Search results for: amorphous materials
6920 Experimental and Numerical Processes of Open Die Forging of Multimetallic Materials with the Usage of Different Lubricants
Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can, Damla Gunel
Abstract:
This work investigates experimental and numerical analysis of open die forging of multimetallic materials. Multimetallic material production has recently become an interesting research field. The mechanical properties of the materials to be used for the formation of multimetallic materials and the mechanical properties of the multimetallic materials produced will be compared and the material flows of the use of different lubricants will be examined. Furthermore, in this work, the mechanical properties of multimetallic metallic materials produced using different materials will be examined by using different lubricants. The advantages and disadvantages of different lubricants will be approached with the bi-metallic material to be produced. Cylindrical specimens consisting of two different materials were used in the experiments. Specimens were prepared as aluminum sleeve and copper core and upset at different reduction. This metal combination present a material model of which chemical composition is different. ABAQUS software was used for the simulations. Simulation and experimental results have also shown reasonable agreement.Keywords: multimetallic, forging, experimental, numerical
Procedia PDF Downloads 2786919 Study and Analyze of Metallic Glasses for Biomedical Applications: From Soft to Bone Tissue Engineering
Authors: A. Monfared, S. Faghihi
Abstract:
Metallic glasses (MGs) are newcomers in the field of metals that show great potential for soft and bone tissue engineering due to the amorphous structure that endows unique properties. Up to now, various MGs based on Ti, Zr, Mg, Zn, Fe, Ca, and Sr in the form of a ribbon, bulk, thin-film, and powder have been investigated for biomedical purposes. This article reviews the compositions and biomedical properties of MGs as well as analyzes results in order to guide new approaches and future development of MGs.Keywords: metallic glasses, biomaterials, biocompatibility, biocorrosion
Procedia PDF Downloads 2136918 Lightweight Materials for Building Finishing
Authors: Sarka Keprdova, Nikol Zizkova
Abstract:
This paper focuses on the presentation of results which were obtained as a part of the project FR-TI 3/742: “System of Lightweight Materials for Finishing of Buildings with Waste Raw Materials”. Attention was paid to the lightweighting of polymer-modified mortars applicable as adhesives, screeds and repair mortars. In terms of repair mortars, they were ones intended for the sanitation of aerated concrete.Keywords: additives, light aggregates, lightweight materials, lightweight mortars, polymer-modified mortars
Procedia PDF Downloads 4126917 Thickness Dependence of AC Conductivity in Plasma Poly(Ethylene Oxide) Thin Films
Authors: S. Yakut, D. Deger, K. Ulutas, D. Bozoglu
Abstract:
Plasma poly(ethylene oxide) (pPEO) thin films were deposited between Aluminum (Al) electrodes on glass substrates by plasma assisted physical vapor deposition (PAPVD). The deposition was operated inside Argon plasma under 10⁻³ Torr and the thicknesses of samples were determined as 20, 100, 250, 500 nm. The plasma was produced at 5 W by magnetron connected to RF power supply. The capacitance C and dielectric loss factor tan δ were measured by Novovontrol Alpha-A high frequency empedance analyzer at freqquency and temperature intervals of 0,1 Hz and 1MHz, 193-353K, respectively. AC conductivity was derived from these values. AC conductivity results exhibited three different conductivity regions except for 20 nm. These regions can be classified as low, mid and high frequency regions. Low frequency region is observed at around 10 Hz and 300 K while mid frequency region is observed at around 1 kHz and 300 K. The last one, high frequency region, is observed at around 1 kHz and 200 K. There are some coinciding definitions for conduction regions, because these regions shift depending on temperature. Low frequency region behaves as DC-like conductivity while mid and high frequency regions show conductivities corresponding to mechanisms such as classical hopping, tunneling, etc. which are observed for amorphous materials. Unlike other thicknesses, for 20 nm sample low frequency region can not be detected in the investigated freuency range. It is thought that this is arised because of the presence of dead layer behavior.Keywords: plasma polymers, dead layer, dielectric spectroscopy, AC conductivity
Procedia PDF Downloads 2056916 Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides
Authors: Josef Brychta, Jiri Kratochvil, Marek Pagac
