Search results for: near-field antenna measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2868

Search results for: near-field antenna measurement

2748 Dielectric Thickness Modulation Based Optically Transparent Leaky Wave Antenna Design

Authors: Waqar Ali Khan

Abstract:

A leaky-wave antenna design is proposed which is based on the realization of a certain kind of surface impedance profile that allows the existence of a perturbed surface wave (fast wave) that radiates. The antenna is realized by using optically transparent material Plexiglas. Plexiglas behaves as a dielectric at radio frequencies and is transparent at optical frequencies. In order to have a ground plane for the microwave frequencies, metal strips are used parallel to the E field of the operating mode. The microwave wavelength chosen is large enough such that it does not resolve the metal strip ground plane and sees it to be a uniform ground plane. While, at optical frequencies, the metal strips do have some shadowing effect. However still, about 62% of optical power can be transmitted through the antenna.

Keywords: Plexiglass, surface-wave, optically transparent, metal strip

Procedia PDF Downloads 121
2747 A Horn Antenna Loaded with FSS of Crossed Dipoles

Authors: Ibrahim Mostafa El-Mongy, Abdelmegid Allam

Abstract:

In this article analysis and investigation of the effect of loading a horn antenna with frequency selective surface (FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524 mm and loss tangent 0.004. Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.25 GHz (10.75–11 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results.

Keywords: antenna, filtenna, frequency selective surface (FSS), horn

Procedia PDF Downloads 432
2746 Sexual Dimorphism in the Sensorial Structures of the Antenna of Thygater aethiops (Hymenoptera: Apidae) and Its Relation with Some Corporal Parameters

Authors: Wendy Carolina Gomez Ramirez, Rodulfo Ospina Torres

Abstract:

Thygater aethiops is a species of solitary bee with a neotropical distribution that has been adapted to live in urban environments. This species of bee presents a marked sexual dimorphism since the males have antenna almost as long as their body different from the females that present antenna with smaller size. In this work, placoid sensilla were studied, which are structures that appear in the antenna and are involved in the detection of substances both, for reproduction and for the search of food. The aim of this study was to evaluate the differences between these sensory structures in the different sexes, for which males and females were captured. Later some body measures were taken such as fresh weight with abdomen and without it, since the weight could be modified by the stomach content; other measures were taken as the total antenna length and length of the flagellum and flagelomere. After negative imprints of the antenna were made using nail polish, the imprint was cut with a microblade and mounted onto a microscope slide. The placoid sensilla were visible on the imprint, so they were counted manually on the 100x objective lens of the optical microscope. Initially, the males presented a specific distribution pattern in two types of sensilla: trichoid and placoid, the trichoid were found aligned in the dorsal face of the antenna and the placoid were distributed along the entire antenna; that was different to the females since they did not present a distribution pattern the sensilla were randomly organized. It was obtained that the males, because they have a longer antenna, have a greater number of sensilla in relation to the females. Additionally, it was found that there was no relationship between the weight and the number of sensilla, but there was a positive relationship between the length of the antenna, the length of the flagellum and the number of sensilla. The relationship between the number of sensilla per unit area in each of the sexes was also calculated, which showed that, on average, males have 4.2 ± 0.38 sensilla per unit area and females present 2.2 ± 0.20 and likewise a significant difference between sexes. This dimorphism found may be related to the sexual behavior of the species, since it has been demonstrated that males are more adapted to the perception of substances related to reproduction than to the search of food.

Keywords: antenna, olfactory organ, sensilla, sexual dimorphism, solitary bees

Procedia PDF Downloads 147
2745 Research on Configuration of Large-Scale Linear Array Feeder Truss Parabolic Cylindrical Antenna of Satellite

Authors: Chen Chuanzhi, Guo Yunyun

Abstract:

The large linear array feeding parabolic cylindrical antenna of the satellite has the ability of large-area line focusing, multi-directional beam clusters simultaneously in a certain azimuth plane and elevation plane, corresponding quickly to different orientations and different directions in a wide frequency range, dual aiming of frequency and direction, and combining space power. Therefore, the large-diameter parabolic cylindrical antenna has become one of the new development directions of spaceborne antennas. Limited by the size of the rocked fairing, the large-diameter spaceborne antenna is required to be small mass and have a deployment function. After being orbited, the antenna can be deployed by expanding and be stabilized. However, few types of structures can be used to construct large cylindrical shell structures in existing structures, which greatly limits the development and application of such antennas. Aiming at high structural efficiency, the geometrical characteristics of parabolic cylinders and mechanism topological mapping law to the expandable truss are studied, and the basic configuration of deployable truss with cylindrical shell is structured. Then a modular truss parabolic cylindrical antenna is designed in this paper. The antenna has the characteristics of stable structure, high precision of reflecting surface formation, controllable motion process, high storage rate, and lightweight, etc. On the basis of the overall configuration comprehensive theory and optimization method, the structural stiffness of the modular truss parabolic cylindrical antenna is improved. And the bearing density and impact resistance of support structure are improved based on the internal tension optimal distribution method of reflector forming. Finally, a truss-type cylindrical deployable support structure with high constriction-deployment ratio, high stiffness, controllable deployment, and low mass is successfully developed, laying the foundation for the application of large-diameter parabolic cylindrical antennas in satellite antennas.

Keywords: linear array feed antenna, truss type, parabolic cylindrical antenna, spaceborne antenna

Procedia PDF Downloads 128
2744 Proximity-Inset Fed Triple Band Antenna for Global Position System with High Gain

Authors: The Nan Chang, Ping-Tang Yu, Jyun-Ming Lin

Abstract:

A triple band circularly polarized antenna covering 1.17, 1.22, and 1.57 GHz is presented. To extend to the triple-band operation, we need to add one more ring while maintaining the mechanism to independently control each ring. The inset-part in the feeding scheme is used to excite the band at 1.22 GHz, while the proximate-part of the feeding scheme is used to excite not only the band at 1.57 GHz but also the band at 1.17 GHz. This is achieved by up-vertically coupled with one ring to radiate at 1.57 GHz and down-vertically coupled another ring to radiate at 1.17 GHz. It is also noted that the inset-part in our feeding scheme is by horizontal coupling. Furthermore, to increase the gain at all three bands, three air-layers are added to make the total height of the antenna be 7.8 mm. The total thickness of the three air-layers is 3 mm. The gains of the three bands are all greater than 5 dBiC after adding the air-layers.

Keywords: circular polarization, global position system, high gain, triband antenna

Procedia PDF Downloads 213
2743 Antenna for Energy Harvesting in Wireless Connected Objects

Authors: Nizar Sakli, Chayma Bahar, Chokri Baccouch, Hedi Sakli

Abstract:

If connected objects multiply, they are becoming a challenge in more than one way. In particular by their consumption and their supply of electricity. A large part of the new generations of connected objects will only be able to develop if it is possible to make them entirely autonomous in terms of energy. Some manufacturers are therefore developing products capable of recovering energy from their environment. Vital solutions in certain contexts, such as the medical industry. Energy recovery from the environment is a reliable solution to solve the problem of powering wireless connected objects. This paper presents and study a optically transparent solar patch antenna in frequency band of 2.4 GHz for connected objects in the future standard 5G for energy harvesting and RF transmission.

Keywords: antenna, IoT, solar cell, wireless communications

Procedia PDF Downloads 144
2742 Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications

Authors: Shativel S., Chandana B. R., Kavya B. C., Obli B. Vikram, Suganthi J., Nagendra Rao G.

Abstract:

Satellite communication plays a pivotal role in modern global communication networks, serving as a vital link between terrestrial infrastructure and remote regions. The demand for reliable satellite reception systems, especially in UHF (Ultra High Frequency) and VHF (Very High Frequency) bands, has grown significantly over the years. This research paper presents the design and optimization of a high-gain, dual-band crossed Yagi-Uda antenna in CST Studio Suite, specifically tailored for satellite reception. The proposed antenna system incorporates a circularly polarized (Right-Hand Circular Polarization - RHCP) design to reduce Faraday loss. Our aim was to use fewer elements and achieve gain, so the antenna is constructed using 6x2 elements arranged in cross dipole and supported with a boom. We have achieved 10.67dBi at 146MHz and 9.28dBi at 437.5MHz.The process includes parameter optimization and fine-tuning of the Yagi-Uda array’s elements, such as the length and spacing of directors and reflectors, to achieve high gain and desirable radiation patterns. Furthermore, the optimization process considers the requirements for UHF and VHF frequency bands, ensuring broad frequency coverage for satellite reception. The results of this research are anticipated to significantly contribute to the advancement of satellite reception systems, enhancing their capabilities to reliably connect remote and underserved areas to the global communication network. Through innovative antenna design and simulation techniques, this study seeks to provide a foundation for the development of next-generation satellite communication infrastructure.

