Search results for: dual graph
1145 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.Keywords: dual solutions, heat transfer, mixed convection, stability analysis
Procedia PDF Downloads 3911144 Robust Diagnosis Efficiency by Bond-Graph Approach
Authors: Benazzouz Djamel, Termeche Adel, Touati Youcef, Alem Said, Ouziala Mahdi
Abstract:
This paper presents an approach which detect and isolate efficiently a fault in a system. This approach avoids false alarms, non-detections and delays in detecting faults. A study case have been proposed to show the importance of taking into consideration the uncertainties in the decision-making procedure and their effect on the degradation diagnostic performance and advantage of using Bond Graph (BG) for such degradation. The use of BG in the Linear Fractional Transformation (LFT) form allows generating robust Analytical Redundancy Relations (ARR’s), where the uncertain part of ARR’s is used to generate the residuals adaptive thresholds. The study case concerns an electromechanical system composed of a motor, a reducer and an external load. The aim of this application is to show the effectiveness of the BG-LFT approach to robust fault detection.Keywords: bond graph, LFT, uncertainties, detection and faults isolation, ARR
Procedia PDF Downloads 3051143 Design Dual Band Band-Pass Filter by Using Stepped Impedance
Authors: Fawzia Al-Sakeer, Hassan Aldeeb
Abstract:
Development in the communications field is proceeding at an amazing speed, which has led researchers to improve and develop electronic circuits by increasing their efficiency and reducing their size to reduce the weight of electronic devices. One of the most important of these circuits is the band-pass filter, which is what made us carry out this research, which aims to use an alternate technology to design a dual band-pass filter by using a stepped impedance microstrip transmission line. We designed a filter that works at two center frequency bands by designing with the ADS program, and the results were excellent, as we obtained the two design frequencies, which are 1 and 3GHz, and the values of insertion loss S11, which was more than 21dB with a small area.Keywords: band pass filter, dual band band-pass filter, ADS, microstrip filter, stepped impedance
Procedia PDF Downloads 691142 GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships
Authors: Jake Gonzalez, Tommy Dang
Abstract:
This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology.Keywords: temporal graph, gene relationships, nomenclature evolution, interactive visualization, biological insights
Procedia PDF Downloads 611141 Dual Role of Women and Its Influence on Farmers’ Household Income and Consumption Pattern: Study of Informal Women Workers in the District Mandalle, Pangkep, South Sulawesi Province
Authors: Ida Rosada, Nurliani
Abstract:
Today, the number of women who seek additional income to help her husband is increasing. They do that in order to be able to express themselves in the midst of the family and society. Nonetheless, housewives are in charge of managing family’s income and prepare food for the family. The objective of this research is 1) to analyze the effect of the dual role of women to household income and 2) to analyze the effect of the dual role to consumption patterns. The study used a qualitative approach, data collection techniques are through observation, interviews, and documentation on farming households. The data was analysed qualitative descriptively. The results found that: 1) The revenue contribution of women who play double role in the informal sector amounted to 34.07% (less than 50%). 2) The main reason that the respondents worked in the informal sector is to be able to send their children to school (34%) and to improve household economy condition (28%). 3) After earning additional income, respondents said that they can contribute to increase the family’s income and to cover the family shortage (82%); 4) Respondents’ opinion to changes in food consumption after performing the dual role is the ability to purchase and provide the desired food (44%) and changing patterns of consumption per day (30%).Keywords: dual role, the informal sector, consumption patterns, household income
Procedia PDF Downloads 2641140 Dual-Rail Logic Unit in Double Pass Transistor Logic
Authors: Hamdi Belgacem, Fradi Aymen
Abstract:
In this paper we present a low power, low cost differential logic unit (LU). The proposed LU receives dual-rail inputs and generates dual-rail outputs. The proposed circuit can be used in Arithmetic and Logic Units (ALU) of processor. It can be also dedicated for self-checking applications based on dual duplication code. Four logic functions as well as their inverses are implemented within a single Logic Unit. The hardware overhead for the implementation of the proposed LU is lower than the hardware overhead required for standard LU implemented with standard CMOS logic style. This new implementation is attractive as fewer transistors are required to implement important logic functions. The proposed differential logic unit can perform 8 Boolean logical operations by using only 16 transistors. Spice simulations using a 32 nm technology was utilized to evaluate the performance of the proposed circuit and to prove its acceptable electrical behaviour.Keywords: differential logic unit, double pass transistor logic, low power CMOS design, low cost CMOS design