Abstract:
The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness.Keywords: grained cutting materials difficult to machine materials, optimum utilization, mechanic, manufacturing
Procedia PDF Downloads 2996915 Beliefs in Auspicious Materials of Shop Entrepreneurs in Maung Hat Yai, Thailand
Authors: Punya Tepsing
Abstract:
This research aimed to study the beliefs in auspicious materials of entrepreneurs in Muang Hat Yai. The data were collected via documentary research and field work including interviews, observations shops in Hat Yai which used auspicious materials to bring lucks to the shops. The results were as follows. The beliefs in auspicious materials that the entrepreneurs had were of three areas: 1) The auspicious materials could correct the improperness of the shop location, for example, the shop situated opposite a branch road, a shrine, or a bank. The owner usually corrected it by putting Chinese auspicious materials in front of or in the shop, for example, a lion holding a sword in his mouth, or a mirror, etc. 2) The auspicious materials could bring in more income. The owner of the shop usually put the auspicious materials such as a cat beckoning and a bamboo fish trap believed to trap money in front of or inside the shop. 3) The auspicious materials like turtles, paired fish and a monster holding the moon in his mouth could solve life problems including health, family, and safety problems. The use of these auspicious materials showed the blending of the beliefs of the Chinese shop entrepreneurs with the Thai folk beliefs. What is interesting is that Hat Yai is located near the three southern border provinces which are the unrest area and this may cause the number of tourists to decline. This prompted them to build a mechanism in adjusting themselves both to save their lives and to increase the number of customers. Auspicious materials can make them feel more confident.Keywords: belief, auspicious materials, shop, entrepreneur, Maung Hat Yai
Procedia PDF Downloads 2406914 A Review on the Use of Salt in Building Construction
Authors: Vesna Pungercar, Florian Musso
Abstract:
Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope.Keywords: salt, building material, hygrothermal properties, environment
Procedia PDF Downloads 1696913 Termite Mound Floors: Ready-to-Use Ecological Materials
Authors: Yanné Etienne
Abstract:
The current climatic conditions necessarily impose the development and use of construction materials with low or no carbon footprint. The Far North Region of Cameroon has huge deposits of termite mounds. Various tests in this work have been carried out on these soils with the aim of using them as construction materials. They are mainly geotechnical tests, physical and mechanical tests. The different tests gave the following values: uniformity coefficient (4.95), curvature coefficient (1.80), plasticity index (12.85%), optimum moisture content (6.70%), maximum dry density (2.05 g.cm-³), friction angles (14.07°), and cohesion of 100.29 kN.m2. The results obtained show that termite mound soils, which are ecological materials, are plastic and water-stable can be used for the production of load-bearing elements in construction.Keywords: termite mound soil, ecological materials, building materials, geotechnical tests, physical and mechanical tests
Procedia PDF Downloads 1846912 Application of Unconventional Materials for ‘Statement Jewellery’
Authors: Shaleni Bajpai, V. Niveditha
Abstract:
A fashion accessory is a product which used to give secondary way to the wearer’s outfit. The term came into use in the 19th century and was specifically chosen to complement the wearer’s look. The aim of project was to introduce the unconventional materials for statement jewellery. The materials used for statement jewellery were waste Cd’s, and scrap fabric. These materials were amalgamated with the traditional raw materials such as beads, sequins, charms and chains to form unique jewellery sets. The sets were divided into two categories based on the type of raw material used i.e. Category 1: Clef-Cd Jewellery, Category 2: Crumb-Fabric Jewellery. Each Jewellery set consisted of a necklace, a pair of earrings, a ring and a bracelet.Keywords: statement jewellery, unconventional, crumb fabric, Cd’s
Procedia PDF Downloads 2586911 Impact of Natural Degradation of Low Density Polyethylene on Its Morphology
Authors: Meryem Imane Babaghayou, Asma Abdelhafidi, Salem Fouad Chabira, Mohammed Sebaa
Abstract:
A challenge of plastics industries is the realization of materials that resist the degradation in its application environment, and that to guarantee a longer life time therefore an optimal time of use. Blown extruded films of low-density polyethylene (LDPE) supplied by SABIC SAUDI ARABIA blown and extruded in SOFIPLAST company in Setif ALGERIA , have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. Samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques after prescribed amounts of time up to 8 months. It has been shown via these two techniques the impact of UV irradiation on the morphological development of a plastic material, especially the crystallinity degree which increases with exposure time. The reason of these morphological changes is related to photooxidative reactions leading to cross linking in the beginning and to chain scissions for an advanced stage of ageing this last ones are the first responsible. The crystallinity degree change is essentially controlled by the secondary crystallization of the amorphous chains whose mobility is enhanced by the chain scission processes. The diffusion of these short segments integrates the surface of the lamellae increasing in this way their thicknesses. The results presented highlight the complexity of the involved phenomena.Keywords: Low Density poly (Ethylene), crystallinity, ageing, XRD, DSC
Procedia PDF Downloads 4086910 Recycling Carbon Fibers/Epoxy Composites Wastes in Building Materials Based on Geopolymer Binders
Authors: A. Saccani, I. Lancellotti, E. Bursi
Abstract:
Scraps deriving from the production of epoxy-carbon fibers composites have been recycled as a reinforcement to produce building materials. Short chopped fibers (5-7 mm length) have been added at low volume content (max 10%) to produce mortars. The microstructure, mechanical properties (mainly flexural strength) and dimensional stability of the derived materials have been investigated. Two different types of matrix have been used: one based on conventional Portland Cement and the other containing geopolymers formed starting from activated metakaolin and fly ashes. In the second case the materials is almost completely made of recycled ingredients. This is an attempt to produce reliable materials solving waste disposal problems. The first collected results show promising results.Keywords: building materials, carbon fibres, fly ashes, geopolymers
Procedia PDF Downloads 1686909 The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials
Authors: Francesca Scalisi, Cesare Sposito
Abstract:
The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development.Keywords: embodied energy, embodied carbon, life cycle assessment, architecture, sustainability, material construction
Procedia PDF Downloads 3436908 Innovation Potential of Palm Kernel Shells from the Littoral Region in Cameroon
Authors: Marcelle Muriel Domkam Tchunkam, Rolin Feudjio
Abstract:
This work investigates the ultrastructure, physicochemical and thermal properties evaluation of Palm Kernel Shells (PKS). PKS Tenera waste samples were obtained from a palm oil mill in Dizangué Sub-Division, Littoral region of Cameroon, while PKS Dura waste samples were collected from the Institute of Agricultural Research for Development (IRAD) of Mbongo. A sodium hydroxide solution was used to wash the shells. They were then rinsed by demineralised water and dried in an oven at 70 °C during 72 hours. They were then grounded and sieved to obtained powders from 0.04 mm to 0.45 mm in size. Transmission Electron Microscopy (TEM) and Surface Electron Microscopy (SEM) were used to characterized powder samples. Chemical compounds and elemental constituents, as well as thermal performance were evaluated by Van Soest Method, TEM/EDXA and SEM/EDS techniques. Thermal characterization was also performed using Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Our results from microstructural analysis revealed that most of the PKS material is made of particles with irregular morphology, mainly amorphous phases of carbon/oxygen with small amounts of Ca, K, and Mg. The DSC data enabled the derivation of the materials’ thermal transition phases and the relevant characteristic temperatures and physical properties. Overall, our data show that PKS have nanopores and show potential in 3D printing and membrane filtration applications.Keywords: DSC, EDXA, palm kernel shells, SEM, TEM
Procedia PDF Downloads 1206907 Mathematical Analysis of Matrix and Filler Formulation in Composite Materials
Authors: Olusegun A. Afolabi, Ndivhuwo Ndou
Abstract:
Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed.Keywords: composite material, density, filler, matrix, percentage weight, volume fraction
Procedia PDF Downloads 676906 Synthesis of Solid Polymeric Materials by Maghnite-H⁺ as a Green Catalyst
Authors: Draoua Zohra, Harrane Amine
Abstract:
The Solid Polymeric Materials have been successfully prepared by the copolymerization of e-caprolactone (CL) and poly (ethylene glycol) (PEG) employing Maghnite-H+ at 80°C. Maghnite-H+ is a solid catalyst non-toxic. The presence of PEG chains leads to a break in the growth of PCL chains and consequently leads to the copolymer tri-block PCL-PEG-PCL. The objective of this study was to synthesize and characterize of Solid Polymeric Materials. The highly hydrophilic nature of polyethylene glycol has sparked our interest in developing a Solid Polymeric based e-caprolactone and poly (ethylene glycol). PCL and PEG are biocompatible materials. Their ring-opening copolymerization using Maghnite H+ makes to the Solid Polymeric Materials. The morphology and structure of Solid polymeric Materials were characterized by ¹H and ¹³C-NMR spectra and Gel Permeation Chromatography (GPC). This paper developed the application of Maghnite-H+ as an efficient catalyst by an easy-to-handle procedure to get solid polymeric materials. A cationic mechanism for the copolymerization reaction was proposed.Keywords: block copolymers, maghnite, montmorillonite, poly(e-caprolactone)
Procedia PDF Downloads 1676905 Dynamic Mechanical Analysis of Supercooled Water in Nanoporous Confinement and Biological Systems
Authors: Viktor Soprunyuk, Wilfried Schranz, Patrick Huber
Abstract:
In the present work, we show that Dynamic Mechanical Analysis (DMA) with a measurement frequency range f= 0.2 - 100 Hz is a rather powerful technique for the study of phase transitions (freezing and melting) and glass transitions of water in geometrical confinement. Inserting water into nanoporous host matrices, like e.g. Gelsil (size of pores 2.6 nm and 5 nm) or Vycor (size of pores 10 nm) allows one to study size effects occurring at the nanoscale conveniently in macroscopic bulk samples. One obtains valuable insight concerning confinement induced changes of the dynamics by measuring the temperature and frequency dependencies of the complex Young's modulus Y* for various pore sizes. Solid-liquid transitions or glass-liquid transitions show up in a softening or the real part Y' of the complex Young's modulus, yet with completely different frequency dependencies. Analysing the frequency dependent imaginary part of the Young´s modulus in the glass transition regions for different pore sizes we find a clear-cut 1/d-dependence of the calculated glass transition temperatures which extrapolates to Tg(1/d=0)=136 K, in agreement with the traditional value of water. The results indicate that the main role of the pore diameter is the relative amount of water molecules that are near an interface within a length scale of the order of the dynamic correlation length x. Thus we argue that the observed strong pore size dependence of Tg is an interfacial effect, rather than a finite size effect. We obtained similar signatures of Y* near glass transitions in different biological objects (fruits, vegetables, and bread). The values of the activation energies for these biological materials in the region of glass transition are quite similar to the values of the activation energies of supercooled water in the nanoporous confinement in this region. The present work was supported by the Austrian Science Fund (FWF, project Nr. P 28672 – N36).Keywords: biological systems, liquids, glasses, amorphous systems, nanoporous materials, phase transition
Procedia PDF Downloads 2376904 Zeolite Origin within the Pliocene Sedimentary-Pyroclastic Deposits in the Southwestern Part of Syria
Authors: Abdulsalam Turkmani, Mohammed Khaled Yezbek, Farouk Al Imadi
Abstract:
Geological surveys in the southwestern part of Syria showed the presence of sedimentary-pyroclastic deposits, volcanic tuff, to the age of the Upper Pliocene and contain the following minerals according petrographical study and XRD, SEM, XRF analysis and surface properties. X-Ray diffraction results indicate the presence of analcime, phillipsite and chabazite in in all the studied localities. There are also amorphous materials and clay minerals such as illite and montmorillonite. The non-zeolite constituents include olivine, clinopyroxene orthopyroxene and spinel, and less of magnetite and feldspar. Some major oxides were determined through XRF geochemical analyses which include SiO₂, Al₂O₃, K₂O, Fe₂O₃, and CaO for volcanic tuff and zeolite. The formation of these depositions can be summarized in the following stages during the Pliocene: Volcanic activity at the edges of Al Rutba uplift and Jabal Al Arab depression was a rich by tuff bearing ultra basic and basic xenoliths plus second phase by scoria, during the early Pliocene. Volcanic calm with the activity of erosion and form lakes in which deposition of a set of wastes, including olivine resulting from the disintegration of xenoliths during the middle Pliocene. Zeolites minerals form later, which make up about 15-20% and increase and decrease in reverse relation with the olivine sand. Zeolite is formed from volcanic glass, and the results of SEM show that the zeolites minerals very well crystallized.Keywords: minerals, origin, pyroclastic, zeolite
