Search results for: jump diffusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1295

Search results for: jump diffusion

1175 Diffusion Dynamics of Leech-Heart Inter-Neuron Model

Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay

Abstract:

We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.

Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis

Procedia PDF Downloads 225
1174 Effects of Electric Field on Diffusion Coefficients and Share Viscosity in Dusty Plasmas

Authors: Muhammad Asif ShakoorI, Maogang He, Aamir Shahzad

Abstract:

Dusty (complex) plasmas contained micro-sized charged dust particles in addition to ions, electrons, and neutrals. It is typically low-temperature plasma and exists in a wide variety of physical systems. In this work, the effects of an external electric field on the diffusion coefficient and share viscosity are investigated through equilibrium molecular dynamics (EMD) simulations in three-dimensional (3D) strongly coupled (SC) dusty plasmas (DPs). The effects of constant and varying normalized electric field strength (E*) have been computed along with different combinations of plasma states on the diffusion of dust particles using EMD simulations. Diffusion coefficient (D) and share viscosity (η) along with varied system sizes, in the limit of varying E* values, is accounted for an appropriate range of plasma coupling (Γ) and screening strength (κ) parameters. At varying E* values, it is revealed that the 3D diffusion coefficient increases with increasing E* and κ; however, it decreases with an increase of Γ but within statistical limits. The share viscosity increases with increasing E*and Γ and decreases with increasing κ. New simulation results are outstanding that the combined effects of electric field and screening strengths give well-matched values of Dandη at low-intermediate to large Γ with varying small-intermediate to large N. The current EMD simulation outcomes under varying electric field strengths are in satisfactory well-matched with previous known simulation data of EMD simulations of the SC-DPs. It has been shown that the present EMD simulation data enlarged the range of E* strength up to 0.1 ≤ E*≤ 1.0 in order to find the linear range of the DPs system and to demonstrate the fundamental nature of electric field linearity of 3D SC-DPs.

Keywords: strongly coupled dusty plasma, diffusion coefficient, share viscosity, molecular dynamics simulation, electric field strength

Procedia PDF Downloads 192
1173 Spectral Quasi Linearization Techniques for the Solution of Time Fractional Diffusion Wave Equations in Boundary Value Problems

Authors: Kizito Ugochukwu Nwajeria

Abstract:

This paper presents a spectral quasi-linearization technique (SQLT) for solving time fractional diffusion wave equations in boundary value problems. The proposed method integrates spectral approximations for spatial derivatives with a quasi-linearization approach to address the nonlinearity introduced by fractional time derivatives. Time fractional differential equations typically formulated using Caputo or Riemann-Liouville derivatives, model complex phenomena such as anomalous diffusion and wave propagation, which are not captured by classical integer-order models. The SQLT method iteratively linearizes the nonlinear terms at each time step, transforming the original problem into a series of linear subproblems, which can be efficiently solved. Using high-order spectral methods such as Chebyshev or Legendre polynomials for spatial discretization, the technique achieves high accuracy in approximating the solution. A convergence analysis is provided, demonstrating the method's efficiency and establishing error bounds. Numerical experiments on a range of test problems confirm the effectiveness of SQLT in solving fractional diffusion wave equations with various boundary conditions. The method offers a robust framework for addressing time fractional differential equations in diverse fields, including materials science, bioengineering, and anomalous transport phenomena.

Keywords: spectral methods, quasilinearization, time-fractional diffusion-wave equations, boundary value problems, fractional calculus

Procedia PDF Downloads 14
1172 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 337
1171 Teachers and Innovations in Information and Communication Technology

Authors: Martina Manenova, Lukas Cirus

Abstract:

This article introduces research focused on elementary school teachers’ approach to innovations in ICT. The diffusion of innovations theory, which was written by E. M. Rogers, captures the processes of innovation adoption. The research method derived from this theory and the Rogers’ questionnaire focused on the diffusion of innovations was used as the basic research method. The research sample consisted of elementary school teachers. The comparison of results with the Rogers’ results shows that among the teachers in the research sample the so-called early majority, as well as the overall division of the data, was rather central (early adopter, early majority, and later majority). The teachers very rarely appeared on the edge positions (innovator, laggard). The obtained results can be applied to teaching practice and used especially in the implementation of new technologies and techniques into the educational process.

