanol effectiveness, contamination

Procedia PDF Downloads 342
20 Plasma Treatment in Conjunction with EGM-2 Medium Can Enhance Endothelial and Osteogenic Marker Expressions of Bone Marrow MSCs

Authors: Chih-Hsin Lin, Shyh-Yuan Lee, Yuan-Min Lin

Abstract:

For many tissue engineering applications, an important goal is to create functional tissues in-vitro, and such tissues to be viable, they have to be vascularized. Endothelial cells (EC) and endothelial progenitor cells (EPC) are promising candidates for vascularization. However, both of them have limited expansion capacity and autologous cells currently do not exist for either ECs or EPCs. Therefore, we use bone marrow mesenchymal stem cells (MSC) as a source material for ECs. Growth supplements are commonly used to induce MSC differentiation, and further improvements in differentiation conditions can be made by modifying the cell's growth environment. An example is pre-treatment of the growth dish with gas plasma, in order to modify the surface functional groups of the material that the cells are seeded on. In this work, we compare the effects of different gas plasmas on the growth and differentiation of MSCs. We treat the dish with different plasmas (CO2, N2, and O2) and then induce MSC differentiation with endothelial growth medium-2 (EGM-2). We find that EGM-2 by itself upregulates EC marker CD31 mRNA expression, but not VEGFR2, CD34, or vWF. However, these additional EC marker expressions were increased for cells seeded on plasma treated substrates. Specifically, for EC markers, we found that N2 plasma treatment upregulated CD31 and VEGFR-2 mRNA expressions; CO2 plasma treatment upregulated CD34 and vWF mRNA expressions. The osteogenic markers ALP and osteopontin mRNA expressions were markedly enhanced on all plasma-treated dishes. We also found that plasma treatment in conjunction with EGM-2 growth medium can enhance MSCs differentiation into endothelial-like cells and osteogenic-like cells. Our work shows that the effect of the growth medium (EGM-2) on MSCs differentiation is influenced by the plasma modified surface chemistry of the substrate. In conclusion, plasma surface modification can enhance EGM-2 effectiveness and induced both endothelial and osteogenic differentiation. Our findings provide a method to enhance EGM-2 based cell differentiation, with consequences for tissue engineering and stem cell biology applications.

Keywords: endothelial differentiation, EGM-2, osteogenesis, plasma treatment, surface modification

Procedia PDF Downloads 328
19 The Importance of including All Data in a Linear Model for the Analysis of RNAseq Data

Authors: Roxane A. Legaie, Kjiana E. Schwab, Caroline E. Gargett

Abstract:

Studies looking at the changes in gene expression from RNAseq data often make use of linear models. It is also common practice to focus on a subset of data for a comparison of interest, leaving aside the samples not involved in this particular comparison. This work shows the importance of including all observations in the modeling process to better estimate variance parameters, even when the samples included are not directly used in the comparison under test. The human endometrium is a dynamic tissue, which undergoes cycles of growth and regression with each menstrual cycle. The mesenchymal stem cells (MSCs) present in the endometrium are likely responsible for this remarkable regenerative capacity. However recent studies suggest that MSCs also plays a role in the pathogenesis of endometriosis, one of the most common medical conditions affecting the lower abdomen in women in which the endometrial tissue grows outside the womb. In this study we compared gene expression profiles between MSCs and non-stem cell counterparts (‘non-MSC’) obtained from women with (‘E’) or without (‘noE’) endometriosis from RNAseq. Raw read counts were used for differential expression analysis using a linear model with the limma-voom R package, including either all samples in the study or only the samples belonging to the subset of interest (e.g. for the comparison ‘E vs noE in MSC cells’, including only MSC samples from E and noE patients but not the non-MSC ones). Using the full dataset we identified about 100 differentially expressed (DE) genes between E and noE samples in MSC samples (adj.p-val < 0.05 and |logFC|>1) while only 9 DE genes were identified when using only the subset of data (MSC samples only). Important genes known to be involved in endometriosis such as KLF9 and RND3 were missed in the latter case. When looking at the MSC vs non-MSC cells comparison, the linear model including all samples identified 260 genes for noE samples (including the stem cell marker SUSD2) while the subset analysis did not identify any DE genes. When looking at E samples, 12 genes were identified with the first approach and only 1 with the subset approach. Although the stem cell marker RGS5 was found in both cases, the subset test missed important genes involved in stem cell differentiation such as NOTCH3 and other potentially related genes to be used for further investigation and pathway analysis.