Procedia PDF Downloads 4521139 A Case Study of Response to Dual Genotype Chronic Hepatitis C/HIV Co-Infection to Fixed Dose Sofosbuvir/Ledipasvir
Authors: Tabassum Yasmin, Hamid Pahlevan
Abstract:
HIV/Hepatitis C co-infection treatments have evolved substantially and they have similar sustained virologic response rates as those of Hepatitis C monoinfected population. There are a few studies on therapy of patients with dual genotypes, especially in HIV/Hepatic C coinfected group. Most studies portrayed case reports of dual genotype chronic Hepatitis C coinfection treatment with Sofosbuvir/Ledipasvir and Ribavirin. A 79-year-old male with a history of HIV on Truvada and Isentress had chronic Hepatitis C with 1a and 2 genotypes. The patient has a history of alcohol intake for 40 years but recently stopped drinking alcohol. He has a history of intravenous drug use in the past and currently is not using any recreational drugs. Patient has Fibro score of 0.7 with Metavir score F2 to F4. AFP is 3.2. The HCV RNA is 493,034 IU/ML. The HBV viral DNA is < 1.30 (not detected). The CD4 is 687CU/MM. The FIB 4 is 3.34 with APRI index 0.717. The HIV viral load is 101 copies/ML. MRI abdomen did not show any liver abnormality. Fixed dose Sofosbuvir/Ledipasvir was used for therapy without Ribavirin. He tolerated medication except for some minor gastrointestinal side effects like abdominal bloating. He demonstrated 100% adherence rate. Patient completed 12 weeks of therapy. HCV RNA was undetectable at 4 and 12 weeks. He achieved SVR at week 12 and subsequently had undetectable RNA for 2 years. Dual genotype prevalence in chronic hepatitis C population is rare, especially in HIV/hepatic coinfection. Our case demonstrates that dual genotypic cases can still be successfully treated with Direct Acting Antiviral agents. The newer agents for therapy for pan genotypes were not available at the time the patient was being treated. We demonstrated that dual agent therapy was still able to maintain SVR in our patient.Keywords: HIV/Hepatitis C, SVR (sustained virologic response), DAA (direct active antiviral agents, dual genotype
Procedia PDF Downloads 1961138 A Dual-Polarized Wideband Probe for Near-Field Antenna Measurement
Authors: K. S. Sruthi
Abstract:
Antennas are one of the most important parts of a communication chain. They are used for both communication and calibration purposes. New developments in probe technologies have enabled near-field probes with much larger bandwidth. The objective of this paper is to design, simulate and fabricate a dual polarized wide band inverted quad ridged shape horn antenna which can be used as measurement probe for near field measurements. The inverted quad-ridged horn antenna probe not only provides measurement in the much wider range but also provides dual-polarization measurement thus enabling antenna developers to measure UWB, UHF, VHF antennas more precisely and at lower cost. The antenna is designed to meet the characteristics such as high gain, light weight, linearly polarized with suppressed side lobes for near-field measurement applications. The proposed antenna is simulated with commercially available packages such as Ansoft HFSS. The antenna gives a moderate gain over operating range while delivering a wide bandwidth.Keywords: near-field antenna measurement, inverted quad-ridge horn antenna, wideband Antennas, dual polarized antennas, ansoft HFSS
Procedia PDF Downloads 4251137 Constructing Orthogonal De Bruijn and Kautz Sequences and Applications
Authors: Yaw-Ling Lin
Abstract:
A de Bruijn graph of order k is a graph whose vertices representing all length-k sequences with edges joining pairs of vertices whose sequences have maximum possible overlap (length k−1). Every Hamiltonian cycle of this graph defines a distinct, minimum length de Bruijn sequence containing all k-mers exactly once. A Kautz sequence is the minimal generating sequence so as the sequence of minimal length that produces all possible length-k sequences with the restriction that every two consecutive alphabets in the sequences must be different. A collection of de Bruijn/Kautz sequences are orthogonal if any two sequences are of maximally differ in sequence composition; that is, the maximum length of their common substring is k. In this paper, we discuss how such a collection of (maximal) orthogonal de Bruijn/Kautz sequences can be made and use the algorithm to build up a web application service for the synthesized DNA and other related biomolecular sequences.Keywords: biomolecular sequence synthesis, de Bruijn sequences, Eulerian cycle, Hamiltonian cycle, Kautz sequences, orthogonal sequences
