Search results for: bias injection attack
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2197

Search results for: bias injection attack

2077 The Proactive Approach of Digital Forensics Methodology against Targeted Attack Malware

Authors: Mohamed Fadzlee Sulaiman, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin

Abstract:

Each individual organization has their own mechanism to build up cyber defense capability in protecting their information infrastructures from data breaches and cyber espionage. But, we can not deny the possibility of failing to detect and stop cyber attacks especially for those targeting credential information and intellectual property (IP). In this paper, we would like to share the modern approach of effective digital forensic methodology in order to identify the artifacts in tracing the trails of evidence while mitigating the infection from the target machine/s. This proposed approach will suit the digital forensic investigation to be conducted while resuming the business critical operation after mitigating the infection and minimizing the risk from the identified attack to transpire. Therefore, traditional digital forensics methodology has to be improvised to be proactive which not only focusing to discover the root caused and the threat actor but to develop the relevant mitigation plan in order to prevent from the same attack.

Keywords: digital forensic, detection, eradication, targeted attack, malware

Procedia PDF Downloads 275
2076 Effects of ECCS on the Cold-Leg Fluid Temperature during SGTR Accidents

Authors: Tadashi Watanabe

Abstract:

The LSTF experiment simulating the SGTR accident at the Mihama Unit-2 reactor is analyzed using the RELAP5/MOD3.3 code. In the accident and thus in the experiment, the ECC water was injected not only into the cold legs but into the upper plenum. Overall transients during the experiment such as pressures and fluid temperatures are simulated well by the code. The cold-leg fluid temperatures are shown to decrease if the upper plenum injection system is connected to the cold leg. It is found that the cold-leg fluid temperatures also decrease if the upper-plenum injection is not used and the cold-leg injection alone is actuated.

Keywords: SGTR, LSTF, RELAP5, ECCS

Procedia PDF Downloads 666
2075 Effects of Intracerebroventricular Injection of Spexin and Its Interaction with Nitric Oxide, Serotonin, and Corticotropin Receptors on Central Food Intake Regulation in Chicken

Authors: Mohaya Farzin, Shahin Hassanpour, Morteza Zendehdel, Bita Vazir, Ahmad Asghari

Abstract:

Aim: There are several differences between birds and mammals in terms of food intake regulation. Therefore, this study aimed to investigate the effects of the intracerebroventricular (ICV) injection of spexin and its interaction with nitric oxide, serotonin, and corticotropin receptors on central food intake regulation in broiler chickens. Materials and Methods: In experiment 1, chickens received ICV injection of saline, PCPA (p-chlorophenyl alanine,1.25 µg), spexin, and PCPA+spexin. In experiments 2-7, 8-OH-DPAT (5-HT1A agonist, 15.25 nmol), SB-242084 (5-HT2C receptor antagonist, 1.5µg), L-arginine (Precursor of nitric oxide, 200 nmol), L-NAME (nitric oxide synthetase inhibitor, 100 nmol), Astressin-B (CRF1/CRF2 receptor antagonist, 30 µg) and Astressin2-B (CRF2 receptor antagonist, 30 µg) were injected to chickens instead of the PCPA. Then, food intake was measured until 120 minutes after the injection. Results: Spexin significantly decreased food consumption (P<0.05). Concomitant injection of SB-242084+spexin attenuated spexin-induced hypophagia (P<0.05). Co-injection of L-arginine+spexin enhanced spexin-induced hypophagia, and this effect was reversed by L-NAME (P<0.05). Also, concomitant injection of Astressin-B + spexin or Astressin2-B + spexin enhanced spexin-induced hypophagia (P<0.05). Conclusions: Based on these observations, spexin-induced hypophagia may be mediated by nitric oxide and 5-HT2C, CRF1, and CRF2 receptors in neonatal broiler chickens.

Keywords: spexin, serotonin, corticotropin, nitric oxide, food intake, chicken

Procedia PDF Downloads 74
2074 Deployment of Attack Helicopters in Conventional Warfare: The Gulf War

Authors: Mehmet Karabekir

Abstract:

Attack helicopters (AHs) are usually deployed in conventional warfare to destroy armored and mechanized forces of enemy. In addition, AHs are able to perform various tasks in the deep, and close operations – intelligence, surveillance, reconnaissance, air assault operations, and search and rescue operations. Apache helicopters were properly employed in the Gulf Wars and contributed the success of campaign by destroying a large number of armored and mechanized vehicles of Iraq Army. The purpose of this article is to discuss the deployment of AHs in conventional warfare in the light of Gulf Wars. First, the employment of AHs in deep and close operations will be addressed regarding the doctrine. Second, the US armed forces AH-64 doctrinal and tactical usage will be argued in the 1st and 2nd Gulf Wars.