Keywords: Yagi-Uda antenna, RHCP, gain, UHF antenna, VHF antenna, CST, radiation pattern.

Procedia PDF Downloads 38
2741 An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna

Authors: Gurkirandeep Kaur, Rana Pratap Yadav

Abstract:

This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system.

Keywords: antenna radiation characteristics, dynamically reconfigurable, plasma antenna, plasma column, plasma striations, surface wave

Procedia PDF Downloads 99
2740 The Design and Analysis of a Novel Type High Gain Microstrip Patch Antenna System for the Satellite Communication

Authors: Shahid M. Ali, Zakiullah

Abstract:

An individual feed, smooth and smart, completely new shaped, dual band microstrip patch antenna has been proposed in this manuscript. Right here three triangular shape slots are usually presented in the 3 edges on the patch and along with a small feed line has utilized another edge on the patch to find out the dual band. The antenna carries a condensed framework wherever patch is around about 8.5mm by means of 7.96mm by means of 1.905mm leading to excellent bandwidths covering 13. 15 GHz to 13. 72 GHz in addition to 16.04 GHz to 16.58GHz. The return loss(RL) decrease in -19. 00dB and will be attained in the first resonant frequency at 13. 61 GHz and -28.69dB is at second resonance frequency at 16.33GHz. The stable average peak gain that may be observed along the operating band in lower and higher frequency is actually three. 53dB in addition to 5.562dB correspondingly. The radiation designs usually are omni directional along with moderate gain within equally most of these functioning bands. Accomplishment is proven within double frequencies at 13.62GHz since downlink in addition to 16.33GHz since uplink. This kind of low and simple configuration of the proposed antenna shows simplest fabrication and make it ensure that it is adaptable for your application within instant in satellite and as well as for the wireless communication system.

Keywords: dual band, microstrip patch antenna, HFSS, Ku band, satellite

Procedia PDF Downloads 339
2739 Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting

Authors: Mohamed Adel Sennouni, Jamal Zbitou, Benaissa Abboud, Abdelwahed Tribak, Hamid Bennis, Mohamed Latrach

Abstract:

A compact UWB planar antenna fed with a microstrip-line is proposed. The new design is composed of a rectangular patch with symmetric L-shaped slots and fed by 50 Ω microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875

Keywords: UWB planar antenna, L-shaped slots, wireless applications, impedance band-width, radiation pattern, CST

Procedia PDF Downloads 463
2738 Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction

Authors: Gopi Ram, Durbadal Mandal, Rajib Kar, Sakti Prasad Ghoshal

Abstract:

A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO, and SA applied to the same problem.

Keywords: circular arrays, first null beam width, side lobe level, FFA

Procedia PDF Downloads 231
2737 Investigation of the Unbiased Characteristic of Doppler Frequency to Different Antenna Array Geometries

Authors: Somayeh Komeylian

Abstract:

Array signal processing techniques have been recently developing in a variety application of the performance enhancement of receivers by refraining the power of jamming and interference signals. In this scenario, biases induced to the antenna array receiver degrade significantly the accurate estimation of the carrier phase. Owing to the integration of frequency becomes the carrier phase, we have obtained the unbiased doppler frequency for the high precision estimation of carrier phase. The unbiased characteristic of Doppler frequency to the power jamming and the other interference signals allows achieving the highly accurate estimation of phase carrier. In this study, we have rigorously investigated the unbiased characteristic of Doppler frequency to the variation of the antenna array geometries. The simulation results have efficiently verified that the Doppler frequency remains also unbiased and accurate to the variation of antenna array geometries.