Keywords: differential expression, endometriosis, linear model, RNAseq

Procedia PDF Downloads 426
18 In Vitro and in Vivo Evaluation of Nano Collagen Molecules to Enhance Mesenchymal Stem Cells Differentiate into Insulin Producing Cells

Authors: Chin-Tsu Ma, Yi-Jhen Wu, Hsia Ying Cheng, Han Hsiang Huang, Shyh Ming Kuo

Abstract:

The use of specific molecules including nutrients and pharmacological agents has been tried in modulation of stem cells differentiation (MSCs) to insulin producing cells. The aim of this study is to investigate the ability of nano collagen molecules (nutrient or scaffold) to enhance the MSCs differentiation into insulin-producing cells in combination with nicotinamide and exendin-4 (pharmacological agents) in vitro and in vivo. The results demonstrated that the cells exhibit morphologically islet-like clusters after treatment with nano collagen molecules, nicotinamide and exendin-4. MSCs extra treated with nano collagen molecules showed significant increases in Nkx6.1 and insulin mRNA expression at 14-d and 21-d culture compared with those merely treated with nicotinamide and exendin-4. Early 7-day elevation in PDX-1 mRNA expression was observed. Furthermore, the MSCs exposed to nano collagen molecules produced the highest secretion of insulin (p < 0.05). Type-2 diabetes induced by high-fat diet and low dose of streptozotocin in rat model was built in this study. This rat exhibited higher food intake, water intake, lower glucose tolerance, lower-insulin tolerance, and higher HbA1C (significant increases, p < 0.01) as compared with the normal rat that demonstrated the model of type-2 diabetes was successfully built. Biopsy examinations also showed that obvious destruction of islet. After injection of differentiated MSCs into the destructed pancreas of diabetes rat, more regenerated islet were observed at the rats that treated with nano collagen molecules and exhibited much lower HbA1C as compared with the normal rat and diabetes rat after 4 weeks (significant deceases, p < 0.001). These results indicate that the culturing MSCs with nano collagen molecules, nicotinamide, and exendin-4 are beneficial for MSCs differentiation into islet-like cells. These nano collagen molecules may lead to alternations or up-regulation of gene expression and influence the differentiated outcomes induced by nicotinamide and exendin-4.

Keywords: nano collagen molecules, nicotinamide, MSCs, diabetes

Procedia PDF Downloads 405
17 Qualitative Modeling of Transforming Growth Factor Beta-Associated Biological Regulatory Network: Insight into Renal Fibrosis

Authors: Ayesha Waqar Khan, Mariam Altaf, Jamil Ahmad, Shaheen Shahzad

Abstract:

Kidney fibrosis is an anticipated outcome of possibly all types of progressive chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) signaling pathway is responsible for production of matrix-producing fibroblasts and myofibroblasts in diseased kidney. In this study, a discrete model of TGF-beta (transforming growth factor) and CTGF (connective tissue growth factor) was constructed using Rene Thomas formalism to investigate renal fibrosis turn over. The kinetic logic proposed by Rene Thomas is a renowned approach for modeling of Biological Regulatory Networks (BRNs). This modeling approach uses a set of constraints which represents the dynamics of the BRN thus analyzing the pathway and predicting critical trajectories that lead to a normal or diseased state. The molecular connection between TGF-beta, Smad 2/3 (transcription factor) phosphorylation and CTGF is modeled using GenoTech. The order of BRN is CTGF, TGF-B, and SMAD3 respectively. The predicted cycle depicts activation of TGF-B (TGF-β) via cleavage of its own pro-domain (0,1,0) and presentation to TGFR-II receptor phosphorylating SMAD3 (Smad2/3) in the state (0,1,1). Later TGF-B is turned off (0,0,1) thereby activating SMAD3 that further stimulates the expression of CTGF in the state (1,0,1) and itself turns off in (1,0,0). Elevated CTGF expression reactivates TGF-B (1,1,0) and the cycle continues. The predicted model has generated one cycle and two steady states. Cyclic behavior in this study represents the diseased state in which all three proteins contribute to renal fibrosis. The proposed model is in accordance with the experimental findings of the existing diseased state. Extended cycle results in enhanced CTGF expression through Smad2/3 and Smad4 translocation in the nucleus. The results suggest that the system converges towards organ fibrogenesis if CTGF remains constructively active along with Smad2/3 and Smad 4 that plays an important role in kidney fibrosis. Therefore, modeling regulatory pathways of kidney fibrosis will escort to the progress of therapeutic tools and real-world useful applications such as predictive and preventive medicine.