Keywords: innovation, diffusion of innovation, information and communication technology, teachers

Procedia PDF Downloads 293
1170 Comparing the Knee Kinetics and Kinematics during Non-Steady Movements in Recovered Anterior Cruciate Ligament Injured Badminton Players against an Uninjured Cohort: Case-Control Study

Authors: Anuj Pathare, Aleksandra Birn-Jeffery

Abstract:

Background: The Anterior Cruciate Ligament(ACL) helps stabilize the knee joint minimizing tibial anterior translation. Anterior Cruciate Ligament (ACL) injury is common in racquet sports and often occurs due to sudden acceleration, deceleration or changes of direction. This mechanism in badminton most commonly occurs during landing after an overhead stroke. Knee biomechanics during dynamic movements such as walking, running and stair negotiation, do not return to normal for more than a year after an ACL reconstruction. This change in the biomechanics may lead to re-injury whilst performing non-steady movements during sports, where these injuries are most prevalent. Aims: To compare if the knee kinetics and kinematics in ACL injury recovered athletes return to the same level as those from an uninjured cohort during standard movements used for clinical assessment and badminton shots. Objectives: The objectives of the study were to determine: Knee valgus during the single leg squat, vertical drop jump, net shot and drop shot; Degree of internal or external rotation during the single leg squat, vertical drop jump, net shot and drop shot; Maximum knee flexion during the single leg squat, vertical drop jump and net shot. Methods: This case-control study included 14 participants with three ACL injury recovered athletes and 11 uninjured participants. The participants performed various functional tasks including vertical drop jump, single leg squat; the forehand net shot and the forehand drop shot. The data was analysed using the two-way ANOVA test, and the reliability of the data was evaluated using the Intra Class Coefficient. Results: The data showed a significant decrease in the range of knee rotation in ACL injured participants as compared to the uninjured cohort (F₇,₅₅₆=2.37; p=0.021). There was also a decrease in the maximum knee flexion angles and an increase in knee valgus angles in ACL injured participants although they were not statistically significant. Conclusion: There was a significant decrease in the knee rotation angles in the ACL injured participants which could be a potential cause for re-injury in these athletes in the future. Although the results for decrease in maximum knee flexion angles and increase in knee valgus angles were not significant, this may be due to a limited sample of ACL injured participants; there is potential for it to be identified as a variable of interest in the rehabilitation of ACL injuries. These changes in the knee biomechanics could be vital in the rehabilitation of ACL injured athletes in the future, and an inclusion of sports based tasks, e.g., Net shot along with standard protocol movements for ACL assessment would provide a better measure of the rehabilitation of the athlete.

Keywords: ACL, biomechanics, knee injury, racquet sport

Procedia PDF Downloads 175
1169 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 179
1168 Modelling of Heating and Evaporation of Biodiesel Fuel Droplets

Authors: Mansour Al Qubeissi, Sergei S. Sazhin, Cyril Crua, Morgan R. Heikal

Abstract:

This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius.

Keywords: heat/mass transfer, biodiesel, multi-component fuel, droplet

Procedia PDF Downloads 569
1167 Message Passing Neural Network (MPNN) Approach to Multiphase Diffusion in Reservoirs for Well Interconnection Assessments

Authors: Margarita Mayoral-Villa, J. Klapp, L. Di G. Sigalotti, J. E. V. Guzmán

Abstract:

Automated learning techniques are widely applied in the energy sector to address challenging problems from a practical point of view. To this end, we discuss the implementation of a Message Passing algorithm (MPNN)within a Graph Neural Network(GNN)to leverage the neighborhood of a set of nodes during the aggregation process. This approach enables the characterization of multiphase diffusion processes in the reservoir, such that the flow paths underlying the interconnections between multiple wells may be inferred from previously available data on flow rates and bottomhole pressures. The results thus obtained compare favorably with the predictions produced by the Reduced Order Capacitance-Resistance Models (CRM) and suggest the potential of MPNNs to enhance the robustness of the forecasts while improving the computational efficiency.