Keywords: array signal processing, unbiased doppler frequency, GNSS, carrier phase, and slowly fluctuating point target

Procedia PDF Downloads 136
2736 Isolation Enhancement of Compact Dual-Band Printed Multiple Input Multiple Output Antenna for WLAN Applications

Authors: Adham M. Salah, Tariq A. Nagem, Raed A. Abd-Alhameed, James M. Noras

Abstract:

Recently, the demand for wireless communications systems to cover more than one frequency band (multi-band) with high data rate has been increased for both fixed and mobile services. Multiple Input Multiple Output (MIMO) technology is one of the significant solutions for attaining these requirements and to achieve the maximum channel capacity of the wireless communications systems. The main issue associated with MIMO antennas especially in portable devices is the compact space between the radiating elements which leads to limit the physical separation between them. This issue exacerbates the performance of the MIMO antennas by increasing the mutual coupling between the radiating elements. In other words, the mutual coupling will be stronger if the radiating elements of the MIMO antenna are closer. This paper presents a low–profile dual-band (2×1) MIMO antenna that works at 2.4GHz, 5.3GHz and 5.8GHz for wireless local area networks (WLAN) applications. A neutralization line (NL) technique for enhancing the isolation has been used by introducing a strip line with a length of λg/4 at the isolation frequency (2.4GHz) between the radiating elements. The overall dimensions of the antenna are 33.5 x 36 x 1.6 mm³. The fabricated prototype shows a good agreement between the simulated and measured results. The antenna impedance bandwidths are 2.38–2.75 GHz and 4.4–6 GHz for the lower and upper band respectively; the reflection coefficient and mutual coupling are better than -25 dB in both lower and higher bands. The MIMO antenna performance characteristics are reported in terms of the scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient, capacity loss, antenna gain, and radiation patterns. Analysis of these characteristics indicates that the design is appropriate for the WLAN terminal applications.

Keywords: ECC, neutralization line, MIMO antenna, multi-band, mutual coupling, WLAN

Procedia PDF Downloads 114
2735 A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways

Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Tung-Hsien Hsieh

Abstract:

In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway. The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4 μm in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec.

Keywords: 2-D measurement, linear guideway, motion errors, running straightness

Procedia PDF Downloads 470
2734 Optimization of a Hand-Fan Shaped Microstrip Patch Antenna by Means of Orthogonal Design Method of Design of Experiments for L-Band and S-Band Applications

Authors: Jaswinder Kaur, Nitika, Navneet Kaur, Rajesh Khanna

Abstract:

A hand-fan shaped microstrip patch antenna (MPA) for L-band and S-band applications is designed, and its characteristics have been reconnoitered. The proposed microstrip patch antenna with double U-slot defected ground structure (DGS) is fabricated on an FR4 substrate which is a very readily available and inexpensive material. The suggested antenna is optimized using Orthogonal Design Method (ODM) of Design of Experiments (DOE) to cover the frequency range from 0.91-2.82 GHz for L-band and S-band applications. The L-band covers the frequency range of 1-2 GHz, which is allocated to telemetry, aeronautical, and military systems for passive satellite sensors, weather radars, radio astronomy, and mobile communication. The S-band covers the frequency range of 2-3 GHz, which is used by weather radars, surface ship radars and communication satellites and is also reserved for various wireless applications such as Worldwide Interoperability for Microwave Access (Wi-MAX), super high frequency radio frequency identification (SHF RFID), industrial, scientific and medical bands (ISM), Bluetooth, wireless broadband (Wi-Bro) and wireless local area network (WLAN). The proposed method of optimization is very time efficient and accurate as compared to the conventional evolutionary algorithms due to its statistical strategy. Moreover, the antenna is tested, followed by the comparison of simulated and measured results.

Keywords: design of experiments, hand fan shaped MPA, L-Band, orthogonal design method, S-Band

Procedia PDF Downloads 110
2733 Performance Assessment of GSO Satellites before and after Enhancing the Pointing Effect

Authors: Amr Emam, Joseph Victor, Mohamed Abd Elghany

Abstract:

The paper presents the effect of the orbit inclination on the pointing error of the satellite antenna and consequently on its footprint on earth for a typical Ku- band payload system. The performance assessment is examined both theoretically and by means of practical measurements, taking also into account all additional sources of pointing errors, such as East-West station keeping, orbit eccentricity and actual attitude control performance. An implementation and computation of the sinusoidal biases in satellite roll and pitch used to compensate the pointing error of the satellite antenna coverage is studied and evaluated before and after the pointing corrections performed. A method for evaluation of the performance of the implemented biases has been introduced through measuring satellite received level from a tracking 11m and fixed 4.8m transmitting antenna before and after the implementation of the pointing corrections.