Keywords: CTGF, renal fibrosis signaling pathway, system biology, qualitative modeling

Procedia PDF Downloads 171
16 Use of 3D Printed Bioscaffolds from Decellularized Umbilical Cord for Cartilage Regeneration

Authors: Tayyaba Bari, Muhammad Hamza Anjum, Samra Kanwal, Fakhera Ikram

Abstract:

Osteoarthritis, a degenerative condition, affects more than 213 million individuals globally. Since articular cartilage has no or limited vessels, therefore, after deteriorating, it is unable to rejuvenate. Traditional approaches for cartilage repair, like autologous chondrocyte implantation, microfracture and cartilage transplantation are often associated with postoperative complications and lead to further degradation. Decellularized human umbilical cord has gained interest as a viable treatment for cartilage repair. Decellularization removes all cellular contents as well as debris, leaving a biologically active 3D network known as extracellular matrix (ECM). This matrix is biodegradable, non-immunogenic and provides a microenvironment for homeostasis, growth and repair. UC derived bioink function as 3D scaffolding material, not only mediates cell-matrix interactions but also adherence, proliferation and propagation of cells for 3D organoids. This study comprises different physical, chemical and biological approaches to optimize the decellularization of human umbilical cord (UC) tissues followed by the solubilization of these tissues to bioink formation. The decellularization process consisted of two cycles of freeze thaw where the umbilical cord at -20˚C was thawed at room temperature followed by dissection in small sections from 0.5 to 1cm. Similarly decellularization with ionic and non-ionic detergents Sodium dodecyl sulfate (SDS) and Triton-X 100 revealed that both concentrations of SDS i.e 0.1% and 1% were effective in complete removal of cells from the small UC tissues. The results of decellularization was further confirmed by running them on 1% agarose gel. Histological analysis revealed the efficacy of decellularization, which involves paraffin embedded samples of 4μm processed for Hematoxylin-eosin-safran and 4,6-diamidino-2-phenylindole (DAPI). ECM preservation was confirmed by Alcian Blue, and Masson’s trichrome staining on consecutive sections and images were obtained. Sulfated GAG’s content were determined by 1,9-dimethyl-methylene blue (DMMB) assay, similarly collagen quantification was done by hydroxy proline assay. This 3D bioengineered scaffold will provide a typical atmosphere as in the extracellular matrix of the tissue, which would be seeded with the mesenchymal cells to generate the desired 3D ink for in vitro and in vivo cartilage regeneration applications.

Keywords: umbilical cord, 3d printing, bioink, tissue engineering, cartilage regeneration

Procedia PDF Downloads 87
15 Prenatal Paraben Exposure Impacts Infant Overweight Development and in vitro Adipogenesis

Authors: Beate Englich, Linda Schlittenbauer, Christiane Pfeifer, Isabel Kratochvil, Michael Borte, Gabriele I. Stangl, Martin von Bergen, Thorsten Reemtsma, Irina Lehmann, Kristin M. Junge

Abstract:

The worldwide production of endocrine disrupting compounds (EDC) has risen dramatically over the last decades, as so has the prevalence for obesity. Many EDCs are believed to contribute to this obesity epidemic, by enhancing adipogenesis or disrupting relevant metabolism. This effect is most tremendous in the early prenatal period when priming effects find a highly vulnerable time window. Therefore, we investigate the impact of parabens on childhood overweight development and adipogenesis in general. Parabens are ester of 4-hydroxy-benzoic acid and part of many cosmetic products or food packing. Therefore, ubiquitous exposure can be found in the westernized world, with exposure already starting during the sensitive prenatal period. We assessed maternal cosmetic product consumption, prenatal paraben exposure and infant BMI z-scores in the prospective German LINA cohort. In detail, maternal urinary concentrations (34 weeks of gestation) of methyl paraben (MeP), ethyl paraben (EtP), n-propyl paraben (PrP) and n-butyl paraben (BuP) were quantified using UPLC-MS/MS. Body weight and height of their children was assessed during annual clinical visits. Further, we investigated the direct influence of those parabens on adipogenesis in-vitro using a human mesenchymal stem cell (MSC) differentiation assay to mimic a prenatal exposure scenario. MSC were exposed to 0.1 – 50 µM paraben during the entire differentiation period. Differentiation outcome was monitored by impedance spectrometry, real-time PCR and triglyceride staining. We found that maternal cosmetic product consumption was highly correlated with urinary paraben concentrations at pregnancy. Further, prenatal paraben exposure was linked to higher BMI Z-scores in children. Our in-vitro analysis revealed that especially the long chained paraben BuP stimulates adipogenesis by increasing the expression of adipocyte specific genes (PPARγ, ADIPOQ, LPL, etc.) and triglyceride storage. Moreover, we found that adiponectin secretion is increased whereas leptin secretion is reduced under BuP exposure in-vitro. Further mechanistic analysis for receptor binding and activation of PPARγ and other key players in adipogenesis are currently in process. We conclude that maternal cosmetic product consumption is linked to prenatal paraben exposure of children and contributes to the development of infant overweight development by triggering key pathways of adipogenesis.