Keywords: attack helicopter, conventional warfare, gulf wars

Procedia PDF Downloads 473
2073 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 408
2072 Optimization for the Hydraulic Clamping System of an Internal Circulation Two-Platen Injection Molding Machine

Authors: Jian Wang, Lu Yang, Jiong Peng

Abstract:

Internal circulation two-platen clamping system for injection molding machine (IMM) has many potential advantages on energy-saving. In order to estimate its properties, experiments in this paper were carried out. Displacement and pressure of the components were measured. In comparison, the model of hydraulic clamping system was established by using AMESim. The related parameters as well as the energy consumption could be calculated. According to the analysis, the hydraulic system was optimized in order to reduce the energy consumption.

Keywords: AMESim, energy-saving, injection molding machine, internal circulation

Procedia PDF Downloads 550
2071 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 193
2070 Longitudinal Vortices Mixing in Three-Stream Micromixers with Two Inlets

Authors: Yi-Tun Huang, Chih-Yang Wu, Shu-Wei Huang

Abstract:

In this work, we examine fluid mixing in a full three-stream mixing channel with longitudinal vortex generators (LVGs) built on the channel bottom by numerical simulation and experiment. The effects of the asymmetrical arrangement and the attack angle of the LVGs on fluid mixing are investigated. The results show that the micromixer with LVGs at a small asymmetry index (defined by the ratio of the distance from the center plane of the gap between the winglets to the center plane of the main channel to the width of the main channel) is superior to the micromixer with symmetric LVGs and that with LVGs at a large asymmetry index. The micromixer using five mixing modules of the LVGs with an attack angle between 16.5 degrees and 22.5 degrees can achieve excellent mixing over a wide range of Reynolds numbers. Here, we call a section of channel with two pairs of staggered asymmetrical LVGs a mixing module. Besides, the micromixer with LVGs at a small attack angle is more efficient than that with a larger attack angle when pressure losses are taken into account.

Keywords: microfluidics, mixing, longitudinal vortex generators, two stream interfaces

Procedia PDF Downloads 521
2069 Virtual Reality as a Method in Transformative Learning: A Strategy to Reduce Implicit Bias

Authors: Cory A. Logston

Abstract:

It is imperative researchers continue to explore every transformative strategy to increase empathy and awareness of racial bias. Racism is a social and political concept that uses stereotypical ideology to highlight racial inequities. Everyone has biases they may not be aware of toward disparate out-groups. There is some form of racism in every profession; doctors, lawyers, and teachers are not immune. There have been numerous successful and unsuccessful strategies to motivate and transform an individual’s unconscious biased attitudes. One method designed to induce a transformative experience and identify implicit bias is virtual reality (VR). VR is a technology designed to transport the user to a three-dimensional environment. In a virtual reality simulation, the viewer is immersed in a realistic interactive video taking on the perspective of a Black man. The viewer as the character experiences discrimination in various life circumstances growing up as a child into adulthood. For instance, the prejudice felt in school, as an adolescent encountering the police and false accusations in the workplace. Current research suggests that an immersive VR simulation can enhance self-awareness and become a transformative learning experience. This study uses virtual reality immersion and transformative learning theory to create empathy and identify any unintentional racial bias. Participants, White teachers, will experience a VR immersion to create awareness and identify implicit biases regarding Black students. The desired outcome provides a springboard to reconceptualize their own implicit bias. Virtual reality is gaining traction in the research world and promises to be an effective tool in the transformative learning process.