Keywords: multiphase diffusion, message passing neural network, well interconnection, interwell connectivity, graph neural network, capacitance-resistance models

Procedia PDF Downloads 149
1166 Image Segmentation Using Active Contours Based on Anisotropic Diffusion

Authors: Shafiullah Soomro

Abstract:

Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.

Keywords: active contours, anisotropic diffusion, level-set, partial differential equations

Procedia PDF Downloads 162
1165 Morphology of Indian Female Athletes of Different Track and Field Events

Authors: Anju Luthra, Rajender Lal, Dhananjoy Shaw

Abstract:

Participation in games and sports in the contemporary times has become more competing with the developed scientific knowledge, skills and methods, along with the equipment and applied research in the field. In spite of India being a large country having vast resources and potential, its performance in the world of sports on the whole needs sincere attention for better achievements. Beside numerous factors responsible for the dismal performance of a sportsperson, the physique and body composition, including the size, shape and form are known to play a significant role. The present investigation was undertaken to study the specific morphological characteristics of Indian female Track and Field athletes. A total of 300 athletes were randomly selected as sample for the purpose of the study from the six events having 50 athletes in each event including 100m., 400m., Shot Put, Discus Throw, Long Jump and High Jump. The study included body weight, body fat percentage, lean body weight, endomorphy, mesomorphy and ectomorphy as variables. The data were computed statistically by using Mean, Standard Deviation and Analysis of Variance. The post-hoc analysis was conducted where the F-ratio was found to be significant at .05 level. The study concluded that there is a significant difference with regard to the selected variables among the Indian female athletes of different track and field events.

Keywords: Indian female athletes, body composition, morphology, somatotypes, track and field

Procedia PDF Downloads 131
1164 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast-Furnace Slag

Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi

Abstract:

Ceramic waste aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a supplementary cementitious material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.

Keywords: ceramic waste aggregate, chloride diffusion, GGBS, pore size distribution

Procedia PDF Downloads 344
1163 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion process, trends functions, bi-parameters weibull density function

Procedia PDF Downloads 309
1162 Doping Density Effects on Minority Carrier Lifetime in Bulk GaAs by Means of Photothermal Deflection Technique

Authors: Soufiene Ilahi

Abstract:

Photothermal effect occurs when absorbed light energy that generate a thermal wave that propagate into the sample and surrounding media. Subsequently, the propagation of the vibration of phonons or electrons causes heat transfer. In fact, heat energy is provided by non-radiative recombination process that occurs in semiconductors sample. Three heats sources are identified: surface recombination, bulk recombination and carrier thermalisation. In the last few years, Photothermal Deflection Technique PTD is a nondestructive and accurate technique that prove t ability for electronics properties investigation. In this paper, we have studied the influence of doping on minority carrier lifetime, i.e, nonradiative lifetime, surface and diffusion coefficient. In fact, we have measured the photothermal signal of two sample of GaAs doped with C et Cr.In other hand , we have developed a theoretical model that takes into account of thermal and electronics diffusion equations .In order to extract electronics parameters of GaAs samples, we have fitted the theoretical signal of PTD to the experimental ones. As a results, we have found that nonradiative lifetime is around of 4,3 x 10-8 (±11,24%) and 5 x 10-8 (±14,32%) respectively for GaAs : Si doped and Cr doped. Accordingly, the diffusion coefficient is equal 4,6 *10-4 (± 3,2%) and 5* 10-4 (± 0,14%) foe the Cr, C and Si doped GaAs respectively.

