Search results for: critical current density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16426

Search results for: critical current density

16306 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials

Authors: Mahdi Fakoor, Hannaneh Manafi Farid

Abstract:

In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.

Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor

Procedia PDF Downloads 167
16305 Critical Realism as a Bridge between Critical Pedagogy and Queer Theory

Authors: Mike Seal

Abstract:

This paper explores the traditions of critical and queer pedagogy, its intersections, tensions and paradoxes. Critical pedagogy, with a materialist realist ontology, and queer theory, which is often post-modern, post-structural and anti-essential, may not seem compatible. Similarly, there are tensions between activist orientations, often enacted through essential sexual identities, and a queer approach that questions such identities and subjectivities. It will argue that critical realism gives us a bridge between critical and queer pedagogy in preserving a realist materialist ontology, where economic forces are real, and independent of consciousness and hermeneutic constructions of them. At the same time, it offers an epistemology that does not necessitate a binary view of the roles of the oppressed, liberator, or even oppressor. It accepts that our knowledge is contingent, partial and contestable, but has the potential, and enough validity, to demand action and potentially inform the actions of others.

Keywords: critical pedagogy, queer pedagogy, critical realsim, heteronormativity

Procedia PDF Downloads 191
16304 Modeling and Optimization of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO₂ to CH₃OH

Authors: Barzin Rajabloo, Martin Desilets

Abstract:

First, an electrochemical model for the reduction of CO₂ into CH₃OH is developed in which mass and charge transfer, reactions at the surface of the electrodes and fluid flow of the electrolyte are considered. This mathematical model is developed in COMSOL Multiphysics® where both secondary and tertiary current distribution interfaces are coupled to consider concentrations and potentials inside different parts of the cell. Constant reaction rates are assumed as the fitted parameters to minimize the error between experimental data and modeling results. The model is validated through a comparison with experimental data in terms of faradaic efficiency for production of CH₃OH, the current density in different applied cathode potentials as well as current density in different electrolyte flow rates. The comparison between model outputs and experimental measurements shows a good agreement. The model indicates the higher hydrogen evolution in comparison with CH₃OH production as well as mass transfer limitation caused by CO₂ concentration, which are consistent with findings in the literature. After validating the model, in the second part of the study, some design parameters of the cell, such as cathode geometry and catholyte/anolyte channel widths, are modified to reach better performance and higher faradaic efficiency of methanol production.

Keywords: carbon dioxide, electrochemical reduction, methanol, modeling

Procedia PDF Downloads 109
16303 Improving Students' Critical Thinking in Understanding Reading Material Through Bloom's Critical Thinking Questioning Strategy in English for Specific Purposes (ESP) Class

Authors: Hevriani Sevrika Mayuasti

Abstract:

This research deals in improving college students’ critical thinking at English for Specific Purposes Subject. The strategy that is applied is Bloom’s Critical Thinking Questioning Strategy. The positive side of this strategy is that the given questions are developed based on Bloom’s taxonomy level. It is an action research because the researcher uses own class in doing this research. The processes of this research have been done from April to Mei 2014. There are two cycles and each cycle consists of two meetings. After doing the research, it is gotten that Bloom’s Critical Thinking Questioning Strategy improves college students’ critical thinking. It helps the students to build and elaborate their ideas. Hence, it increases students’ reading comprehension.

Keywords: critical thinking, blooms’ critical thinking, questioning, strategy

Procedia PDF Downloads 656
16302 Lateral-Torsional Buckling of Steel Girder Systems Braced by Solid Web Crossbeams

Authors: Ruoyang Tang, Jianguo Nie

Abstract:

Lateral-torsional bracing members are critical to the stability of girder systems during the construction phase of steel-concrete composite bridges, and the interaction effect of multiple girders plays an essential role in the determination of buckling load. In this paper, an investigation is conducted on the lateral-torsional buckling behavior of the steel girder system which is composed of three or four I-shaped girders and braced by solid web crossbeams. The buckling load for such girder system is comprehensively analyzed and an analytical solution is developed for uniform pressure loading conditions. Furthermore, post-buckling analysis including initial geometric imperfections is performed and parametric studies in terms of bracing density, stiffness ratio as well as the number and spacing of girders are presented in order to find the optimal bracing plans for an arbitrary girder layout. The theoretical solution of critical load on account of local buckling mode shows good agreement with the numerical results in eigenvalue analysis. In addition, parametric analysis results show that both bracing density and stiffness ratio have a significant impact on the initial stiffness, global stability and failure mode of such girder system. Taking into consideration the effect of initial geometric imperfections, an increase in bracing density between adjacent girders can effectively improve the bearing capacity of the structure, and higher beam-girder stiffness ratio can result in a more ductile failure mode.