Keywords: empathy, implicit bias, transformative learning, virtual reality

Procedia PDF Downloads 194
2068 A Comparative Study on Electrical Characteristics of Au/n-SiC structure, with and Without Zn-Doped PVA Interfacial Layer at Room Temperature

Authors: M. H. Aldahrob, A. Kokce, S. Altindal, H. E. Lapa

Abstract:

In order to obtain the detailed information about the effect of (Zn-doped PVA) interfacial layer, surface states (Nss) and series resistance (Rs) on electrical characteristics, both Au/n- type 4H-SiC (MS) with and without (Zn doped PVA) interfacial layer were fabricated to compare. The main electrical parameters of them were investigated using forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance –voltage (G/W –V) measurements were performed at room temperature. Experimental results show that the value of ideality factor (n), zero –bias barrier height (ΦBo), Rs, rectifier rate (RR=IF/IR) and the density of Nss are strong functions interfacial layer and applied bias voltage. The energy distribution profile of Nss was obtained from forward bias I-V data by taking into account voltage dependent effective BH (ΦBo) and ideality factor (n(V)). Voltage dependent profile of Rs was also obtained both by using Ohm’s law and Nicollian and Brew methods. The other main diode parameters such as the concentration of doping donor atom (ND), Fermi energy level (EF).BH (ΦBo), depletion layer with (WD) were obtained by using the intercept and slope of the reverse bias C-2 vs V plots. It was found that (Zn-doped PVA) interfacial layer lead to a quite decrease in the values Nss, Rs and leakage current and increase in shunt resistance (Rsh) and RR. Therefore, we can say that the use of thin (Zn-doped PVA) interfacial layer can quite improved the performance of MS structure.

Keywords: interfacial polymer layer, thickness dependence, electric and dielectric properties, series resistance, interface state

Procedia PDF Downloads 248
2067 Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites

Authors: Armin Najipour, A. M. Fattahi

Abstract:

The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage.

Keywords: carbon nanotube, injection molding, mechanical properties, nanocomposite, polyethylene

Procedia PDF Downloads 321
2066 Differential Item Functioning in the Vocabulary Test of Grade 7 Students in Public and Private Schools

Authors: Dave Kenneth Tayao Cayado, Carlo P. Magno

Abstract:

The most common source of bias detected are those of gender and socioeconomic status. The present study investigated the Differential Item Functioning (DIF) or item bias between public and private school students in a vocabulary test. Studies on DIF were expanded by using the type of school as a source of bias. There were 200 participants in this study. 100 came from a public secondary school and 100 came from a private secondary school. The vocabulary skills of students were measured using a standardized vocabulary test for grade 7 students. Using DIF, specifically the Rasch-Welch approach, it was found that out of 24 items, 12 were biased for a specific group. The vocabulary skills on the use of slang, idiomatic expression, personification, collocations, and partitive relations were biased for private schools while the use of slang and homonymous words were biased for public school students. The analysis debunked the trend that private school students are outperforming public school students in terms of academic achievement. It was revealed that there are some competencies that private school students are having difficulty and vice versa.

Keywords: differential item functioning, item bias, public school students, private school students, vocabulary

Procedia PDF Downloads 191
2065 Repeated Reuse of Insulin Injection Syringes and Incidence of Bacterial Contamination among Diabetic Patients in Jimma University Specialized Hospital, Jimma, Ethiopia

Authors: Muluneh Ademe, Zeleke Mekonnen

Abstract:

Objective: to determine the level of bacterial contamination of reused insulin syringes among diabetic patients. Method: A facility based cross-sectional study was conducted among diabetic patients. Data on socio-demographic variables, history of injection syringe reuse, and frequency of reuse of syringes were collected using predesigned questionnaire. Finally, the samples from the syringes were cultured according to standard microbiological techniques. Result: Eighteen diabetic patients at Jimma University Hospital participated. A total of 83.3% of participants reused a single injection syringe for >30 consecutive injections, while 16.7% reused for >30 injections. Our results showed 22.2% of syringes were contaminated with methicillin-resistant Staphylococcus aures. Conclusion: We conclude reuse of syringe is associated with microbial contamination. The findings that 4/18 syringes being contaminated with bacteria is an alarming situation. A mechanism should be designed for patients to get injection syringes with affordable price. If reusing is not avoidable, reducing number of injections per a single syringe and avoiding needle touching with hand or other non-sterile material may be an alternative to reduce the risk of contamination.