Keywords: adipogenesis, endocrine disruptors, paraben, prenatal exposure

Procedia PDF Downloads 267
14 iPSC-derived MSC Mediated Immunosuppression during Mouse Airway Transplantation

Authors: Mohammad Afzal Khan, Fatimah Alanazi, Hala Abdalrahman Ahmed, Talal Shamma, Kilian Kelly, Mohammed A. Hammad, Abdullah O. Alawad, Abdullah Mohammed Assiri, Dieter Clemens Broering

Abstract:

Lung transplantation is a life-saving surgical replacement of diseased lungs in patients with end-stage respiratory malfunctions. Despite the remarkable short-term recovery, long-term lung survival continues to face several significant challenges, including chronic rejection and severe toxic side-effects due to global immunosuppression. Stem cell-based immunotherapy has been recognized as a crucial immunoregulatory regimen in various preclinical and clinical studies. Despite initial therapeutic outcomes, conventional stem cells face key limitations. The Cymerus™ manufacturing facilitates the production of a virtually limitless supply of consistent human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells, which could play a key role in selective immunosuppression and graft repair during rejection. Here, we demonstrated the impact of iPSC-derived human MSCs on the development of immune-tolerance and long-term graft survival in mouse orthotopic airway allografts. BALB/c→C57BL/6 allografts were reconstituted with iPSC-derived MSCs (2 million/transplant/ at d0), and allografts were examined for regulatory T cells (Tregs), oxygenation, microvascular blood flow, airway epithelium and collagen deposition during rejection. We demonstrated that iPSC-derived MSC treatment leads to significant increase in tissue expression of hTSG-6 protein, followed by an upregulation of mouse Tregs and IL-5, IL-10, IL-15 cytokines, which augments graft microvascular blood flow and oxygenation, and thereby maintained a healthy airway epithelium and prevented the subepithelial deposition of collagen at d90 post-transplantation. Collectively, these data confirmed that iPSC-derived MSC-mediated immunosuppression has potential to establish immune-tolerance and rescue allograft from sustained hypoxic/ischemic phase and subsequently limits long-term airway epithelial injury and collagen progression, which therapeutically warrant a study of Cymerus iPSC-derived MSCs as a potential management option for immunosuppression in transplant recipients.

Keywords: stem cell therapy, immunotolerance, regulatory T cells, hypoxia and ischemia, microvasculature

Procedia PDF Downloads 153
13 Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes

Authors: Abdolamir Allameh, Shahnaz Esmaeili, Mina Allameh, Safoura Khajeniazi

Abstract:

Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity.

Keywords: adult stem cells, DNA integrity, free radicals, hepatic differentiation

Procedia PDF Downloads 142
12 The Physiological Effect of Cold Atmospheric Pressure Plasma on Cancer Cells, Cancer Stem Cells, and Adult Stem Cells

Authors: Jeongyeon Park, Yeo Jun Yoon, Jiyoung Seo, In Seok Moon, Hae Jun Lee, Kiwon Song

Abstract:

Cold Atmospheric Pressure Plasma (CAPP) is defined as a partially ionized gas with electrically charged particles at room temperature and atmospheric pressure. CAPP generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has potential as a new apoptosis-promoting cancer therapy. With an annular type dielectric barrier discharge (DBD) CAPP-generating device combined with a helium (He) gas feeding system, we showed that CAPP selectively induced apoptosis in various cancer cells while it promoted proliferation of the adipose tissue-derived stem cell (ASC). The apoptotic effect of CAPP was highly selective toward p53-mutated cancer cells. The intracellular ROS was mainly responsible for apoptotic cell death in CAPP-treated cancer cells. CAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of CAPP as a potent cancer therapy. With the same device and exposure conditions to cancer cells, CAPP stimulated proliferation of the ASC, a kind of mesenchymal stem cell that is capable of self-renewing and differentiating into adipocytes, chondrocytes, osteoblasts and neurons. CAPP-treated ASCs expressed the stem cell markers and differentiated into adipocytes as untreated ASCs. The increase of proliferation by CAPP in ASCs was offset by a NO scavenger but was not affected by ROS scavengers, suggesting that NO generated by CAPP is responsible for the activated proliferation in ASCs. Usually, cancer stem cells are reported to be resistant to known cancer therapies. When we applied CAPP of the same device and exposure conditions to cancer cells to liver cancer stem cells (CSCs) that express CD133 and epithelial cell adhesion molecule (EpCAM) cancer stem cell markers, apoptotic cell death was not examined. Apoptotic cell death of liver CSCs was induced by the CAPP generated from a device with an air-based flatten type DBD. An exposure of liver CSCs to CAPP decreased the viability of liver CSCs to a great extent, suggesting plasma be used as a promising anti-cancer treatment. To validate whether CAPP can be a promising anti-cancer treatment or an adjuvant modality to eliminate remnant tumor in cancer surgery of vestibular schwannoma, we applied CAPP to mouse schwannoma cell line SC4 Nf2 ‑/‑ and human schwannoma cell line HEI-193. A CAPP treatment leads to anti-proliferative effect in both cell lines. We are currently studying the molecular mechanisms of differential physiological effect of CAPP; the proliferation of ASCs and apoptosis of various cancer cells and CSCs.

Keywords: cold atmospheric pressure plasma, apoptosis, proliferation, cancer cells, adult stem cells

Procedia PDF Downloads 274
11 Characterization of Surface Microstructures on Bio-Based PLA Fabricated with Nano-Imprint Lithography

Authors: D. Bikiaris, M. Nerantzaki, I. Koliakou, A. Francone, N. Kehagias

Abstract:

In the present study, the formation of structures in poly(lactic acid) (PLA) has been investigated with respect to producing areas of regular, superficial features with dimensions comparable to those of cells or biological macromolecules. Nanoimprint lithography, a method of pattern replication in polymers, has been used for the production of features ranging from tens of micrometers, covering areas up to 1 cm², down to hundreds of nanometers. Both micro- and nano-structures were faithfully replicated. Potentially, PLA has wide uses within biomedical fields, from implantable medical devices, including screws and pins, to membrane applications, such as wound covers, and even as an injectable polymer for, for example, lipoatrophy. The possibility of fabricating structured PLA surfaces, with structures of the dimensions associated with cells or biological macro- molecules, is of interest in fields such as cellular engineering. Imprint-based technologies have demonstrated the ability to selectively imprint polymer films over large areas resulting in 3D imprints over flat, curved or pre-patterned surfaces. Here, we compare nano-patterned with nano-patterned by nanoimprint lithography (NIL) PLA film. A silicon nanostructured stamp (provided by Nanotypos company) having positive and negative protrusions was used to pattern PLA films by means of thermal NIL. The polymer film was heated from 40°C to 60°C above its Tg and embossed with a pressure of 60 bars for 3 min. The stamp and substrate were demolded at room temperature. Scanning electron microscope (SEM) images showed good replication fidelity of the replicated Si stamp. Contact-angle measurements suggested that positive microstructuring of the polymer (where features protrude from the polymer surface) produced a more hydrophilic surface than negative micro-structuring. The ability to structure the surface of the poly(lactic acid), allied to the polymer’s post-processing transparency and proven biocompatibility. Films produced in this were also shown to enhance the aligned attachment behavior and proliferation of Wharton’s Jelly Mesenchymal Stem cells, leading to the observed growth contact guidance. The bacterial attachment patterns of some bacteria, highlighted that the nano-patterned PLA structure can reduce the propensity for the bacteria to attach to the surface, with a greater bactericidal being demonstrated activity against the Staphylococcus aureus cells. These biocompatible, micro- and nanopatterned PLA surfaces could be useful for polymer– cell interaction experiments at dimensions at, or below, that of individual cells. Indeed, post-fabrication modification of the microstructured PLA surface, with materials such as collagen (which can further reduce the hydrophobicity of the surface), will extend the range of applications, possibly through the use of PLA’s inherent biodegradability. Further study is being undertaken to examine whether these structures promote cell growth on the polymer surface.