Procedia PDF Downloads 1671136 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 861135 Aspect-Level Sentiment Analysis with Multi-Channel and Graph Convolutional Networks
Authors: Jiajun Wang, Xiaoge Li
Abstract:
The purpose of the aspect-level sentiment analysis task is to identify the sentiment polarity of aspects in a sentence. Currently, most methods mainly focus on using neural networks and attention mechanisms to model the relationship between aspects and context, but they ignore the dependence of words in different ranges in the sentence, resulting in deviation when assigning relationship weight to other words other than aspect words. To solve these problems, we propose a new aspect-level sentiment analysis model that combines a multi-channel convolutional network and graph convolutional network (GCN). Firstly, the context and the degree of association between words are characterized by Long Short-Term Memory (LSTM) and self-attention mechanism. Besides, a multi-channel convolutional network is used to extract the features of words in different ranges. Finally, a convolutional graph network is used to associate the node information of the dependency tree structure. We conduct experiments on four benchmark datasets. The experimental results are compared with those of other models, which shows that our model is better and more effective.Keywords: aspect-level sentiment analysis, attention, multi-channel convolution network, graph convolution network, dependency tree
Procedia PDF Downloads 2201134 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information
Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai
Abstract:
Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.Keywords: knowledge graph, entity alignment, transformer, deep learning
Procedia PDF Downloads 461133 Robust Diagnosability of PEMFC Based on Bond Graph LFT
Authors: Ould Bouamama, M. Bressel, D. Hissel, M. Hilairet
Abstract:
Fuel cell (FC) is one of the best alternatives of fossil energy. Recently, the research community of fuel cell has shown a considerable interest for diagnosis in view to ensure safety, security, and availability when faults occur in the process. The problematic for model based FC diagnosis consists in that the model is complex because of coupling of several kind of energies and the numerical values of parameters are not always known or are uncertain. The present paper deals with use of one tool: the Linear Fractional Transformation bond graph tool not only for uncertain modelling but also for monitorability (ability to detect and isolate faults) analysis and formal generation of robust fault indicators with respect to parameter uncertainties.The developed theory applied to a nonlinear FC system has proved its efficiency.Keywords: bond graph, fuel cell, fault detection and isolation (FDI), robust diagnosis, structural analysis
Procedia PDF Downloads 3661132 Exploring Relationship between Attention and Consciousness
Authors: Aarushi Agarwal, Tara Singh, Anju Lata Singh, Trayambak Tiwari, Indramani Lal Singh
Abstract:
The existing interdependent relationship between attention and consciousness has been put to debate since long. To testify the nature, dual-task paradigm has been used to simultaneously manipulate awareness and attention. With central discrimination task which is attentional demanding, participants also perform simple discrimination task in the periphery in near absence of attention. Individual-based analysis of performance accuracy in single and dual condition showed and above chance level performance i.e. more than 80%. In order to widen the understanding of extent of discrimination carried in near absence of attention, natural image and its geometric equivalent shape were presented in the periphery; synthetic objects accounted to lower level of performance than natural objects in dual condition. The gaze plot and heatmap indicate that peripheral performance do not necessarily involve saccade every time, verifying the discrimination in the periphery was in near absence of attention. Thus our studies show an interdependent nature of attention and awareness.Keywords: attention, awareness, dual task paradigm, natural and geometric images
Procedia PDF Downloads 5181131 Nudge Plus: Incorporating Reflection into Behavioural Public Policy
Authors: Sanchayan Banerjee, Peter John
Abstract:
Nudge plus is a modification of the toolkit of behavioural public policy. It incorporates an element of reflection¾the plus¾into the delivery of a nudge, either blended in or made proximate. Nudge plus builds on recent work combining heuristics and deliberation. It may be used to design pro-social interventions that help preserve the autonomy of the agent. The argument turns on seminal work on dual systems, which presents a subtler relationship between fast and slow thinking than commonly assumed in the classic literature in behavioural public policy. We review classic and recent work on dual processes to show that a hybrid is more plausible than the default interventionist or parallel competitive framework. We define nudge plus, set out what reflection could entail, provide examples, outline causal mechanisms, and draw testable implications.Keywords: nudge, nudge plus, think, dual process theory