Keywords: diabetes mellitus, Ethiopia, subcutaneous insulin injection, syringe reuse

Procedia PDF Downloads 381
2064 Effect pH on Chemical and Physical Properties of Iranian Fetta Cheese

Authors: M. Dezyani, R. Ezzati, H. Mirzaei

Abstract:

The objectives of this study were to determine the effect of pH on chemical, structural, and functional properties of Fetta cheese, and to relate changes in structure to changes in cheese unctionality. Fetta cheese was obtained from a cheese-production facility and stored at 4°C. Ten days after manufacture, the cheese was cut into blocks that were vacuum-packaged and stored for 4 d at 4°C. Cheese blocks were then high-pressure injected one, three, or five times with a 20% (wt/wt) glucono-δ-lactone solution. Successive injections were performed 24 h apart. Cheese blocks were then analyzed after 40 d of storage at 4°C. Acidulant injection decreased cheese pH from 5.3 in the uninjected cheese to 4.7 after five injections. Decreased pH increased the content of soluble calcium and slightly decreased the total calcium content of cheese. At the highest level, injection of acidulant promoted syneresis. Thus, after five injections, the moisture content of cheese decreased from 34 to 31%, which esulted in decreased cheese weight. Lowered cheese pH, 4.7 compared with 5.3, also resulted in contraction of the protein matrix. Acidulant injection decreased cheese hardness and cohesiveness, and the cheese became more crumbly.

Keywords: calcium, high-pressure injection, protein matrix, syneresis

Procedia PDF Downloads 480
2063 Pyelography by Intraosseous Injection of Iodixanol in Persian Squirrel

Authors: Mehdi Tavana, Seyedeh Zeinab Peighambarzadeh

Abstract:

Pyelography is used for morphologic and especially functional studies of the urinary tracts. There are many indications for excretory Pyelography in humans and animals. Intravenous Pyelography is the most practical method; other Pyelography techniques were manipulated because of difficulties for finding veins in small size of the patients. At the best of times, the combination of small veins and abundant subcutaneous tissue makes vascular access difficult or impossible, therefore, another methods of administration of contrast media is desired. This study was performed to evaluate the feasibility of intraosseous injection of iodixanol in providing a safe and diagnostic urogram in Persian squirrel. Fourteen hundred mg iodine per kilogram body weight of iodixanol was injected subcutaneously over tibial tuberosity on ten clinically healthy adult Persian squirrels with no signs of urinary system disorder. Lateral and ventrodorsal radiographs were taken every 2 minutes until the pyelogram was finished. Intraosseous injection of iodixanol was successful to show nephrogram, pyelogram, uretrogram and cystogram clearly. There were no abnormal clinical signs after one week of experiments. Biochemical and hematological profiles were in normal ranges. It is concluded that intraosseous Pyelography is an effective and reliable method for Pyelography studies in squirrel. Microscopic examinations of the kidneys and the site of injection after one week were normal.

Keywords: pyelography, intraosseous injection, iodixanol, persian squirrel

Procedia PDF Downloads 524
2062 Vulnerable Paths Assessment for Distributed Denial of Service Attacks in a Cloud Computing Environment

Authors: Manas Tripathi, Arunabha Mukhopadhyay

Abstract:

In Cloud computing environment, cloud servers, sometimes may crash after receiving huge amount of request and cloud services may stop which can create huge loss to users of that cloud services. This situation is called Denial of Service (DoS) attack. In Distributed Denial of Service (DDoS) attack, an attacker targets multiple network paths by compromising various vulnerable systems (zombies) and floods the victim with huge amount of request through these zombies. There are many solutions to mitigate this challenge but most of the methods allows the attack traffic to arrive at Cloud Service Provider (CSP) and then only takes actions against mitigation. Here in this paper we are rather focusing on preventive mechanism to deal with these attacks. We analyze network topology and find most vulnerable paths beforehand without waiting for the traffic to arrive at CSP. We have used Dijkstra's and Yen’s algorithm. Finally, risk assessment of these paths can be done by multiplying the probabilities of attack for these paths with the potential loss.

Keywords: cloud computing, DDoS, Dijkstra, Yen’s k-shortest path, network security

Procedia PDF Downloads 277
2061 Adversarial Attacks and Defenses on Deep Neural Networks

Authors: Jonathan Sohn

Abstract:

Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.

Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning

Procedia PDF Downloads 194
2060 Effects of in Ovo Injection of Royal Jelly on Hatchability, One-Day Old Chickens Quality, Total Antioxidant Status and Blood Lipoproteins

Authors: Amin Adeli, Maryam Zarei

Abstract:

Background and purpose: Royal jelly (RJ) is a natural product with anti-hyperlipidemic and antioxidant properties. In ovo administration of RJ may improve lipid profile and antioxidant properties. This study was conducted to evaluate, for first time, the effects of in ovo injection of the RJ on hatchability, one-day old chick quality, total antioxidant status and blood lipoproteins. Methods: 400 incubating eggs produced by Ross 308 strain (52 weeks of age in first stage of production) were prepared and assigned into 4 groups (n=100) and 4 replications per group (n=25). These 4 groups were injected by the following pattern: 1) 0.1 ml normal saline (control), 2) 0.1 mg RJ+0.1 ml normal saline, 3) 0.2 mg RJ+0.1 ml normal saline, and 4) 0.3 mg RJ+0.1 ml normal saline. Injections were performed using a laminar flow system Lipid profile, antioxidant properties, hatchability, and one-day old chicken quality were assessed. Results: The administration of RJ at concentration of 0.1increased the percentage of hatchability compared to concentration of 0.2 and control, significant differences have not been observed among groups for quality scores (P>0.05). The results showed that in ovo injection of the RJ did not have any significant effects on lipid profile; but administration of the RJ only decreased High-density lipoprotein (HDL cholesterol, HDL-C) (P<0.05). The results showed that injection of the RJ at concentration of 0.3 increased total antioxidant capacity (TAC) compared to control group (p<0.05). Injection of the RJ progressively increased gluthation peroxidase (GPx) activity (p<0.05). The results showed that injection of the RJ decreased superoxide dismutase (SOD) compared to control group (p<0.05). Conclusion: In ovo injection of the RJ at the highest concentration increased TAC and GPx, but it did not have significant effects on lipid profile. Future studies are needed to investigate the effects of the RJ on the above-mentioned mechanisms.

Keywords: antioxidant enzymes, chicken quality, hatchability, royal jelly

Procedia PDF Downloads 97
2059 Streamflow Modeling Using the PyTOPKAPI Model with Remotely Sensed Rainfall Data: A Case Study of Gilgel Ghibe Catchment, Ethiopia

Authors: Zeinu Ahmed Rabba, Derek D Stretch

Abstract:

Remote sensing contributes valuable information to streamflow estimates. Usually, stream flow is directly measured through ground-based hydrological monitoring station. However, in many developing countries like Ethiopia, ground-based hydrological monitoring networks are either sparse or nonexistent, which limits the manage water resources and hampers early flood-warning systems. In such cases, satellite remote sensing is an alternative means to acquire such information. This paper discusses the application of remotely sensed rainfall data for streamflow modeling in Gilgel Ghibe basin in Ethiopia. Ten years (2001-2010) of two satellite-based precipitation products (SBPP), TRMM and WaterBase, were used. These products were combined with the PyTOPKAPI hydrological model to generate daily stream flows. The results were compared with streamflow observations at Gilgel Ghibe Nr, Assendabo gauging station using four statistical tools (Bias, R², NS and RMSE). The statistical analysis indicates that the bias-adjusted SBPPs agree well with gauged rainfall compared to bias-unadjusted ones. The SBPPs with no bias-adjustment tend to overestimate (high Bias and high RMSE) the extreme precipitation events and the corresponding simulated streamflow outputs, particularly during wet months (June-September) and underestimate the streamflow prediction over few dry months (January and February). This shows that bias-adjustment can be important for improving the performance of the SBPPs in streamflow forecasting. We further conclude that the general streamflow patterns were well captured at daily time scales when using SBPPs after bias adjustment. However, the overall results demonstrate that the simulated streamflow using the gauged rainfall is superior to those obtained from remotely sensed rainfall products including bias-adjusted ones.