Keywords: nonradiative lifetime, mobility of minority carrier, diffusion length, surface and interface recombination in GaAs

Procedia PDF Downloads 65
1161 A Geometrical Method for the Smoluchowski Equation on the Sphere

Authors: Adriano Valdes-Gomez, Francisco Javier Sevilla

Abstract:

We devise a numerical algorithm to simulate the diffusion of a Brownian particle restricted to the surface of a three-dimensional sphere when the particle is under the effects of an external potential that is coupled linearly. It is obtained using elementary geometry, yet, it converges, in the weak sense, to the solutions to the Smoluchowski equation. Rotations on the sphere, which are the analogs of linear displacements in euclidean spaces, are calculated using algebraic operations and then by a proper scaling, which makes the algorithm efficient and quite simple, especially to what may be the short-time propagator approach. Our findings prove that the global effects of curvature are taken into account in both dynamic and stationary processes, and it is not restricted to work in configuration space, neither restricted to the overdamped limit. We have generalized it successfully to simulate the Kramers or the Ornstein-Uhlenbeck process, where it is necessary to work directly in phase space, and it may be adapted to other two dimensional surfaces with non-constant curvature.

Keywords: diffusion on the sphere, Fokker-Planck equation on the sphere, non equilibrium processes on the sphere, numerical methods for diffusion on the sphere

Procedia PDF Downloads 183
1160 Management and Evaluation of the Importance of Porous Media in Biomedical Engineering as Associated with Magnetic Resonance Imaging Besides Drug Delivery

Authors: Fateme Nokhodchi Bonab

Abstract:

Studies related to magnetic resonance imaging (MRI) and drug delivery are reviewed in this study to demonstrate the role of transport theory in porous media in facilitating advances in biomedical applications. Diffusion processes are believed to be important in many therapeutic modalities such as: B. Delivery of drugs to the brain. We analyse the progress in the development of diffusion equations using the local volume average method and the evaluation of applications related to diffusion equations. Torsion and porosity have significant effects on diffusive transport. In this study, various relevant models of torsion are presented and mathematical modeling of drug release from biodegradable delivery systems is analysed. In this study, a new model of drug release kinetics from porous biodegradable polymeric microspheres under bulk and surface erosion of the polymer matrix is presented. Solute drug diffusion, drug dissolution from the solid phase, and polymer matrix erosion have been found to play a central role in controlling the overall drug release process. This work paves the way for MRI and drug delivery researchers to develop comprehensive models based on porous media theory that use fewer assumptions compared to other approaches.

Keywords: MRI, porous media, drug delivery, biomedical applications

Procedia PDF Downloads 90
1159 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy

Authors: Hyunki Kang, Hi Won Jeong

Abstract:

The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.

Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair

Procedia PDF Downloads 42
1158 Health and Performance Fitness Assessment of Adolescents in Middle Income Schools in Lagos State

Authors: Onabajo Paul

Abstract:

The testing and assessment of physical fitness of school-aged adolescents in Nigeria has been going on for several decades. Originally, these tests strictly focused on identifying health and physical fitness status and comparing the results of adolescents with others. There is a considerable interest in health and performance fitness of adolescents in which results attained are compared with criteria representing positive health rather than simply on score comparisons with others. Despite the fact that physical education program is being studied in secondary schools and physical activities are encouraged, it is observed that regular assessment of students’ fitness level and health status seems to be scarce or not being done in these schools. The purpose of the study was to assess the heath and performance fitness of adolescents in middle-income schools in Lagos State. A total number of 150 students were selected using the simple random sampling technique. Participants were measured on hand grip strength, sit-up, pacer 20 meter shuttle run, standing long jump, weight and height. The data collected were analyzed with descriptive statistics of means, standard deviations, and range and compared with fitness norms. It was concluded that majority 111(74.0%) of the adolescents achieved the healthy fitness zone, 33(22.0%) were very lean, and 6(4.0%) needed improvement according to the normative standard of Body Mass Index test. For muscular strength, majority 78(52.0%) were weak, 66(44.0%) were normal, and 6(4.0%) were strong according to the normative standard of hand-grip strength test. For aerobic capacity fitness, majority 93(62.0%) needed improvement and were at health risk, 36(24.0%) achieved healthy fitness zone, and 21(14.0%) needed improvement according to the normative standard of PACER test. Majority 48(32.0%) of the participants had good hip flexibility, 38(25.3%) had fair status, 27(18.0%) needed improvement, 24(16.0%) had very good hip flexibility status, and 13(8.7%) of the participants had excellent status. Majority 61(40.7%) had average muscular endurance status, 30(20.0%) had poor status, 29(18.3%) had good status, 28(18.7%) had fair muscular endurance status, and 2(1.3%) of the participants had excellent status according to the normative standard of sit-up test. Majority 52(34.7%) had low jump ability fitness, 47(31.3%) had marginal fitness, 31(20.7%) had good fitness, and 20(13.3%) had high performance fitness according to the normative standard of standing long jump test. Based on the findings, it was concluded that majority of the adolescents had better Body Mass Index status, and performed well in both hip flexibility and muscular endurance tests. Whereas majority of the adolescents performed poorly in aerobic capacity test, muscular strength and jump ability test. It was recommended that to enhance wellness, adolescents should be involved in physical activities and recreation lasting 30 minutes three times a week. Schools should engage in fitness program for students on regular basis at both senior and junior classes so as to develop good cardio-respiratory, muscular fitness and improve overall health of the students.