Keywords: satellite, inclined orbit, pointing errors, coverage optimization

Procedia PDF Downloads 368
2732 A Comparative Study of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) for Airflow Measurement

Authors: Sijie Fu, Pascal-Henry Biwolé, Christian Mathis

Abstract:

Among modern airflow measurement methods, Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), as visualized and non-instructive measurement techniques, are playing more important role. This paper conducts a comparative experimental study for airflow measurement employing both techniques with the same condition. Velocity vector fields, velocity contour fields, voticity profiles and turbulence profiles are selected as the comparison indexes. The results show that the performance of both PIV and PTV techniques for airflow measurement is satisfied, but some differences between the both techniques are existed, it suggests that selecting the measurement technique should be based on a comprehensive consideration.

Keywords: airflow measurement, comparison, PIV, PTV

Procedia PDF Downloads 400
2731 Improving Radiation Efficiency Using Metamaterial in Pyramidal Horn Antenna

Authors: Amit Kumar Baghel, Sisir Kumar Nayak

Abstract:

The proposed metamaterial design help to increase the radiation efficiency at 2.9 GHz by reducing the side and back lobes by making the phase difference of the waves emerging from the phase center of the horn antenna same after passing through metamaterial array. The unit cell of the metamaterial is having concentric ring structure made of copper of 0.035 mm thickness on both sides of FR4 sheet. The inner ring diameter is kept as 3 mm, and the outer ring diameters are changed according to the path and tramission phase difference of the unit cell from the phase center of the antenna in both the horizontal and vertical direction, i.e., in x- and y-axis. In this case, the ring radius varies from 3.19 mm to 6.99 mm with the respective S21 phase difference of -62.25° to -124.64°. The total phase difference can be calculated by adding the path difference of the respective unit cell in the array to the phase difference of S21. Taking one of the unit cell as the reference, the total phase difference between the reference unit cell and other cells must be integer multiple of 360°. The variation of transmission coefficient S21 with the ring radius is greater than -6 dB. The array having 5 x 5 unit cell is kept inside the pyramidal horn antenna (L X B X H = 295.451 x 384.233 x 298.66 mm3) at a distance of 36.68 mm from the waveguide throat. There is an improvement in side lobe level in E-plane by 14.6 dB when the array is used. The front to back lobe ration is increased by 1 dB by using the array. The proposed antenna with metamaterial array can be used in beam shaping for wireless power transfer applications.

Keywords: metamaterial, side lobe level, front to back ratio, beam forming

Procedia PDF Downloads 228
2730 Transmission Line Matrix (TLM) Modelling of Microstrip Circular Antenna

Authors: Jugoslav Jokovic, Tijana Dimitrijevic, Nebojsa Doncov

Abstract:

The goal of this paper is to investigate the possibilities and effectiveness of the TLM (Transmission Line Matrix) method for modelling of up-to-date microstrip antennas with circular geometry that have significant application in modern wireless communication systems. The coaxially fed microstrip antenna configurations with circular patch are analyzed by using the in-house 3DTLMcyl_cw solver based on computational electromagnetic TLM method adapted to the cylindrical grid and enhanced with the compact wire model. Opposed to the widely used rectangular TLM mesh, where a staircase approximation has to be used to describe curved boundaries, precise modelling of circular boundaries can be accomplished in the cylindrical grid irrespective of the mesh resolution. Using the compact wire model incorporated in cylindrical mesh, it is possible to model coaxial feed and include the influence of the real excitation in the antenna model. The conventional and inverted configuration of a coaxially fed circular patch antenna are considered, comparing the resonances obtained using TLM cylindrical model with results reached by the corresponding model in a rectangular grid as well as with experimental ones. Bearing in mind that accuracy of simulated results depends on a relevantly created model, besides structure geometry and dimensions, it is important to consider additional modelling issues, regarding appropriate mesh resolution and a relevant extension of a mesh around the considered structure that would provide convergence of the results.