Keywords: poly(lactic acid), nano-imprint lithography, anti-bacterial properties, PLA

Procedia PDF Downloads 327
10 Histogenesis of the Stomach of Pre-Hatching Quail: A Light and Electron Microscopic Study

Authors: Soha A Soliman, Yasser A Ahmed, Mohamed A Khalaf

Abstract:

Although the enormous literature describing the histology of the stomach of different avian species during the posthatching development, the available literature on the pre-hatching development of quail stomach development is scanty. Thus, the current study was undertaken to provide a careful description of the main histological events during the embryonic development of quail stomach. To achieve this aim, daily histological specimens from the stomach of quail of 4 days post-incubation till the day 17 (few hours before hatching) were examined with light microscopy. The current study showed that the primitive gut tube of the embryonic quail appeared at the 4th day post incubation, and both parts of stomach (proventriculus and gizzard) were similar in structure and composed of endodermal epithelium of pseudostratified type surrounded by undifferentiated mesenchymal tissue. The sequences of the developmental events in the gut tube were preceded in a cranio-caudal pattern. By the 5th day, the endodermal covering of the primitive proventriculus gave rise to sac-like invaginations. The primitive gizzard was distinguished into thick-walled bodies and thin-walled sacs. In the 6th day, the prospective proventricular glandular epithelium became canalized and the muscular layer was developed in the cranial part of the proventriculus, whereas the primitive muscular coat of the gizzard was represented by a layer of condensed mesenchyme. In the 7th day, the proventricular glandular epithelial invaginations increased in depth and number, while, the muscularis mucosa and the muscular layer began to be distinguished. In the 8th day, the myoblasts differentiated into spindle shaped smooth muscle fibers. In the 10th day, branching of the proventricular glands began. The branching continued later on. The surface and the glandular epithelium were transformed into simple columnar type in the 12th day. The epithelial covering of the gizzard gave rise to tubular invaginations lined by simple cuboidal epithelium and the surface epithelium became simple columnar. Canalization of the tubular glands was recognized in the 14th day. In the 15th day, the proventricular surface epithelium invaginated in an concentric manner around a central cavity to form immature secretory units. The central cavity was lined by eosinophilic cells which form the ductal epithelia. The peripheral lamellae were lined by basophilic cells; the undifferentiated oxyntico-peptic cells. Entero-endocrine cells stained positive for silver impregnation in the proventricular glands. The mucosal folding in the gizzard appeared in the 15th day to form the plicae and the sulci. The wall of the proventriculus and gizzard in the 17th day acquired the main histological features of post-hatching birds, but neither the surface nor the ductal epithelium were differentiated to mucous producing cells. The current results shoed be considered in the molecular developmental studies.

Keywords: quail, proventriculus, gizzard, pre-hatching, histology

Procedia PDF Downloads 611
9 Assessment of Cellular Metabolites and Impedance for Early Diagnosis of Oral Cancer among Habitual Smokers

Authors: Ripon Sarkar, Kabita Chaterjee, Ananya Barui

Abstract:

Smoking is one of the leading causes of oral cancer. Cigarette smoke affects various cellular parameters and alters molecular metabolism of cells. Epithelial cells losses their cytoskeleton structure, membrane integrity, cellular polarity that subsequently initiates the process of epithelial cells to mesenchymal transition due to long exposure of cigarette smoking. It changes the normal cellular metabolic activity which induces oxidative stress and enhances the reactive oxygen spices (ROS) formation. Excessive ROS and associated oxidative stress are considered to be a driving force in alteration in cellular phenotypes, polarity distribution and mitochondrial metabolism. Noninvasive assessment of such parameters plays essential role in development of routine screening system for early diagnosis of oral cancer. Electrical cell-substrate impedance sensing (ECIS) is one of such method applied for detection of cellular membrane impedance which can be correlated to cell membrane integrity. Present study intends to explore the alteration in cellular impedance along with the expression of cellular polarity molecules and cytoskeleton distributions in oral epithelial cells of habitual smokers and to correlate the outcome to that of clinically diagnosed oral leukoplakia and oral squamous cell carcinoma patients. Total 80 subjects were categorized into four study groups: nonsmoker (NS), cigarette smoker (CS), oral leukoplakia (OLPK) and oral squamous cell carcinoma (OSCC). Cytoskeleton distribution was analyzed by staining of actin filament and generation of ROS was measured using assay kit using standard protocol. Cell impedance was measured through ECIS method at different frequencies. Expression of E-cadherin and protease-activated receptor (PAR) proteins were observed through immune-fluorescence method. Distribution of actin filament is well organized in NS group however; distribution pattern was grossly varied in CS, OLPK and OSCC. Generation of ROS was low in NS which subsequently increased towards OSCC. Expressions of E-cadherin and change in cellular electrical impedance in different study groups indicated the hallmark of cancer progression from NS to OSCC. Expressions of E-cadherin, PAR protein, and cell impedance were decreased from NS to CS and farther OSCC. Generally, the oral epithelial cells exhibit apico-basal polarity however with cancer progression these cells lose their characteristic polarity distribution. In this study expression of polarity molecule and ECIS observation indicates such altered pattern of polarity among smoker group. Overall the present study monitored the alterations in intracellular ROS generation and cell metabolic function, membrane integrity in oral epithelial cells in cigarette smokers. Present study thus has clinical significance, and it may help in developing a noninvasive technique for early diagnosis of oral cancer amongst susceptible individuals.

Keywords: cigarette smoking, early oral cancer detection, electric cell-substrate impedance sensing, noninvasive screening

Procedia PDF Downloads 165
8 Mathematical Modeling of Avascular Tumor Growth and Invasion

Authors: Meitham Amereh, Mohsen Akbari, Ben Nadler

Abstract:

Cancer has been recognized as one of the most challenging problems in biology and medicine. Aggressive tumors are a lethal type of cancers characterized by high genomic instability, rapid progression, invasiveness, and therapeutic resistance. Their behavior involves complicated molecular biology and consequential dynamics. Although tremendous effort has been devoted to developing therapeutic approaches, there is still a huge need for new insights into the dark aspects of tumors. As one of the key requirements in better understanding the complex behavior of tumors, mathematical modeling and continuum physics, in particular, play a pivotal role. Mathematical modeling can provide a quantitative prediction on biological processes and help interpret complicated physiological interactions in tumors microenvironment. The pathophysiology of aggressive tumors is strongly affected by the extracellular cues such as stresses produced by mechanical forces between the tumor and the host tissue. During the tumor progression, the growing mass displaces the surrounding extracellular matrix (ECM), and due to the level of tissue stiffness, stress accumulates inside the tumor. The produced stress can influence the tumor by breaking adherent junctions. During this process, the tumor stops the rapid proliferation and begins to remodel its shape to preserve the homeostatic equilibrium state. To reach this, the tumor, in turn, upregulates epithelial to mesenchymal transit-inducing transcription factors (EMT-TFs). These EMT-TFs are involved in various signaling cascades, which are often associated with tumor invasiveness and malignancy. In this work, we modeled the tumor as a growing hyperplastic mass and investigated the effects of mechanical stress from surrounding ECM on tumor invasion. The invasion is modeled as volume-preserving inelastic evolution. In this framework, principal balance laws are considered for tumor mass, linear momentum, and diffusion of nutrients. Also, mechanical interactions between the tumor and ECM is modeled using Ciarlet constitutive strain energy function, and dissipation inequality is utilized to model the volumetric growth rate. System parameters, such as rate of nutrient uptake and cell proliferation, are obtained experimentally. To validate the model, human Glioblastoma multiforme (hGBM) tumor spheroids were incorporated inside Matrigel/Alginate composite hydrogel and was injected into a microfluidic chip to mimic the tumor’s natural microenvironment. The invasion structure was analyzed by imaging the spheroid over time. Also, the expression of transcriptional factors involved in invasion was measured by immune-staining the tumor. The volumetric growth, stress distribution, and inelastic evolution of tumors were predicted by the model. Results showed that the level of invasion is in direct correlation with the level of predicted stress within the tumor. Moreover, the invasion length measured by fluorescent imaging was shown to be related to the inelastic evolution of tumors obtained by the model.

Keywords: cancer, invasion, mathematical modeling, microfluidic chip, tumor spheroids

Procedia PDF Downloads 104