Keywords: adolescents, health-related fitness, performance-related fitness, physical fitness

Procedia PDF Downloads 354
1157 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study

Authors: G. Singh, H.Schuster, U. Füssel

Abstract:

The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.

Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode

Procedia PDF Downloads 187
1156 Defining New Limits in Hybrid Perovskites: Single-Crystal Solar Cells with Exceptional Electron Diffusion Length Reaching Half Millimeters

Authors: Bekir Turedi

Abstract:

Exploiting the potential of perovskite single-crystal solar cells in optoelectronic applications necessitates overcoming a significant challenge: the low charge collection efficiency at increased thickness, which has restricted their deployment in radiation detectors and nuclear batteries. Our research details a promising approach to this problem, wherein we have successfully fabricated single-crystal MAPbI3 solar cells employing a space-limited inverse temperature crystallization (ITC) methodology. Remarkably, these cells, up to 400-fold thicker than current-generation perovskite polycrystalline films, maintain a high charge collection efficiency even without external bias. The crux of this achievement lies in the long electron diffusion length within these cells, estimated to be around 0.45 mm. This extended diffusion length ensures the conservation of high charge collection and power conversion efficiencies, even as the thickness of the cells increases. Fabricated cells at 110, 214, and 290 µm thickness manifested power conversion efficiencies (PCEs) of 20.0, 18.4, and 14.7% respectively. The single crystals demonstrated nearly optimal charge collection, even when their thickness exceeded 200 µm. Devices of thickness 108, 214, and 290 µm maintained 98.6, 94.3, and 80.4% of charge collection efficiency relative to their maximum theoretical short-circuit current value, respectively. Additionally, we have proposed an innovative, self-consistent technique for ascertaining the electron-diffusion length in perovskite single crystals under operational conditions. The computed electron-diffusion length approximated 446 µm, significantly surpassing previously reported values for this material. In conclusion, our findings underscore the feasibility of fabricating halide perovskite single-crystal solar cells of hundreds of micrometers in thickness while preserving high charge extraction efficiency and PCE. This advancement paves the way for developing perovskite-based optoelectronics necessitating thicker active layers, such as X-ray detectors and nuclear batteries.

Keywords: perovskite, solar cell, single crystal, diffusion length

Procedia PDF Downloads 53
1155 Knowledge Creation and Diffusion Dynamics under Stable and Turbulent Environment for Organizational Performance Optimization

Authors: Jessica Gu, Yu Chen

Abstract:

Knowledge Management (KM) is undoubtable crucial to organizational value creation, learning, and adaptation. Although the rapidly growing KM domain has been fueled with full-fledged methodologies and technologies, studies on KM evolution that bridge the organizational performance and adaptation to the organizational environment are still rarely attempted. In particular, creation (or generation) and diffusion (or share/exchange) of knowledge are of the organizational primary concerns on the problem-solving perspective, however, the optimized distribution of knowledge creation and diffusion endeavors are still unknown to knowledge workers. This research proposed an agent-based model of knowledge creation and diffusion in an organization, aiming at elucidating how the intertwining knowledge flows at microscopic level lead to optimized organizational performance at macroscopic level through evolution, and exploring what exogenous interventions by the policy maker and endogenous adjustments of the knowledge workers can better cope with different environmental conditions. With the developed model, a series of simulation experiments are conducted. Both long-term steady-state and time-dependent developmental results on organizational performance, network and structure, social interaction and learning among individuals, knowledge audit and stocktaking, and the likelihood of choosing knowledge creation and diffusion by the knowledge workers are obtained. One of the interesting findings reveals a non-monotonic phenomenon on organizational performance under turbulent environment while a monotonic phenomenon on organizational performance under a stable environment. Hence, whether the environmental condition is turbulence or stable, the most suitable exogenous KM policy and endogenous knowledge creation and diffusion choice adjustments can be identified for achieving the optimized organizational performance. Additional influential variables are further discussed and future work directions are finally elaborated. The proposed agent-based model generates evidence on how knowledge worker strategically allocates efforts on knowledge creation and diffusion, how the bottom-up interactions among individuals lead to emerged structure and optimized performance, and how environmental conditions bring in challenges to the organization system. Meanwhile, it serves as a roadmap and offers great macro and long-term insights to policy makers without interrupting the real organizational operation, sacrificing huge overhead cost, or introducing undesired panic to employees.

Keywords: knowledge creation, knowledge diffusion, agent-based modeling, organizational performance, decision making evolution

Procedia PDF Downloads 243
1154 Effect of Kinesio Taping on Anaerobic Power and Maximum Oxygen Consumption after Eccentric Exercise

Authors: Disaphon Boobpachat, Nuttaset Manimmanakorn, Apiwan Manimmanakorn, Worrawut Thuwakum, Michael J. Hamlin

Abstract:

Objectives: To evaluate effect of kinesio tape compared to placebo tape and static stretching on recovery of anaerobic power and maximal oxygen uptake (Vo₂max) after intensive exercise. Methods: Thirty nine untrained healthy volunteers were randomized to 3 groups for each intervention: elastic tape, placebo tape and stretching. The participants performed intensive exercise on the dominant quadriceps by using isokinetic dynamometry machine. The recovery process was evaluated by creatine kinase (CK), pressure pain threshold (PPT), muscle soreness scale (MSS), maximum voluntary contraction (MVC), jump height, anaerobic power and Vo₂max at baseline, immediately post-exercise and post-exercise day 1, 2, 3 and 7. Results: The kinesio tape, placebo tape and stretching groups had significant changes of PPT, MVC, jump height at immediately post-exercise compared to baseline (p < 0.05), and changes of MSS, CK, anaerobic power and Vo₂max at day 1 post-exercise compared to baseline (p < 0.05). There was no significant difference of those outcomes among three groups. Additionally, all experimental groups had little effects on anaerobic power and Vo₂max compared to baseline and compared among three groups (p > 0.05). Conclusion: Kinesio tape and stretching did not improve recovery of anaerobic power and Vo₂max after eccentric exercise compared to placebo tape.

Keywords: stretching, eccentric exercise, Wingate test, muscle soreness

Procedia PDF Downloads 130
1153 Sediment Wave and Cyclic Steps as Mechanism for Sediment Transport in Submarine Canyons Thalweg

Authors: Taiwo Olusoji Lawrence, Peace Mawo Aaron

Abstract:

Seismic analysis of bedforms has proven to be one of the best ways to study deepwater sedimentary features. Canyons are known to be sediment transportation conduit. Sediment wave are large-scale depositional bedforms in various parts of the world's oceans formed predominantly by suspended load transport. These undulating objects usually have tens of meters to a few kilometers in wavelength and a height of several meters. Cyclic steps have long long-wave upstream-migrating bedforms confined by internal hydraulic jumps. They usually occur in regions with high gradients and slope breaks. Cyclic steps and migrating sediment waves are the most common bedform on the seafloor. Cyclic steps and related sediment wave bedforms are significant to the morpho-dynamic evolution of deep-water depositional systems architectural elements, especially those located along tectonically active margins with high gradients and slope breaks that can promote internal hydraulic jumps in turbidity currents. This report examined sedimentary activities and sediment transportation in submarine canyons and provided distinctive insight into factors that created a complex seabed canyon system in the Ceara Fortaleza basin Brazilian Equatorial Margin (BEM). The growing importance of cyclic steps made it imperative to understand the parameters leading to their formation, migration, and architecture as well as their controls on sediment transport in canyon thalweg. We extracted the parameters of the observed bedforms and evaluated the aspect ratio and asymmetricity. We developed a relationship between the hydraulic jump magnitude, depth of the hydraulic fall and the length of the cyclic step therein. It was understood that an increase in the height of the cyclic step increases the magnitude of the hydraulic jump and thereby increases the rate of deposition on the preceding stoss side. An increase in the length of the cyclic steps reduces the magnitude of the hydraulic jump and reduces the rate of deposition at the stoss side. Therefore, flat stoss side was noticed at most preceding cyclic step and sediment wave.

Keywords: Ceara Fortaleza, submarine canyons, cyclic steps, sediment wave

Procedia PDF Downloads 114
1152 Numerical Simulation of Wishart Diffusion Processes

Authors: Raphael Naryongo, Philip Ngare, Anthony Waititu

Abstract:

This paper deals with numerical simulation of Wishart processes for a single asset risky pricing model whose volatility is described by Wishart affine diffusion processes. The multi-factor specification of volatility will make the model more flexible enough to fit the stock market data for short or long maturities for better returns. The Wishart process is a stochastic process which is a positive semi-definite matrix-valued generalization of the square root process. The aim of the study is to model the log asset stock returns under the double Wishart stochastic volatility model. The solution of the log-asset return dynamics for Bi-Wishart processes will be obtained through Euler-Maruyama discretization schemes. The numerical results on the asset returns are compared to the existing models returns such as Heston stochastic volatility model and double Heston stochastic volatility model

Keywords: euler schemes, log-asset return, infinitesimal generator, wishart diffusion affine processes

Procedia PDF Downloads 379
1151 Comparative Study of Isothermal and Cyclic Oxidation on Titanium Alloys

Authors: Poonam Yadav, Dong Bok Lee

Abstract:

Isothermal oxidation at 800°C for 50h and Cyclic oxidation at 600°C and 800°C for 40h of Pure Ti and Ti64 were performed in a muffle furnace. In Cyclic oxidation, massive scale spallation occurred, and the oxide scale cracks and peels off were observed at high temperature, it represents oxide scale that formed during cyclic oxidation was spalled out owing to stresses due to thermal shock generated during repetitive oxidation and subsequent cooling. The thickness of scale is larger in cyclic oxidation than the isothermal case. This is due to inward diffusion of oxygen through oxide scales and/or pores and cracks in cyclic oxidation.

Keywords: cyclic, diffusion, isothermal, cyclic

Procedia PDF Downloads 920
1150 Role of Agricultural Journalism in Diffusion of Farming Technologies

Authors: Muhammad Luqman, Mujahid Karim

Abstract:

Agricultural journalism considered an effective tool in the diffusion of agricultural technologies among the members of farming communities. Various agricultural journalism forms are used by the different organization in order to address the community problems and provide solutions to them. The present study was conducted for analyzing the role of agricultural journalism in the dissemination of agricultural information. The universe of the study was district Sargodha from which a sample of 100 was collected through a validating and pre-tested questionnaire. Statistical analysis of collected data was done with the help of SPSS. It was concluded that majority (64.6%) of the respondent were middle-aged (31-50) years, also indicates a high (73.23%) literacy rate above middle-level education, most (78.3%) of the respondents were connected with the occupation of farming. In various forms of agricultural journalism “Radio/T.V./F.M) is used by 99.4% of the respondent, Mobile phones (96%), Magazine/ Newspaper/ periodical (66.4%) and social media (60.9%). Regarding majors areas focused on agriculture journalism “Help farmers to enhance their productivity is on the highest level with a mean of ( =3.98/5.00). The regression model of farmer's education and various forms of agricultural journalism facilities used was found to be significant.