Keywords: computational electromagnetic, coaxial feed, microstrip antenna, TLM modelling

Procedia PDF Downloads 263
2729 Evaluation of Long Term Evolution Mobile Signal Propagation Models and Vegetation Attenuation in the Livestock Department at Escuela Superior Politécnica de Chimborazo

Authors: Cinthia Campoverde, Mateo Benavidez, Victor Arias, Milton Torres

Abstract:

This article evaluates and compares three propagation models: the Okumura-Hata model, the Ericsson 9999 model, and the SUI model. The inclusion of vegetation attenuation in the area is also taken into account. These mathematical models aim to predict the power loss between a transmitting antenna (Tx) and a receiving antenna (Rx). The study was conducted in the open areas of the Livestock Department at the Escuela Superior Politécnica de Chimborazo (ESPOCH) University, located in the city of Riobamba, Ecuador. The necessary parameters for each model were calculated, considering LTE technology. The transmitting antenna belongs to the mobile phone company ”TUENTI” in Band 2, operating at a frequency of 1940 MHz. The reception power data in the area were empirically measured using the ”Network Cell Info” application. A total of 170 samples were collected, distributed across 19 radius, forming concentric circles around the transmitting antenna. The results demonstrate that the Okumura Hata urban model provides the best fit to the measured data.

Keywords: propagation models, reception power, LTE, power losses, correction factor

Procedia PDF Downloads 59
2728 A Measuring Industrial Resiliency by Using Data Envelopment Analysis Approach

Authors: Ida Bagus Made Putra Jandhana, Teuku Yuri M. Zagloel, Rahmat Nurchayo

Abstract:

Having several crises that affect industrial sector performance in the past decades, decision makers should utilize measurement application that enables them to measure industrial resiliency more precisely. It provides not only a framework for the development of resilience measurement application, but also several theories for the concept building blocks, such as performance measurement management, and resilience engineering in real world environment. This research is a continuation of previously published paper on performance measurement in the industrial sector. Finally, this paper contributes an alternative performance measurement method in industrial sector based on resilience concept. Moreover, this research demonstrates how applicable the concept of resilience engineering is and its method of measurement.

Keywords: industrial, measurement, resilience, sector

Procedia PDF Downloads 249
2727 Liquid Crystal Based Reconfigurable Reflectarray Antenna Design

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with slot embedded patch element configurations within X-band frequency range. The slots are shown to modify the surface current distribution on the patch element of reflectarray which causes the resonant patch element to provide different resonant frequencies depending on the slot dimensions. The simulated results are supported and verified by waveguide scattering parameter measurements of different reflectarray unit cells. Different rectangular slots on patch element have been fabricated and a change in resonant frequency from 10.46GHz to 8.78GHz has been demonstrated as the width of the rectangular slot is varied from 0.2W to 0.6W. The rectangular slot in the center of the patch element has also been utilized for the frequency tunable reflectarray antenna design based on K-15 Nematic LC. For the active reflectarray antenna design, a frequency tunability of 1.2% from 10GHz to 9.88GHz has been demonstrated with a dynamic phase range of 103° provided by the measured scattering parameter results. Time consumed by liquid crystals for reconfiguration, which is one of the drawback of LC based design, has also been disused in this paper.

Keywords: liquid crystal, tunable reflectarray, frequency tunability, dynamic phase range

Procedia PDF Downloads 312
2726 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas

Authors: Sahithi Yarlagadda

Abstract:

The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.

Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm

Procedia PDF Downloads 88
2725 Mathematical Model for Progressive Phase Distribution of Ku-band Reflectarray Antennas

Authors: M. Y. Ismail, M. Inam, A. F. M. Zain, N. Misran

Abstract:

Progressive phase distribution is an important consideration in reflect array antenna design which is required to form a planar wave in front of the reflect array aperture. This paper presents a detailed mathematical model in order to determine the required reflection phase values from individual element of a reflect array designed in Ku-band frequency range. The proposed technique of obtaining reflection phase can be applied for any geometrical design of elements and is independent of number of array elements. Moreover the model also deals with the solution of reflect array antenna design with both centre and off-set feed configurations. The theoretical modeling has also been implemented for reflect arrays constructed on 0.508 mm thickness of different dielectric substrates. The results show an increase in the slope of the phase curve from 4.61°/mm to 22.35°/mm by varying the material properties.