Keywords: bracing member, construction stage, lateral-torsional buckling, steel girder system

Procedia PDF Downloads 124
16301 The Effect of Low Voltage Direct Current Applications on the Growth of Microalgae Chlorella Vulgaris

Authors: Osman Kök, İlhami̇ Tüzün, Yaşar Aluç

Abstract:

This study was conducted to explore the effect of direct current (DC) applications on the growth of microalgae Chlorella vulgaris KKU71, isolated from highly saline freshwater. Experiments were implemented based upon the cross-combinations of both the intensity and duration of electric applications, generating a full factorial design of 10V, 20V, 30V, and 5s, 30s, 60s, respectively. Growth parameters of cultures were monitored on Optical Density (OD), Cell Count (CC), Chlorophyll-a, b (Chl-a, b), and Total Carotenoids (TCar). All DC-assisted treatments stimulated the growth and thus led to higher values of growth parameters such as OD, CC, Chl-a, and TCar. Monotonically increasing with the intensity and duration of DC applications, wet and dry biomass yields of the harvested algae reached their highest level at 30V-60s in all sets of treatments. In addition, this increase between DC applications was listed as C(control)<10V<20V<30V and C<5s<30s<60s. As a result, direct current applications increased the biomass.

Keywords: Chlorella Vulgaris, direct current, growth, biomass

Procedia PDF Downloads 138
16300 The Role of Critical Thinking in Disease Diagnosis: A Comprehensive Review

Authors: Mohammad Al-Mousawi

Abstract:

This academic article explores the indispensable role of critical thinking in the process of diagnosing diseases. Employing a multidisciplinary approach, we delve into the cognitive skills and analytical mindset that clinicians, researchers, and healthcare professionals must employ to navigate the complexities of disease identification. By examining the integration of critical thinking within the realms of medical education, diagnostic decision-making, and technological advancements, this article aims to underscore the significance of cultivating and applying critical thinking skills in the ever-evolving landscape of healthcare.

Keywords: critical thinking, medical education, diagnostic decision-making, fostering critical thinking

Procedia PDF Downloads 74
16299 Analysis on Urban Form and Evolution Mechanism of High-Density City: Case Study of Hong Kong

Authors: Yuan Zhang

Abstract:

Along with large population and great demands for urban development, Hong Kong serves as a typical high-density city with multiple altitudes, advanced three-dimensional traffic system, rich city open space, etc. This paper contributes to analyzing its complex urban form and evolution mechanism from three aspects of view, separately as time, space and buildings. Taking both horizontal and vertical dimension into consideration, this paper provides a perspective to explore the fascinating process of growing and space folding in the urban form of high-density city, also as a research reference for related high-density urban design.

Keywords: evolution mechanism, high-density city, Hong Kong, urban form

Procedia PDF Downloads 403
16298 Physical Theory for One-Dimensional Correlated Electron Systems

Authors: Nelson Nenuwe

Abstract:

The behavior of interacting electrons in one dimension was studied by calculating correlation functions and critical exponents at zero and external magnetic fields for arbitrary band filling. The technique employed in this study is based on the conformal field theory (CFT). The charge and spin degrees of freedom are separated, and described by two independent conformal theories. A detailed comparison of the t-J model with the repulsive Hubbard model was then undertaken with emphasis on their Tomonaga-Luttinger (TL) liquid properties. Near half-filling the exponents of the t-J model take the values of the strong-correlation limit of the Hubbard model, and in the low-density limit the exponents are those of a non-interacting system. The critical exponents obtained in this study belong to the repulsive TL liquid (conducting phase) and attractive TL liquid (superconducting phase). The theoretical results from this study find applications in one-dimensional organic conductors (TTF-TCNQ), organic superconductors (Bechgaard salts) and carbon nanotubes (SWCNTs, DWCNTs and MWCNTs). For instance, the critical exponent at from this study is consistent with the experimental result from optical and photoemission evidence of TL liquid in one-dimensional metallic Bechgaard salt- (TMTSF)2PF6.