Keywords: agricultural information, journalism, farming community, technology diffusion and adoption

Procedia PDF Downloads 198
1149 Effects of Pore-Water Pressure on the Motion of Debris Flow

Authors: Meng-Yu Lin, Wan-Ju Lee

Abstract:

Pore-water pressure, which mediates effective stress and shear strength at grain contacts, has a great influence on the motion of debris flow. The factors that control the diffusion of excess pore-water pressure play very important roles in the debris-flow motion. This research investigates these effects by solving the distribution of pore-water pressure numerically in an unsteady, surging motion of debris flow. The governing equations are the depth-averaged equations for the motion of debris-flow surges coupled with the one-dimensional diffusion equation for excess pore-water pressures. The pore-pressure diffusion equation is solved using a Fourier series, which may improve the accuracy of the solution. The motion of debris-flow surge is modelled using a Lagrangian particle method. From the computational results, the effects of pore-pressure diffusivities and the initial excess pore pressure on the formations of debris-flow surges are investigated. Computational results show that the presence of pore water can increase surge velocities and then changes the profiles of depth distribution. Due to the linear distribution of the vertical component of pore-water velocity, pore pressure dissipates rapidly near the bottom and forms a parabolic distribution in the vertical direction. Increases in the diffusivity of pore-water pressure cause the pore pressures decay more rapidly and then decrease the mobility of the surge.

Keywords: debris flow, diffusion, Lagrangian particle method, pore-pressure diffusivity, pore-water pressure

Procedia PDF Downloads 144
1148 A Numerical Study on the Effects of N2 Dilution on the Flame Structure and Temperature Distribution of Swirl Diffusion Flames

Authors: Yasaman Tohidi, Shidvash Vakilipour, Saeed Ebadi Tavallaee, Shahin Vakilipoor Takaloo, Hossein Amiri

Abstract:

The numerical modeling is performed to study the effects of N2 addition to the fuel stream on the flame structure and temperature distribution of methane-air swirl diffusion flames with different swirl intensities. The Open source Field Operation and Manipulation (OpenFOAM) has been utilized as the computational tool. Flamelet approach along with modified k-ε model is employed to model the flame characteristics.  The results indicate that the presence of N2 in the fuel stream leads to the flame temperature reduction. By increasing of swirl intensity, the flame structure changes significantly. The flame has a conical shape in low swirl intensity; however, it has an hour glass-shape with a shorter length in high swirl intensity. The effects of N2 dilution decrease the flame length in all swirl intensities; however, the rate of reduction is more noticeable in low swirl intensity.

Keywords: swirl diffusion flame, N2 dilution, OpenFOAM, swirl intensity

Procedia PDF Downloads 169
1147 Speciation Analysis by Solid-Phase Microextraction and Application to Atrazine

Authors: K. Benhabib, X. Pierens, V-D Nguyen, G. Mimanne

Abstract:

The main hypothesis of the dynamics of solid phase microextraction (SPME) is that steady-state mass transfer is respected throughout the SPME extraction process. It considers steady-state diffusion is established in the two phases and fast exchange of the analyte at the solid phase film/water interface. An improved model is proposed in this paper to handle with the situation when the analyte (atrazine) is in contact with colloid suspensions (carboxylate latex in aqueous solution). A mathematical solution is obtained by substituting the diffusion coefficient by the mean of diffusion coefficient between analyte and carboxylate latex, and also thickness layer by the mean thickness in aqueous solution. This solution provides an equation relating the extracted amount of the analyte to the extraction a little more complicated than previous models. It also gives a better description of experimental observations. Moreover, the rate constant of analyte obtained is in satisfactory agreement with that obtained from the initial curve fitting.

Keywords: pesticide, solid-phase microextraction (SPME) methods, steady state, analytical model

Procedia PDF Downloads 490
1146 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method

Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai

Abstract:

In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.

Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon

Procedia PDF Downloads 161