Keywords: mathematical modeling, progressive phase distribution, reflect array antenna, reflection phase

Procedia PDF Downloads 356
2724 Success Measurement in Corporate Venturing: Integrating Three Decades of Research

Authors: Maurice Steinhoff, Lucas Costantino, Dominik Kanbach

Abstract:

Measurement approaches to corporate venturing (CV) success are highly diverse in the extant literature. Furthermore, these approaches rarely build on each other, making it difficult to derive comparable conclusions about CV outcomes. Employing a systematic literature review of three decades of research, the objective of this study is to provide transparency and structure in the broad field of CV research. Subsequently, the paper examines 28 studies in detail, resulting in two main contributions to the research field. First, three structural dimensions of measurement approaches are derived from the studies in the sample, namely, “level of analysis” (parent, program, and venture levels), “measurement perspective” (objective, subjective, and mixed measurement), and “locus of opportunity” (internal, external, and general CV activities). Second, an integrated overview of nine unique clusters structures the different measurement approaches. These clusters allow to encapsulate measurement approaches, but also make visible the approaches’ heterogeneity, as well as specific measurement items. Thereby, the study contributes to CV research by revealing and reconciling the variety of CV success-measurement approaches. The study also provides relevant insights for practitioners, by making transparent the various approaches to measuring the success of CV activities and presenting a list of 114 concrete and distinct measurement items.

Keywords: corporate venturing, measurement items, success measurement, structured literature review

Procedia PDF Downloads 150
2723 DNA of Hibiscus sabdariffa Damaged by Radiation from 900 MHz GSM Antenna

Authors: A. O. Oluwajobi, O. A. Falusi, N. A. Zubbair, T. Owoeye, F. Ladejobi, M. C. Dangana, A. Abubakar

Abstract:

The technology of mobile telephony has positively enhanced human life and reports on the bio safety of the radiation from their antennae have been contradictory, leading to serious litigations and violent protests by residents in several parts of the world. The crave for more information, as requested by WHO in order to resolve this issue, formed the basis for this study on the effect of the radiation from 900 MHz GSM antenna on the DNA of Hibiscus sabdariffa. Seeds of H. sabdariffa were raised in pots placed in three replicates at 100, 200, 300 and 400 metres from the GSM antennae in three selected test locations and a control where there was no GSM signal. Temperature (˚C) and the relative humidity (%) of study sites were measured for the period of study (24 weeks). Fresh young leaves were harvested from each plant at two, eight and twenty-four weeks after sowing and the DNA extracts were subjected to RAPD-PCR analyses. There were no significant differences between the weather conditions (temperature and relative humidity) in all the study locations. However, significant differences were observed in the intensities of radiations between the control (less than 0.02 V/m) and the test (0.40-1.01 V/m) locations. Data obtained showed that DNA of samples exposed to rays from GSM antenna had various levels of distortions, estimated at 91.67%. Distortions occurred in 58.33% of the samples between 2-8 weeks of exposure while 33.33% of the samples were distorted between 8-24 weeks exposure. Approximately 8.33% of the samples did not show distortions in DNA while 33.33% of the samples had their DNA damaged twice, both at 8 and at 24 weeks of exposure. The study showed that radiation from the 900 MHz GSM antenna is potent enough to cause distortions to DNA of H. sabdariffa even within 2-8 weeks of exposure. DNA damage was also independent of the distance from the antenna. These observations would qualify emissions from GSM mast as environmental hazard to the existence of plant biodiversities and all life forms in general. These results will trigger efforts to prevent further erosion of plant genetic resources which have been threatening food security and also the risks posed to living organisms, thereby making our environment very safe for our existence while we still continue to enjoy the benefits of the GSM technology.