Keywords: critical exponents, conformal field theory, Hubbard model, t-J model

Procedia PDF Downloads 343
16297 Critical Design - Concepts, Methods and Practices for Innovative Societal Relationships

Authors: Martina Maria Keitsch

Abstract:

Critical Design (CD) confronts traditional design practice. Instead of reproducing and reinforcing contemporary perceptions of products and services, CD seeks to challenge them with the goal to stimulate debates and visions on societal innovation. CD methods comprise, among other narratives and design of critical objects. The oral presentation is based on a study that discusses concepts, methods, and applications of CD links CD to traditional design, and identifies CD benefits and challenges for design research and practice. The objective of the study is to introduce CD as an alternative for design researchers and practitioners supplementing commercially oriented design approaches. The study utilizes a literature review on CD concepts and methods based on current publications and online documents and illustrates CD practice with help of selected case studies. Findings of the study indicate that CD contribute, among others, to create new societal roles for designers, foster innovative relationships between designers and users, and encourage creativity through imaginative aesthetics.

Keywords: critical design, postmodern design theories, narratives, rhizome

Procedia PDF Downloads 171
16296 A Flexible High Energy Density Zn-Air Battery by Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work investigates the development of a high energy density zinc-air battery. Printed and flexible thin film zinc-air battery with an overall thickness of about 350 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder, ZnO, and Bi2O3 was used to prepare the anode electrode. The suitable concentration of Bi2O3 and types of binders (styrene-butadiene and sodium silicate) were investigated. Results showed that battery using 20% Bi2O3 and sodium silicate binder provided the best performance. The open-circuit voltage and energy density observed were 1.59 V and 690 Wh/kg, respectively. When the battery was discharged at 20 mA/cm2, the potential voltage observed was 1.3 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, printed battery, screen printing, Zn-air

Procedia PDF Downloads 278
16295 Forster Energy Transfer and Optoelectronic Properties of (PFO/TiO2)/Fluorol 7GA Hybrid Thin Films

Authors: Bandar Ali Al-Asbahi, Mohammad Hafizuddin Haji Jumali

Abstract:

Forster energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/TiO2 nanoparticles (NPs) as a donor and Fluorol 7GA as an acceptor has been studied. The energy transfer parameters were calculated by using mathematical models. The dominant mechanism responsible for the energy transfer between the donor and acceptor molecules was Forster-type, as evidenced by large values of quenching rate constant, energy transfer rate constant and critical distance of energy transfer. Moreover, these composites which were used as an emissive layer in organic light emitting diodes, were investigated in terms of current density–voltage and electroluminescence spectra.

Keywords: energy transfer parameters, forster-type, electroluminescence, organic light emitting diodes

Procedia PDF Downloads 426
16294 A Comparative Case Study on the Relationship between Solar Energy Potential and Block Typology and Density in Shanghai Context

Authors: Dan Zhu, Jie Shi

Abstract:

This study explores the relationship between solar potential and block typology and density by analyzing sixteen existing typical street blocks with different topologies and densities in Shanghai, a representative high-density urban in China. Several indicators are proposed to quantify, and a methodology is conducted to evaluate and compare the solar potential both on façade and roof across various selected urban forms. 1) The importance of appropriate solar energy indicators and geometric parameters to be used in comparative studies, and 2) the relationship between urban typology, density, and solar performance are discussed. In this way, the results reveal the key design attributes contributing to increasing solar potential.

Keywords: block typology, geometric parameters, high-density urban, solar potential

Procedia PDF Downloads 336
16293 Promoting Critical Thinking in a Robotics Class

Authors: Ian D. Walker

Abstract:

This paper describes the creation and teaching of an undergraduate course aimed at promoting critical thinking among the students in the course. The class, Robots in Business and Society, taught at Clemson University, is open to all undergraduate students of any discipline. It is taught as part of Clemson’s online class program and is structured to promote critical thinking via a series of interactive discussion boards and assignments. Critical thinking is measured via pre- and post-testing using a benchmark standardized test. The paper will detail the class organization, and describe and discuss the results and lessons learned with respect to improvement of student critical thinking from three offerings of the class.