Procedia PDF Downloads 1921130 Seismic Evaluation with Shear Walls and Braces for Buildings
Authors: R. S. Malik, S. K. Madan, V. K. Sehgal
Abstract:
Reinforced concrete (RCC) buildings with dual system consisting of shear walls and moment resisting frames or braces and moment resisting frames have been widely used to resist lateral forces during earthquakes. The two dual systems are designed to resist the total design lateral force in proportion to their lateral stiffness. The response of the combination of braces and shear walls has not yet been studied therefore has practically no work to refer to. The combination may prove to be more effective in lateral load resistance by employing the peculiar advantages of shear walls and braces simultaneously and may also improve the architectural appearance of structures. This concept has been applied to regular RCC buildings provided with shear walls, braces, and their combinations.Keywords: dynamic analysis, displacement, pushover analysis, dual structures, storey drift
Procedia PDF Downloads 4061129 Design of a Tool for Generating Test Cases from BPMN
Authors: Prat Yotyawilai, Taratip Suwannasart
Abstract:
Business Process Model and Notation (BPMN) is more important in the business process and creating functional models, and is a standard for OMG, which becomes popular in various organizations and in education. Researches related to software testing based on models are prominent. Although most researches use the UML model in software testing, not many researches use the BPMN Model in creating test cases. Therefore, this research proposes a design of a tool for generating test cases from the BPMN. The model is analyzed and the details of the various components are extracted before creating a flow graph. Both details of components and the flow graph are used in generating test cases.Keywords: software testing, test case, BPMN, flow graph
Procedia PDF Downloads 5551128 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network
Authors: Yuntao Liu, Lei Wang, Haoran Xia
Abstract:
Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability
Procedia PDF Downloads 671127 Dueling Burnout: The Dual Role Nurse
Authors: Melissa Dorsey
Abstract:
Moral distress and compassion fatigue plague nurses in the Cardiothoracic Intensive Care Unit (CTICU) and cause an unnecessary level of turnover. Dueling Burnout describes an initiative that was implemented in the CTICU to reduce the level of burnout the nurses endure by encouraging dual roles with collaborating departments. Purpose: Critical care nurses are plagued by burnout, moral distress, and compassion fatigue due to the intensity of care provided. The purpose of the dual role program was to decrease these issues by providing relief from the intensity of the critical care environment while maintaining full-time employment. Relevance/Significance: Burnout, moral distress, and compassion fatigue are leading causes of Cardiothoracic Critical Care (CTCU) turnover. A contributing factor to burnout is the workload related to serving as a preceptor for a constant influx of new nurses (RN). As a result of these factors, the CTICU averages 17% nursing turnover/year. The cost, unit disruption, and, most importantly, distress of the clinical nurses required an innovative approach to create an improved work environment and experience. Strategies/Implementation/Methods: In May 2018, a dual role pilot was initiated for nurses. The dual role constitutes .6 full-time equivalent hours (FTE) worked in CTICU in combination with .3 FTE worked in the Emergency Department (ED). ED nurses who expressed an interest in cross-training to CTICU were also offered the dual role opportunity. The initial hypothesis was that full-time employees would benefit from a change in clinical setting leading to increased engagement and job satisfaction. The dual role also presents an opportunity for professional development through the expansion of clinical skills in another specialty. Success of the pilot led to extending the dual role to areas beyond the ED. Evaluation/Outcomes/Results: The number of dual role clinical nurses has grown to 22. From the dual role cohort, only one has transferred out of CTICU. This is a 5% turnover rate for this group of nurses as compared to the average turnover rate of 17%. A role satisfaction survey conducted with the dual role cohort found that because of working in a dual role, 76.5% decreased their intent to leave, 100% decreased their level of burnout, and 100% reported an increase in overall job satisfaction. Nurses reported the ability to develop skills that are transferable between departments. Respondents emphasized the appreciation gained from working in multiple environments; the dual role served to transform their care. Conclusions/Implications: Dual role is an effective strategy to retain experienced nurses, decrease burnout and turnover, improve collaboration, and provide flexibility to meet staffing needs. The dual role offers RNs an expansion of skills, relief from high acuity and orientee demands, while improving job satisfaction.Keywords: nursing retention, burnout, pandemic, strategic staffing, leadership