Procedia PDF Downloads 1876903 Development of Thermal Insulation Materials Based on Silicate Using Non-Traditional Binders and Fillers
Authors: J. Hroudova, J. Zach, L. Vodova
Abstract:
When insulation and rehabilitation of structures is important to use quality building materials with high utility value. One potentially interesting and promising groups of construction materials in this area are advanced, thermally insulating plaster silicate based. With the present trend reduction of energy consumption of building structures and reducing CO2 emissions to be developed capillary-active materials that are characterized by their low density, low thermal conductivity while maintaining good mechanical properties. The paper describes the results of research activities aimed at the development of thermal insulating and rehabilitation material ongoing at the Technical University in Brno, Faculty of Civil Engineering. The achieved results of this development will be the basis for subsequent experimental analysis of the influence of thermal and moisture loads developed on these materials.Keywords: insulation materials, rehabilitation materials, lightweight aggregate, fly ash, slag, hemp fibers, glass fibers, metakaolin
Procedia PDF Downloads 2356902 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials
Authors: Maryam Kiani, Abdul Basit Kiani
Abstract:
At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.Keywords: nanomaterials, SiO₂, carbon black, mechanical properties
Procedia PDF Downloads 1406901 Biomimicked Nano-Structured Coating Elaboration by Soft Chemistry Route for Self-Cleaning and Antibacterial Uses
Authors: Elodie Niemiec, Philippe Champagne, Jean-Francois Blach, Philippe Moreau, Anthony Thuault, Arnaud Tricoteaux
Abstract:
Hygiene of equipment in contact with users is an important issue in the railroad industry. The numerous cleanings to eliminate bacteria and dirt cost a lot. Besides, mechanical solicitations on contact parts are observed daily. It should be interesting to elaborate on a self-cleaning and antibacterial coating with sufficient adhesion and good resistance against mechanical and chemical solicitations. Thus, a Hauts-de-France and Maubeuge Val-de-Sambre conurbation authority co-financed Ph.D. thesis has been set up since October 2017 based on anterior studies carried by the Laboratory of Ceramic Materials and Processing. To accomplish this task, a soft chemical route has been implemented to bring a lotus effect on metallic substrates. It involves nanometric liquid zinc oxide synthesis under 100°C. The originality here consists in a variation of surface texturing by modification of the synthesis time of the species in solution. This helps to adjust wettability. Nanostructured zinc oxide has been chosen because of the inherent photocatalytic effect, which can activate organic substance degradation. Two methods of heating have been compared: conventional and microwave assistance. Tested subtracts are made of stainless steel to conform to transport uses. Substrate preparation was the first step of this protocol: a meticulous cleaning of the samples is applied. The main goal of the elaboration protocol is to fix enough zinc-based seeds to make them grow during the next step as desired (nanorod shaped). To improve this adhesion, a silica gel has been formulated and optimized to ensure chemical bonding between substrate and zinc seeds. The last step consists of deposing a wide carbonated organosilane to improve the superhydrophobic property of the coating. The quasi-proportionality between the reaction time and the nanorod length will be demonstrated. Water Contact (superior to 150°) and Roll-off Angle at different steps of the process will be presented. The antibacterial effect has been proved with Escherichia Coli, Staphylococcus Aureus, and Bacillus Subtilis. The mortality rate is found to be four times superior to a non-treated substrate. Photocatalytic experiences were carried out from different dyed solutions in contact with treated samples under UV irradiation. Spectroscopic measurements allow to determinate times of degradation according to the zinc quantity available on the surface. The final coating obtained is, therefore, not a monolayer but rather a set of amorphous/crystalline/amorphous layers that have been characterized by spectroscopic ellipsometry. We will show that the thickness of the nanostructured oxide layer depends essentially on the synthesis time set in the hydrothermal growth step. A green, easy-to-process and control coating with self-cleaning and antibacterial properties has been synthesized with a satisfying surface structuration.Keywords: antibacterial, biomimetism, soft-chemistry, zinc oxide