Keywords: critical thinking, pedagogy, robotics, undergraduate teaching

Procedia PDF Downloads 288
16292 Solutions for Quality Pre-Control of Crimp Contacts

Authors: C. F. Ocoleanu, G. Cividjian, Gh. Manolea

Abstract:

In this paper, we present two solutions for connections quality pre-control of Crimp Contacts and to identify in the first moments the connections improperly executed, before final assembly of a electrical machines. The first solution supposed experimental determination of specific losses by calculated the initial rate of temperature rise. This can be made drawing the tangent at the origin at heating curve. The method can be used to identify bad connections by passing a current through the winding at ambient temperature and simultaneously record connections temperatures in the first few minutes since the current is setting. The second proposed solution is to apply to each element crimping a thermal indicator one level, and making a test heating with a heating current corresponding to critical temperature indicator.

Keywords: temperature, crimp contact, thermal indicator, current distribution, specific losses

Procedia PDF Downloads 422
16291 Highly Efficient Ca-Doped CuS Counter Electrodes for Quantum Dot Sensitized Solar Cells

Authors: Mohammed Panthakkal Abdul Muthalif, Shanmugasundaram Kanagaraj, Jumi Park, Hangyu Park, Youngson Choe

Abstract:

The present study reports the incorporation of calcium ions into the CuS counter electrodes (CEs) in order to modify the photovoltaic performance of quantum dot-sensitized solar cells (QDSSCs). Metal ion-doped CuS thin film was prepared by the chemical bath deposition (CBD) method on FTO substrate and used directly as counter electrodes for TiO₂/CdS/CdSe/ZnS photoanodes based QDSSCs. For the Ca-doped CuS thin films, copper nitrate and thioacetamide were used as anionic and cationic precursors. Calcium nitrate tetrahydrate was used as doping material. The surface morphology of Ca-doped CuS CEs indicates that the fragments are uniformly distributed, and the structure is densely packed with high crystallinity. The changes observed in the diffraction patterns suggest that Ca dopant can introduce increased disorder into CuS material structure. EDX analysis was employed to determine the elemental identification, and the results confirmed the presence of Cu, S, and Ca on the FTO glass substrate. The photovoltaic current density – voltage characteristics of Ca-doped CuS CEs shows the specific improvements in open circuit voltage decay (Voc) and short-circuit current density (Jsc). Electrochemical impedance spectroscopy results display that Ca-doped CuS CEs have greater electrocatalytic activity and charge transport capacity than bare CuS. All the experimental results indicate that 20% Ca-doped CuS CE based QDSSCs exhibit high power conversion efficiency (η) of 4.92%, short circuit current density of 15.47 mA cm⁻², open circuit photovoltage of 0.611 V, and fill factor (FF) of 0.521 under illumination of one sun.

Keywords: Ca-doped CuS counter electrodes, surface morphology, chemical bath deposition method, electrocatalytic activity

Procedia PDF Downloads 164
16290 Effects of Porosity Logs on Pore Connectivity and Volumetric Estimation

Authors: Segun S. Bodunde

Abstract:

In Bona Field, Niger Delta, two reservoirs across three wells were analyzed. The research aimed at determining the statistical dependence of permeability and oil volume in place on porosity logs. Of the three popular porosity logs, two were used; the sonic and density logs. The objectives of the research were to identify the porosity logs that vary more with location and direction, to visualize the depth trend of both logs and to determine the influence of these logs on pore connectivity determination and volumetric analysis. The focus was on density and sonic logs. It was observed that the sonic derived porosities were higher than the density derived porosities (in well two, across the two reservoir sands, sonic porosity averaged 30.8% while density derived porosity averaged 23.65%, and the same trend was observed in other wells.). The sonic logs were further observed to have lower co-efficient of variation when compared to the density logs (in sand A, well 2, sonic derived porosity had a co-efficient of variation of 12.15% compared to 22.52% from the density logs) indicating a lower tendency to vary with location and direction. The bulk density was observed to increase with depth while the transit time reduced with depth. It was also observed that for an 8.87% decrease in porosity, the pore connectivity was observed to decrease by about 38%.