Procedia PDF Downloads 1831126 Gender Effects in EEG-Based Functional Brain Networks
Authors: Mahdi Jalili
Abstract:
Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.Keywords: EEG, brain, functional networks, network science, graph theory
Procedia PDF Downloads 4431125 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI
Authors: Hae-Yeoun Lee
Abstract:
Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering
Procedia PDF Downloads 3991124 Development of Graph-Theoretic Model for Ranking Top of Rail Lubricants
Authors: Subhash Chandra Sharma, Mohammad Soleimani
Abstract:
Selection of the correct lubricant for the top of rail application is a complex process. In this paper, the selection of the proper lubricant for a Top-Of-Rail (TOR) lubrication system based on graph theory and matrix approach has been developed. Attributes influencing the selection process and their influence on each other has been represented through a digraph and an equivalent matrix. A matrix function which is called the Permanent Function is derived. By substituting the level of inherent contribution of the influencing parameters and their influence on each other qualitatively, a criterion called Suitability Index is derived. Based on these indices, lubricants can be ranked for their suitability. The proposed model can be useful for maintenance engineers in selecting the best lubricant for a TOR application. The proposed methodology is illustrated step–by-step through an example.Keywords: lubricant selection, top of rail lubrication, graph-theory, Ranking of lubricants
Procedia PDF Downloads 2951123 Deciding Graph Non-Hamiltonicity via a Closure Algorithm
Authors: E. R. Swart, S. J. Gismondi, N. R. Swart, C. E. Bell
Abstract:
We present an heuristic algorithm that decides graph non-Hamiltonicity. All graphs are directed, each undirected edge regarded as a pair of counter directed arcs. Each of the n! Hamilton cycles in a complete graph on n+1 vertices is mapped to an n-permutation matrix P where p(u,i)=1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n+1. We first create exclusion set E by noting all arcs (u, v) not in G, sufficient to code precisely all cycles excluded from G i.e. cycles not in G use at least one arc not in G. Members are pairs of components of P, {p(u,i),p(v,i+1)}, i=1, n-1. A doubly stochastic-like relaxed LP formulation of the Hamilton cycle decision problem is constructed. Each {p(u,i),p(v,i+1)} in E is coded as variable q(u,i,v,i+1)=0 i.e. shrinks the feasible region. We then implement the Weak Closure Algorithm (WCA) that tests necessary conditions of a matching, together with Boolean closure to decide 0/1 variable assignments. Each {p(u,i),p(v,j)} not in E is tested for membership in E, and if possible, added to E (q(u,i,v,j)=0) to iteratively maximize |E|. If the WCA constructs E to be maximal, the set of all {p(u,i),p(v,j)}, then G is decided non-Hamiltonian. Only non-Hamiltonian G share this maximal property. Ten non-Hamiltonian graphs (10 through 104 vertices) and 2000 randomized 31 vertex non-Hamiltonian graphs are tested and correctly decided non-Hamiltonian. For Hamiltonian G, the complement of E covers a matching, perhaps useful in searching for cycles. We also present an example where the WCA fails.Keywords: Hamilton cycle decision problem, computational complexity theory, graph theory, theoretical computer science
Procedia PDF Downloads 3731122 Electrocatalytic Enhancement Mechanism of Dual-Atom and Single-Atom MXenes-Based Catalyst in Oxygen and Hydrogen Evolution Reactions
Authors: Xin Zhao. Xuerong Zheng. Andrey L. Rogach
Abstract:
Using single metal atoms has been considered an efficient way to develop new HER and OER catalysts. MXenes, a class of two-dimensional materials, have attracted tremendous interest as promising substrates for single-atom metal catalysts. However, there is still a lack of systematic investigations on the interaction mechanisms between various MXenes substrates and single atoms. Besides, due to the poor interaction between metal atoms and substrates resulting in low loading and stability, dual-atom MXenes-based catalysts have not been successfully synthesized. We summarized the electrocatalytic enhancement mechanism of three MXenes-based single-atom catalysts through experimental and theoretical results demonstrating the stronger hybridization between Co 3d and surface-terminated O 2p orbitals, optimizing the electronic structure of Co single atoms in the composite. This, in turn, lowers the OER and HER energy barriers and accelerates the catalytic kinetics in the case of the Co@V2CTx composite. The poor interaction between single atoms and substrates can be improved by a surface modification to synthesize dual-atom catalysts. The synergistic electronic structure enhances the stability and electrocatalytic activity of the catalyst. Our study provides guidelines for designing single-atom and dual-atom MXene-based electrocatalysts and sheds light on the origins of the catalytic activity of single-atoms on MXene substrates.Keywords: dual-atom catalyst, single-atom catalyst, MXene substrates, water splitting
Procedia PDF Downloads 691121 Some New Bounds for a Real Power of the Normalized Laplacian Eigenvalues
Authors: Ayşe Dilek Maden
Abstract:
For a given a simple connected graph, we present some new bounds via a new approach for a special topological index given by the sum of the real number power of the non-zero normalized Laplacian eigenvalues. To use this approach presents an advantage not only to derive old and new bounds on this topic but also gives an idea how some previous results in similar area can be developed.Keywords: degree Kirchhoff index, normalized Laplacian eigenvalue, spanning tree, simple connected graph
Procedia PDF Downloads 3671120 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices
Authors: Khosrow Maleknejad, Yaser Rostami
Abstract:
In this paper, semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions.Keywords: ıntegro-differential equations, quartic B-spline wavelet, operational matrices, dual functions
Procedia PDF Downloads 4561119 The Effects of Normal Aging on Reasoning Ability: A Dual-Process Approach
Authors: Jamie A. Prowse Turner, Jamie I. D. Campbell, Valerie A. Thompson
Abstract:
The objective of the current research was to use a dual-process theory framework to explain these age-related differences in reasoning. Seventy-two older (M = 80.0 years) and 72 younger (M = 24.6 years) adults were given a variety of reasoning tests (i.e., a syllogistic task, base rate task, the Cognitive Reflection Test, and a perspective manipulation), as well as independent tests of capacity (working memory, processing speed, and inhibition), thinking styles, and metacognitive ability, to account for these age-related differences. It was revealed that age-related differences were limited to problems that required Type 2 processing and were related to differences in cognitive capacity, individual difference factors, and strategy choice. Furthermore, older adults’ performance can be improved by reasoning from another’s’ perspective and cannot, at this time, be explained by metacognitive differences between young and older adults. All of these findings fit well within a dual-process theory of reasoning, which provides an integrative framework accounting for previous findings and the findings presented in the current manuscript.Keywords: aging, dual-process theory, performance, reasoning ability
Procedia PDF Downloads 1911118 Reflections on the Role of Cultural Identity in a Bilingual Education Program
Authors: Lina Tenjo, Ilba Rodríguez
Abstract:
The role of cultural identity in bilingual programs has been barely discussed in regards to SLA. This research focuses on providing relevant information that helps in having more knowledge about the experiences that an elementary student has during the second language learning process in a bilingual program within a multicultural context. This study explores the experience of 18 students in a dual language program, in a public elementary school in Northern Virginia, USA. It examines their dual language experience and the different ways this experience contributes to the formation of their cultural identity. The findings were studied with the purpose of determining the relationship between participants and certain aspects of cultural identity in a multicultural context. The reflections that originate from the voices of children are the key source that helps us to better understand the particular needs that young learners have during their participation in a DLP.Keywords: acculturation, bilingual education, culture, dual language program, identity, second language acquisition
Procedia PDF Downloads 3401117 A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem
Authors: Boumesbah Asma, Chergui Mohamed El-amine
Abstract:
Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient.Keywords: minimum spanning tree, multiple objective linear optimization, combinatorial optimization, non-sorting genetic algorithm, variable neighborhood search
Procedia PDF Downloads 911116 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks
Authors: Tanu Aneja, Harsha Malaviya
Abstract:
Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks
Procedia PDF Downloads 18