Keywords: damage, DNA, GSM antenna, radiation

Procedia PDF Downloads 311
2722 Sum Capacity with Regularized Channel Inversion in Multi-Antenna Downlink Systems under Equal Power Constraint

Authors: Attaullah Khawaja, Amna Shabbir

Abstract:

Channel inversion is one of the simplest techniques for multiuser downlink systems with single-antenna users. In this paper regularized channel inversion under equal power constraint in the multiuser multiple input multiple output (MU-MIMO) broadcast channels has been considered. Sum capacity with plain channel inversion also known as Zero Forcing Beam Forming (ZFBF) and optimum sum capacity using Dirty Paper Coding (DPC) has also been investigated. Analysis and simulations show that regularization enhances the system performance and empower linear growth in Sum Capacity and specially work well at low signal to noise ratio (SNRs) regime.

Keywords: broadcast channel, channel inversion, multiple antenna multiple-user wireless, multiple-input multiple-output (MIMO), regularization, dirty paper coding (DPC), sum capacity

Procedia PDF Downloads 503
2721 Electrodermal Activity Measurement Using Constant Current AC Source

Authors: Cristian Chacha, David Asiain, Jesús Ponce de León, José Ramón Beltrán

Abstract:

This work explores and characterizes the behavior of the AFE AD5941 in impedance measurement using an embedded algorithm with a constant current AC source. The main aim of this research is to improve the exact measurement of impedance values for their application in EDA-focused wearable devices. Through comprehensive study and characterization, it has been observed that employing a measurement sequence with a constant current source produces results with increased dispersion but higher accuracy. As a result, this approach leads to a more accurate system for impedance measurement.

Keywords: EDA, constant current AC source, wearable, precision, accuracy, impedance

Procedia PDF Downloads 78
2720 Study on Angle Measurement Interferometer around Any Axis Direction Selected by Transmissive Liquid Crystal Device

Authors: R. Furutani, G. Kikuchi

Abstract:

Generally, the optical interferometer system is too complicated and difficult to change the measurement items, pitch, yaw, and row, etc. In this article, the optical interferometer system using the transmissive Liquid Crystal Device (LCD) as the switch of the optical path was proposed. At first, the normal optical interferometer, Michelson interferometer, was constructed to measure the pitch angle and the yaw angle. In this optical interferometer, the ball lenses with the refractive indices of 2.0 were used as the retroreflectors. After that, the transmissive LCD was introduced as the switch to select the adequate optical path. In this article, these optical systems were constructed. Pitch measurement interferometer and yaw measurement interferometer were switched by the transmissive LCD. When the LCD was open for the yaw measurement, the yaw was sufficiently measured and optical path for the pitch measurement was blocked. On the other hand, when the LCD was open for the pitch measurement, the pitch was measured and the optical path for the yaw measurement was also blocked. In this article, the results of both of pitch measurement and yaw measurement were shown, and the result of blocked yaw measurement and pitch measurement were shown. As this measurement system was based on Michelson interferometer, the other measuring items, the deviation along the optical axis, the vertical deviation to the optical axis and row angle, could be measured by the additional ball lenses and the additional switching in future work.

Keywords: any direction angle, ball lens, laser interferometer, transmissive liquid crystal device

Procedia PDF Downloads 133
2719 Fabrication of Wearable Antennas through Thermal Deposition

Authors: Jeff Letcher, Dennis Tierney, Haider Raad

Abstract:

Antennas are devices for transmitting and/or receiving signals which make them a necessary component of any wireless system. In this paper, a thermal deposition technique is utilized as a method to fabricate antenna structures on substrates. Thin-film deposition is achieved by evaporating a source material (metals in our case) in a vacuum which allows vapor particles to travel directly to the target substrate which is encased with a mask that outlines the desired structure. The material then condenses back to solid state. This method is used in comparison to screen printing, chemical etching, and ink jet printing to indicate advantages and disadvantages to the method. The antenna created undergoes various testing of frequency ranges, conductivity, and a series of flexing to indicate the effectiveness of the thermal deposition technique. A single band antenna that is operated at 2.45 GHz intended for wearable and flexible applications was successfully fabricated through this method and tested. It is concluded that thermal deposition presents a feasible technique of producing such antennas.

Keywords: thermal deposition, wearable antennas, bluetooth technology, flexible electronics

Procedia PDF Downloads 257