Keywords: pore connectivity, co-efficient of variation, density derived porosity, sonic derived porosity

Procedia PDF Downloads 190
16289 Detergent Removal from Rinsing Water by Peroxi Electrocoagulation Process

Authors: A. Benhadji, M. Taleb Ahmed

Abstract:

Among the various methods of treatment, advanced oxidation processes (AOP) are the most promising ones. In this study, Peroxi Electrocoagulation Process (PEP) was investigated for the treatment of detergent wastewater. The process was compared with electrooxidation treatment. The results showed that chemical oxygen demand (COD) was high 7584 mgO2.L-1, while the biochemical oxygen demand was low (250 mgO2.L-1). This wastewater was hardly biodegradable. Electrochemical process was carried out for the removal of detergent using a glass reactor with a volume of 1 L and fitted with three electrodes. A direct current (DC) supply was used. Samples were taken at various current density (0.0227 A/cm2 to 0.0378 A/cm2) and reaction time (1-2-3-4 and 5 hour). Finally, the COD was determined. The results indicated that COD removal efficiency of PEP was observed to increase with current intensity and reached to 77% after 5 h. The highest removal efficiency was observed after 5 h of treatment.

Keywords: AOP, COD, detergent, PEP, wastewater

Procedia PDF Downloads 119
16288 Indirect Intergranular Slip Transfer Modeling Through Continuum Dislocation Dynamics

Authors: A. Kalaei, A. H. W. Ngan

Abstract:

In this study, a mesoscopic continuum dislocation dynamics (CDD) approach is applied to simulate the intergranular slip transfer. The CDD scheme applies an efficient kinematics equation to model the evolution of the “all-dislocation density,” which is the line-length of dislocations of each character per unit volume. As the consideration of every dislocation line can be a limiter for the simulation of slip transfer in large scales with a large quantity of participating dislocations, a coarse-grained, extensive description of dislocations in terms of their density is utilized to resolve the effect of collective motion of dislocation lines. For dynamics closure, namely, to obtain the dislocation velocity from a velocity law involving the effective glide stress, mutual elastic interaction of dislocations is calculated using Mura’s equation after singularity removal at the core of dislocation lines. The developed scheme for slip transfer can therefore resolve the effects of the elastic interaction and pile-up of dislocations, which are important physics omitted in coarser models like crystal plasticity finite element methods (CPFEMs). Also, the length and timescales of the simulationareconsiderably larger than those in molecular dynamics (MD) and discrete dislocation dynamics (DDD) models. The present work successfully simulates that, as dislocation density piles up in front of a grain boundary, the elastic stress on the other side increases, leading to dislocation nucleation and stress relaxation when the local glide stress exceeds the operation stress of dislocation sources seeded on the other side of the grain boundary. More importantly, the simulation verifiesa phenomenological misorientation factor often used by experimentalists, namely, the ease of slip transfer increases with the product of the cosines of misorientation angles of slip-plane normals and slip directions on either side of the grain boundary. Furthermore, to investigate the effects of the critical stress-intensity factor of the grain boundary, dislocation density sources are seeded at different distances from the grain boundary, and the critical applied stress to make slip transfer happen is studied.

Keywords: grain boundary, dislocation dynamics, slip transfer, elastic stress

Procedia PDF Downloads 123
16287 Density Based Traffic System Using Pic Microcontroller

Authors: Tatipamula Samiksha Goud, .A.Naveena, M.sresta

Abstract:

Traffic congestion is a major issue in many cities throughout the world, particularly in urban areas, and it is past time to switch from a fixed timer mode to an automated system. The current traffic signalling system is a fixed-time system that is inefficient if one lane is more functional than the others. A structure for an intelligent traffic control system is being designed to address this issue. When traffic density is higher on one side of a junction, the signal's green time is extended in comparison to the regular time. This study suggests a technique in which the signal's time duration is assigned based on the amount of traffic present at the time. Infrared sensors can be used to do this.