Keywords: Ethiopia, PyTOPKAPI model, remote sensing, streamflow, Tropical Rainfall Measuring Mission (TRMM), waterBase

Procedia PDF Downloads 284
2058 An Experimental Investigation of Microscopic and Macroscopic Displacement Behaviors of Branched-Preformed Particle Gel in High Temperature Reservoirs

Authors: Weiyao Zhu, Bingbing Li, Yajing Liu, Zhiyong Song

Abstract:

Branched-preformed particle gel (B-PPG) is a newly developed profile control and oil displacement agent for enhanced oil recovery in major oilfields. To provide a better understanding of the performance of B-PPG in high temperature reservoirs, a comprehensive experimental investigation was conducted by utilizing glass micromodel and synthetic core. The microscopic experimental results show that the B-PPG can selectively flow and plug in large pores. In terms of enhanced oil recovery, the decrease of residual oil in the margin regions (24.6%) was higher than that in the main stream (13.7%), which indicates it enlarged the sweep area. In addition, the effects of B-PPG injection concentration and injection rate on enhanced oil recovery were implemented by core flooding. The macroscopic experimental results indicate that the enhanced oil recovery increased with the increasing of injection concentration. However, the injection rate had a peak value. It is significant to get insight into the behaviors of B-PPG in reservoirs.

Keywords: branched-preformed particle gel, enhanced oil recovery, micromodel, core flooding

Procedia PDF Downloads 198
2057 A Secure Survey against Black Hole Attack in MANET

Authors: G. Usha, S. Kannimuthu, K. Mahalakshmi

Abstract:

Mobile Adhoc Network (MANET) is one of the most promising technologies that have applications ranging from various portable devices to military networks. MANET has no fixed infrastructure and the security of such network is a big concern. Therefore, in order to operate MANET’s securely, the misbehavior and intrusions should be detected before the attackers affect the network communication. In this article, we make a comprehensive survey against black hole attack that is a serious threat against MANET that exploits the routing behavior of the MANET. We have given broad survey solutions that detect black hole attacks in MANET. This is achieved by analyzing the techniques involved in detecting the attacks in each scheme. Furthermore, we examine about the challenges to the researchers for constructing an in-depth solution against black hole attack.

Keywords: AODV, cross layer security, mobile Adhoc network (MANET), packet delivery ratio, single layer security

Procedia PDF Downloads 406
2056 Competition between Verb-Based Implicit Causality and Theme Structure's Influence on Anaphora Bias in Mandarin Chinese Sentences: Evidence from Corpus

Authors: Linnan Zhang

Abstract:

Linguists, as well as psychologists, have shown great interests in implicit causality in reference processing. However, most frequently-used approaches to this issue are psychological experiments (such as eye tracking or self-paced reading, etc.). This research is a corpus-based one and is assisted with statistical tool – software R. The main focus of the present study is about the competition between verb-based implicit causality and theme structure’s influence on anaphora bias in Mandarin Chinese sentences. In Accessibility Theory, it is believed that salience, which is also known as accessibility, and relevance are two important factors in reference processing. Theme structure, which is a special syntactic structure in Chinese, determines the salience of an antecedent on the syntactic level while verb-based implicit causality is a key factor to the relevance between antecedent and anaphora. Therefore, it is a study about anaphora, combining psychology with linguistics. With analysis of the sentences from corpus as well as the statistical analysis of Multinomial Logistic Regression, major findings of the present study are as follows: 1. When the sentence is stated in a ‘cause-effect’ structure, the theme structure will always be the antecedent no matter forward biased verbs or backward biased verbs co-occur; in non-theme structure, the anaphora bias will tend to be the opposite of the verb bias; 2. When the sentence is stated in a ‘effect-cause’ structure, theme structure will not always be the antecedent and the influence of verb-based implicit causality will outweigh that of theme structure; moreover, the anaphora bias will be the same with the bias of verbs. All the results indicate that implicit causality functions conditionally and the noun in theme structure will not be the high-salience antecedent under any circumstances.

Keywords: accessibility theory, anaphora, theme strcture, verb-based implicit causality

Procedia PDF Downloads 198
2055 Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers

Authors: Shota Nagata, Kazuya Okubo, Toru Fujii

Abstract:

The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method.