Procedia PDF Downloads 1426900 Instructional Material Development in ODL: Achievements, Prospects, and Challenges
Authors: Felix Gbenoba, Opeyemi Dahunsi
Abstract:
Customised, self-instructional materials are at the heart of instructional delivery in Open and Distance Learning (ODL). The success of any ODL institution depends on the availability of learning materials in quality and quantity. An ODL study material is expected to imitate what the teacher does in the face-to-face learning environment. This paper evaluates these expectation based on existing data and evidence. It concludes that the reality has not matched the expectation so far in terms of pedagogic aspect of instructional delivery especially in West Africa. This does not mean that instructional materials development has not produced any significant positive results in improving the overall learning (and teaching) experience in these institutions; it implies what will help further to identify the new challenges. Obstacles and problems of instructional materials development that could have affected the open educational resource initiatives are well established. The first section of this paper recalls some of the proposed values of instructional materials. The second section compares achievements so far and suggests that instructional materials development should be consider first at an early stage to realise the aspirations of instructional delivery. The third section highlights the challenges of instructional materials development in the future.Keywords: face-to-face learning, instructional delivery, open and distance education, self-instructional materials
Procedia PDF Downloads 3726899 Possible Sulfur Induced Superconductivity in Nano-Diamond
Authors: J. Mona, R. R. da Silva, C.-L.Cheng, Y. Kopelevich
Abstract:
We report on a possible occurrence of superconductivity in 5 nm particle size diamond powders treated with sulfur (S) at 500 o C for 10 hours in ~10-2 Torr vacuum. Superconducting-like magnetization hysteresis loops M(H) have been measured up to ~ 50 K by means of the SQUID magnetometer (Quantum Design). Both X-ray (Θ-2Θ geometry) and Raman spectroscopy analyses revealed no impurity or additional phases. Nevertheless, the measured Raman spectra are characteristic to the diamond with embedded disordered carbon and/or graphitic fragments suggesting a link to the previous reports of the local or surface superconductivity in graphite- and amorphous carbon–sulfur composites.Keywords: nanodiamond, sulfur, superconductivity, Raman spectroscopy
Procedia PDF Downloads 4936898 Obtaining of Nanocrystalline Ferrites and Other Complex Oxides by Sol-Gel Method with Participation of Auto-Combustion
Authors: V. S. Bushkova
Abstract:
It is well known that in recent years magnetic materials have received increased attention due to their properties. For this reason a significant number of patents that were published during the last decade are oriented towards synthesis and study of such materials. The aim of this work is to create and study ferrite nanocrystalline materials with spinel structure, using sol-gel technology with participation of auto-combustion. This method is perspective in that it is a cheap and low-temperature technique that allows for the fine control on the product’s chemical composition.Keywords: magnetic materials, ferrites, sol-gel technology, nanocrystalline powders
Procedia PDF Downloads 4096897 Direct Synthesis of Composite Materials Type MCM-41/ZSM-5 by Hydrothermal at Atmospheric Pressure in Sealed Pyrex Tubes
Authors: Zoubida Lounis, Naouel Boumesla, Abd El Kader Bengueddach
Abstract:
The main objective of this study is to synthesize a composite materials by direct synthesis at atmospheric pression having the MFI structure and MCM-41 by using double structuring. In the first part of this work we are interested in the study of the synthesis parameters, in addition to temperature, the crystallization time and pH. The second part of this work is to vary the ratio of the concentrations of both structuring C9 [C9H19(CH3)3NBr] and C16 [C16H33(CH3)3NBr] and determining the area of formation of the two materials (microporous and mesoporous at same time), for this reason we performed a battery of experiments ranging from 0 to 100% for both structural. To enhance the economic purposes of this study, the experiments were carried out by using very cheap and simple process, the pyrex tubes were used instead of the reactors, and the synthesis were done at atmospheric pressure and moderate temperature. The final products (composite materials) were obtained at high and pure quality.Keywords: composite materials, syntheisis, catalysts, mesoporous materials, microporous materials