Keywords: infrared sensors, micro-controllers, LEDs, oscillators

Procedia PDF Downloads 142
16286 New Findings on the Plasma Electrolytic Oxidation (PEO) of Aluminium

Authors: J. Martin, A. Nominé, T. Czerwiec, G. Henrion, T. Belmonte

Abstract:

The plasma electrolytic oxidation (PEO) is a particular electrochemical process to produce protective oxide ceramic coatings on light-weight metals (Al, Mg, Ti). When applied to aluminum alloys, the resulting PEO coating exhibit improved wear and corrosion resistance because thick, hard, compact and adherent crystalline alumina layers can be achieved. Several investigations have been carried out to improve the efficiency of the PEO process and one particular way consists in tuning the suitable electrical regime. Despite the considerable interest in this process, there is still no clear understanding of the underlying discharge mechanisms that make possible metal oxidation up to hundreds of µm through the ceramic layer. A key parameter that governs the PEO process is the numerous short-lived micro-discharges (micro-plasma in liquid) that occur continuously over the processed surface when the high applied voltage exceeds the critical dielectric breakdown value of the growing ceramic layer. By using a bipolar pulsed current to supply the electrodes, we previously observed that micro-discharges are delayed with respect to the rising edge of the anodic current. Nevertheless, explanation of the origin of such phenomena is still not clear and needs more systematic investigations. The aim of the present communication is to identify the relationship that exists between this delay and the mechanisms responsible of the oxide growth. For this purpose, the delay of micro-discharges ignition is investigated as the function of various electrical parameters such as the current density (J), the current pulse frequency (F) and the anodic to cathodic charge quantity ratio (R = Qp/Qn) delivered to the electrodes. The PEO process was conducted on Al2214 aluminum alloy substrates in a solution containing potassium hydroxide [KOH] and sodium silicate diluted in deionized water. The light emitted from micro-discharges was detected by a photomultiplier and the micro-discharge parameters (number, size, life-time) were measured during the process by means of ultra-fast video imaging (125 kfr./s). SEM observations and roughness measurements were performed to characterize the morphology of the elaborated oxide coatings while XRD was carried out to evaluate the amount of corundum -Al203 phase. Results show that whatever the applied current waveform, the delay of micro-discharge appearance increases as the process goes on. Moreover, the delay is shorter when the current density J (A/dm2), the current pulse frequency F (Hz) and the ratio of charge quantity R are high. It also appears that shorter delays are associated to stronger micro-discharges (localized, long and large micro-discharges) which have a detrimental effect on the elaborated oxide layers (thin and porous). On the basis of the results, a model for the growth of the PEO oxide layers will be presented and discussed. Experimental results support that a mechanism of electrical charge accumulation at the oxide surface / electrolyte interface takes place until the dielectric breakdown occurs and thus until micro-discharges appear.

Keywords: aluminium, micro-discharges, oxidation mechanisms, plasma electrolytic oxidation

Procedia PDF Downloads 264
16285 Application Potential of Selected Tools in Context of Critical Infrastructure Protection and Risk Analysis

Authors: Hromada Martin

Abstract:

Risk analysis is considered as a fundamental aspect relevant for ensuring the level of critical infrastructure protection, where the critical infrastructure is seen as system, asset or its part which is important for maintaining the vital societal functions. Article actually discusses and analyzes the potential application of selected tools of information support for the implementation and within the framework of risk analysis and critical infrastructure protection. Use of the information in relation to their risk analysis can be viewed as a form of simplifying the analytical process. It is clear that these instruments (information support) for these purposes are countless, so they were selected representatives who have already been applied in the selected area of critical infrastructure, or they can be used. All presented fact were the basis for critical infrastructure resilience evaluation methodology development.

Keywords: critical infrastructure, protection, resilience, risk analysis

Procedia PDF Downloads 638
16284 Effect of Electrodes Spacing on Energy Consumption of Electrocoagulation Cells

Authors: Khalid S. Hashim, Andy Shaw, Rafid Al-Khaddar, Montserrat Ortoneda Pedrola

Abstract:

In spite of the acknowledged advantages of the electrocoagulation (EC) method to remove a wide range of pollutants from waters and wastewaters, its efficiency is limited by several operational parameters (such as electrolysis time, current density, electrode material, distance between electrodes, and water temperature). Hence, optimizing these key operating parameters is considered a vital step to remove a pollutant efficiently. In this context, the present study has been carried out to explore the influence of electrodes spacing on energy consumption, temperature of the water being treated, and iron removal from water. To achieve this target, iron containing synthetic water samples were electrolysed for 20 min, using a new flow column electrocoagulation reactor (FCER), at three different gaps between electrodes (5, 10, and 20 mm). These batch experiments were commenced at a constant current density of 1.5 mA/cm² and initial pH of 6. The obtained results demonstrated that increasing gap between electrodes negatively influenced the performance of the EC method. It was found that increasing the gap between electrodes from 5 to 20 mm increased the energy consumption from about 3.3 to 7.3 kW.h/m³, and water temperature from 20.2 to 22 °C, respectively. In addition, it has been found, after 20 min of electrolysing, that increasing the gap between electrodes from 5 to 20 mm increased the residual iron concentration from 0.05 to 1.01 mg/L, respectively.