Keywords: CFRP, recycled carbon fiber, injection molding, mechanical properties, fiber orientation, failure mechanism

Procedia PDF Downloads 445
2054 The Mechanism of Calcium Carbonate Scale Deposition Affected by Carboxymethyl Chitosan

Authors: Genaro Bolívar, Manuel Mas, Maria Tortolero, Jorge Salazar

Abstract:

Due to the extensive use of water injection for oil displacement and pressure maintenance in oil fields, many reservoirs experience the problem of scale deposition when injection water starts to break through. In most cases the scaled-up wells are caused by the formation of sulfate and carbonate scales of calcium and strontium. Due to their relative hardness and low solubility, there are limited processes available for their removal and preventive measures such as the “squeeze” inhibitor treatment have to be taken. It is, therefore, important to gain a proper understanding of the kinetics of scale formation and its detrimental effects on formation damage under both inhibited and uninhibited conditions. Recently, the production of chitosan was started in our country and in the PDVSA-Intevep laboratories was synthesized and evaluated the properties of carboxymethyl chitosan (CMQ) as chelating agent of Ca2 + ions in water injection. In this regard, the characterization of the biopolymer by 13C - NMR, FTIR, TGA, and TM0374-2007 standard laboratory test has demonstrated the ability to remove up to 70% calcium ions in solution and shows a behavior that approaches that of commercial products.

Keywords: carboxymethyl chitosan, scale, calcium carbonate scale deposition, water injection

Procedia PDF Downloads 436
2053 Aerodynamic Modeling Using Flight Data at High Angle of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.

Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling

Procedia PDF Downloads 445
2052 Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing

Authors: Jaimin Patel

Abstract:

Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user’s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given.

Keywords: Cloud computing, encryption algorithm, secure hashing algorithm, brute force attack, birthday attack, plaintext attack, man in middle attack

Procedia PDF Downloads 280
2051 The Reliability of Management Earnings Forecasts in IPO Prospectuses: A Study of Managers’ Forecasting Preferences

Authors: Maha Hammami, Olfa Benouda Sioud

Abstract:

This study investigates the reliability of management earnings forecasts with reference to these two ingredients: verifiability and neutrality. Specifically, we examine the biasedness (or accuracy) of management earnings forecasts and company specific characteristics that can be associated with accuracy. Based on sample of 102 IPO prospectuses published for admission on NYSE Euronext Paris from 2002 to 2010, we found that these forecasts are on average optimistic and two of the five test variables, earnings variability and financial leverage are significant in explaining ex post bias. Acknowledging the possibility that the bias is the result of the managers’ forecasting behavior, we then examine whether managers decide to under-predict, over-predict or forecast accurately for self-serving purposes. Explicitly, we examine the role of financial distress, operating performance, ownership by insiders and the economy state in influencing managers’ forecasting preferences. We find that managers of distressed firms seem to over-predict future earnings. We also find that when managers are given more stock options, they tend to under-predict future earnings. Finally, we conclude that the management earnings forecasts are affected by an intentional bias due to managers’ forecasting preferences.

Keywords: intentional bias, management earnings forecasts, neutrality, verifiability

Procedia PDF Downloads 235
2050 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 364
2049 Performance of CO₂/N₂ Foam in Enhanced Oil Recovery

Authors: Mohamed Hassan, Rahul Gajbhiye

Abstract:

The high mobility and gravity override of CO₂ gas can be minimized by generating the CO₂ foam with the aid of surfactant. However, CO₂ is unable to generate the foam/stable foam above its supercritical point (1100 psi, 31°C). These difficulties with CO₂ foam is overcome by adding N₂ in small fraction to enhance the foam generation of CO₂ at supercritical conditions. This study shows how the addition of small quantity of N₂ helps in generating the CO₂ foam and performance of the CO₂/N₂ mixture foam in enhanced oil recovery. To investigate the performance of CO₂/N₂ foam, core-flooding experiments were conducted at elevated pressure and temperature condition (higher than supercritical CO₂ - 50°C and 1500 psi) in sandstone cores. Fluorosurfactant (FS-51) was used as a foaming agent, and n-decane was used as model oil in all the experiments. The selection of foam quality and N₂ fraction was optimized based on foam generation and stability tests. Every gas or foam flooding was preceded by seawater injection to simulate the behavior in the reservoir. The results from the core-flood experiments showed that the CO₂ and CO₂/N₂ foam flooding recovered an additional 34-40% of Original Initial Oil in Place (OIIP) indicating that foam flooding succeeded in producing more oil than pure CO₂ gas injection processes. Additionally, the performance CO₂/N₂ foam injection was better than CO₂ foam injection.

Keywords: CO₂/N₂ foam, enhanced oil recovery (EOR), supercritical CO₂, sweep efficiency

Procedia PDF Downloads 276
2048 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 209