Keywords: electrocoagulation, water, electrodes, iron

Procedia PDF Downloads 264
16283 Seeking Compatibility between Green Infrastructure and Recentralization: The Case of Greater Toronto Area

Authors: Sara Saboonian, Pierre Filion

Abstract:

There are two distinct planning approaches attempting to transform the North American suburb so as to reduce its adverse environmental impacts. The first one, the recentralization approach, proposes intensification, multi-functionality and more reliance on public transit and walking. It thus offers an alternative to the prevailing low-density, spatial specialization and automobile dependence of the North American suburb. The second approach concentrates instead on the provision of green infrastructure, which rely on natural systems rather than on highly engineered solutions to deal with the infrastructure needs of suburban areas. There are tensions between these two approaches as recentralization generally overlooks green infrastructure, which can be space consuming (as in the case of water retention systems), and thus conflicts with the intensification goals of recentralization. The research investigates three Canadian planned suburban centres in the Greater Toronto Area, where recentralization is the current planning practice, despite rising awareness of the benefits of green infrastructure. Methods include reviewing the literature on green infrastructure planning, a critical analysis of the Ontario provincial plans for recentralization, surveying residents’ preferences regarding alternative suburban development models, and interviewing officials who deal with the local planning of the three centres. The case studies expose the difficulties in creating planned suburban centres that accommodate green infrastructure while adhering to recentralization principles. Until now, planners have been mostly focussed on recentralization at the expense of green infrastructure. In this context, the frequent lack of compatibility between recentralization and the space requirements of green infrastructure explains the limited presence of such infrastructures in planned suburban centres. Finally, while much attention has been given in the planning discourse to the economic and lifestyle benefits of recentralization, much less has been made of the wide range of advantages of green infrastructure, which explains limited public mobilization over the development of green infrastructure networks. The paper will concentrate on ways of combining recentralization with green infrastructure strategies and identify the aspects of the two approaches that are most compatible with each other. The outcome of such blending will marry high density, public-transit oriented developments, which generate walkability and street-level animation, with the presence of green space, naturalized settings and reliance on renewable energy. The paper will advance a planning framework that will fuse green infrastructure with recentralization, thus ensuring the achievement of higher density and reduced reliance on the car along with the provision of critical ecosystem services throughout cities. This will support and enhance the objectives of both green infrastructure and recentralization.

Keywords: environmental-based planning, green infrastructure, multi-functionality, recentralization

Procedia PDF Downloads 131
16282 Alvaro Siza’s Design Strategy: An Insight into Critical Regionalism

Authors: Rahmatollah Amirjani

Abstract:

By the emergence of the debate over the failure of Regionalism in the late 1970s, Critical Regional­ism was introduced as a different way to respond to the state of architecture in the post-war era. Critical Regionalism is most often understood as a discourse that not only mediates the language of modern architecture with the local cultures but also revives the relation between architecture and spectator as indexed by capitalism. Since the inception of Critical Regionalism, a large number of architectural practices have emerged around the globe; however, the work of the well-known Portuguese architect, Álvaro Siza, is considered as a unique case amongst works associated with the discourse of Critical Regionalism. This paper intends to respond to a number of questions, including; what are the origins of Critical Regionalism? How does Siza’s design strategy correspond to the thematic of Critical Regionalism? How does Siza recover the relation between object and subject in most of his projects? Using Siza’s housing project for the Malagueira district in Évora, Portugal, this article will attempt to answer these questions, and highlight Alvaro Siza’s design procedure which goes beyond the existing discourse of Critical Regionalism and contributes to our understanding of this practice.

Keywords: Alvaro Siza, critical regionalism, Malagueira housing, placelessness

Procedia PDF Downloads 180
16281 Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment

Authors: Margarita Belousova

Abstract:

The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected.

Keywords: intraoral ultrasonic densitometry, bone tissue density of jaws, bone tissue density of phalanges of fingers, orthodontic treatment

Procedia PDF Downloads 276
16280 Geological Structure Identification in Semilir Formation: An Correlated Geological and Geophysical (Very Low Frequency) Data for Zonation Disaster with Current Density Parameters and Geological Surface Information

Authors: E. M. Rifqi Wilda Pradana, Bagus Bayu Prabowo, Meida Riski Pujiyati, Efraim Maykhel Hagana Ginting, Virgiawan Arya Hangga Reksa

Abstract:

The VLF (Very Low Frequency) method is an electromagnetic method that uses low frequencies between 10-30 KHz which results in a fairly deep penetration. In this study, the VLF method was used for zonation of disaster-prone areas by identifying geological structures in the form of faults. Data acquisition was carried out in Trimulyo Region, Jetis District, Bantul Regency, Special Region of Yogyakarta, Indonesia with 8 measurement paths. This study uses wave transmitters from Japan and Australia to obtain Tilt and Elipt values that can be used to create RAE (Rapat Arus Ekuivalen or Current Density) sections that can be used to identify areas that are easily crossed by electric current. This section will indicate the existence of a geological structure in the form of faults in the study area which is characterized by a high RAE value. In data processing of VLF method, it is obtained Tilt vs Elliptical graph and Moving Average (MA) Tilt vs Moving Average (MA) Elipt graph of each path that shows a fluctuating pattern and does not show any intersection at all. Data processing uses Matlab software and obtained areas with low RAE values that are 0%-6% which shows medium with low conductivity and high resistivity and can be interpreted as sandstone, claystone, and tuff lithology which is part of the Semilir Formation. Whereas a high RAE value of 10% -16% which shows a medium with high conductivity and low resistivity can be interpreted as a fault zone filled with fluid. The existence of the fault zone is strengthened by the discovery of a normal fault on the surface with strike N550W and dip 630E at coordinates X= 433256 and Y= 9127722 so that the activities of residents in the zone such as housing, mining activities and other activities can be avoided to reduce the risk of natural disasters.

Keywords: current density, faults, very low frequency, zonation

Procedia PDF Downloads 175
16279 Impact Assessment of Information Communication, Network Providers, Teledensity, and Consumer Complaints on Gross Domestic Products

Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke

Abstract:

The study used secondary data from foreign and local organizations to explore major challenges and opportunities abound in Information Communication. The study aimed at exploring the tie between tele density (network coverage area) and the number of network subscriptions, probing if the degree of consumer complaints varies significantly among network providers, and assessing if network subscriptions do significantly influence the sector’s GDP contribution. Methods used for data analysis include Pearson product-moment correlation and regression analysis, and the Analysis of Variance (ANOVA) as well. At a two-tailed test of 0.05 confidence level, the results of findings established about 85.6% of network subscriptions were explained by tele density (network coverage area), and the number of network subscriptions; Consumer Complaints’ degree varied significantly among network providers as 80.158291 (F calculated) > 3.490295 (F critical) with very high confidence associated p-value = 0.000000 which is < 0.05; and finally, 65% of the nation’s GDP was explained by network subscription to show a high association.

Keywords: tele density, subscription, network coverage, information communication, consumer

Procedia PDF Downloads 45
16278 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data

Authors: Arman S. Kussainov, Altynbek K. Beisekov

Abstract:

This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.

Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm

Procedia PDF Downloads 412
16277 Density-based Denoising of Point Cloud

Authors: Faisal Zaman, Ya Ping Wong, Boon Yian Ng

Abstract:

Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this, we present a novel approach using modified kernel density estimation (KDE) technique with bilateral filtering to remove noisy points and outliers. First we present a method for estimating optimal bandwidth of multivariate KDE using particle swarm optimization technique which ensures the robust performance of density estimation. Then we use mean-shift algorithm to find the local maxima of the density estimation which gives the centroid of the clusters. Then we compute the distance of a certain point from the centroid. Points belong to outliers then removed by automatic thresholding scheme which yields an accurate and economical point surface. The experimental results show that our approach comparably robust and efficient.

Keywords: point preprocessing, outlier removal, surface reconstruction, kernel density estimation

Procedia PDF Downloads 344