Procedia PDF Downloads 3886896 Development of an Ecological Binder by Geopolymerization of Untreated Dredged Sediments
Authors: Lisa Monteiro, Jacqueline Saliba, Nadia Saiyouri, Humberto Y. Godoy
Abstract:
Theevolution of the global environmental context incites companies to reduce their impact by reusing local materials and promoting circular economy. Dredged sediments represent a potential source of materials due to their large volume. Indeed, the dredging operations carried out in Gironde alone generated an annual volume of sediment of approximately 9 million m³. Moreover, on the eve of the evolution of laws concerning dredging practices, the recovery of sediments is necessary to create a viable economy for their management. This thesis work is oriented towards the development of an ecological binder from the fine fraction of untreated dredged sediments. In fact, their physico-chemical properties make them favorable for the synthesis of geopolymer, current competitor of cement, thanks to its lower carbon footprint and environmental impact. However, several obstacles must be overcome before implementing this new family of materials: the use of sediments without thermal or chemical treatment, the absence of a formulation approach, ignorance of the reactions produced, etc. During the first year of the thesis, a physico-chemical characterization of the sediments made it possible to validate their use as precursors forgeopolymerization according to three criteria: their fineness, their mineralogical composition, and the percentage of amorphous phase. Following these results, several formulations have been defined, taking into account the environmental impact. The sediments were activated with an alkaline solution of sodium hydroxide and sodium silicate. Two other formulations with cement and blast furnace slag have been defined for comparison. The results highlighted the possibility of forming geopolymers from untreated and still wet dredged sediments. The development of structural bonds through the formation of hydrated sodium aluminosilicate thus leads to higher strengths at 90 days (4.78 MPa) than a mixture with cement (0.75 MPa). A 30% gain in CO₂ emissions has also been obtained compared to cement. In order to reduce the uncertainties linked to the absence of a formulation approach, to optimize the number of experiments to be carried out in the laboratory, and to obtain an optimal formulation, an analysis by mixing plan was conducted in order to frame the responses according to the proportions of the constituents. Following the obtaining of an optimal binder, the work will focus on the study of the durability and the interspecific variability of the sediments on the mechanical properties by testing the binder developed with different sediments dredged from the Bordeaux estuary. , the Grand Port Maritime of Bayonne, La Rochelle, and the Bassinsd'Arcachon.Keywords: compressive strength, dredged sediments, ecological binder, geopolymers
Procedia PDF Downloads 1006895 The Role of Nano-Science in Construction of Civil Engineering and Environment
Authors: Mehrdad Abkenari, Naghmeh Pournayeb, Mohsen Ramezan Shirazi
Abstract:
Nano-science has been widely used in different engineering sciences. Generally, materials’ application can be determined through their chemical and physical properties. Nano-science has introduced as a new way in production systems that not only turns the materials into very small particles but also, gives them new and considerable properties. Like other fields of study, civil engineering has not been ignorant of benefits and characteristics of new nanotechnology and has used it in the construction industry and environmental engineering. Therefore, considering such chemical properties as elemental analysis and molecular or atomic structure, the present article is aimed at studying the effects of Nano-materials on different branches of civil engineering. Finally, by identifying new Nano-materials, this study attempts to introduce advantages of using these materials for increasing the strength of materials during construction as well as finding new approaches to prevent or reduce the entrance of chemical pollutants during or after construction to the environment.Keywords: civil, nano-science, construction, environment
Procedia PDF Downloads 4126894 The Place of Instructional Materials in Quality Education at Primary School Level in Katsina State, Nigeria
Authors: Murtala Sale
Abstract:
The use of instructional materials is an indispensable tool that enhances qualitative teaching and learning especially at the primary level. Instructional materials are used to facilitate comprehension of ideas in the learners as well as ensure long term retention of ideas and topics taught to pupils. This study examined the relevance of using instructional materials in primary schools in Katsina State, Nigeria. It employed survey design using cluster sampling technique. The questionnaire was used to gather data for analysis, and statistical and frequency tables were used to analyze the data gathered. The results show that teachers and students alike have realized the effectiveness of modern instructional materials in teaching and learning for the attainment of set objectives in the basic primary education policy. It also discovered that reluctance in the use of instructional materials will hamper the achievement of qualitative primary education. The study therefore suggests that there should be the provision of adequate and up-to-date instructional materials to all primary schools in Katsina State for effective teaching and learning process.Keywords: instructional materials, effective teaching, learning quality, indispensable aspect
Procedia PDF Downloads 2526893 Benefits of High Power Impulse Magnetron Sputtering (HiPIMS) Method for Preparation of Transparent Indium Gallium Zinc Oxide (IGZO) Thin Films
Authors: Pavel Baroch, Jiri Rezek, Michal Prochazka, Tomas Kozak, Jiri Houska
Abstract:
Transparent semiconducting amorphous IGZO films have attracted great attention due to their excellent electrical properties and possible utilization in thin film transistors or in photovoltaic applications as they show 20-50 times higher mobility than that of amorphous silicon. It is also known that the properties of IGZO films are highly sensitive to process parameters, especially to oxygen partial pressure. In this study we have focused on the comparison of properties of transparent semiconducting amorphous indium gallium zinc oxide (IGZO) thin films prepared by conventional sputtering methods and those prepared by high power impulse magnetron sputtering (HiPIMS) method. Furthermore we tried to optimize electrical and optical properties of the IGZO thin films and to investigate possibility to apply these coatings on thermally sensitive flexible substrates. We employed dc, pulsed dc, mid frequency sine wave and HiPIMS power supplies for magnetron deposition. Magnetrons were equipped with sintered ceramic InGaZnO targets. As oxygen vacancies are considered to be the main source of the carriers in IGZO films, it is expected that with the increase of oxygen partial pressure number of oxygen vacancies decreases which results in the increase of film resistivity. Therefore in all experiments we focused on the effect of oxygen partial pressure, discharge power and pulsed power mode on the electrical, optical and mechanical properties of IGZO thin films and also on the thermal load deposited to the substrate. As expected, we have observed a very fast transition between low- and high-resistivity films depending on oxygen partial pressure when deposition using conventional sputtering methods/power supplies have been utilized. Therefore we established and utilized HiPIMS sputtering system for enlargement of operation window for better control of IGZO thin film properties. It is shown that with this system we are able to effectively eliminate steep transition between low and high resistivity films exhibited by DC mode of sputtering and the electrical resistivity can be effectively controlled in the wide resistivity range of 10-² to 10⁵ Ω.cm. The highest mobility of charge carriers (up to 50 cm2/V.s) was obtained at very low oxygen partial pressures. Utilization of HiPIMS also led to significant decrease in thermal load deposited to the substrate which is beneficial for deposition on the thermally sensitive and flexible polymer substrates. Deposition rate as a function of discharge power and oxygen partial pressure was also systematically investigated and the results from optical, electrical and structure analysis will be discussed in detail. Most important result which we have obtained demonstrates almost linear control of IGZO thin films resistivity with increasing of oxygen partial pressure utilizing HiPIMS mode of sputtering and highly transparent films with low resistivity were prepared already at low pO2. It was also found that utilization of HiPIMS technique resulted in significant improvement of surface smoothness in reactive mode of sputtering (with increasing of oxygen partial pressure).Keywords: charge carrier mobility, HiPIMS, IGZO, resistivity
Procedia PDF Downloads 2976892 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method
Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad
Abstract:
The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.Keywords: structure analysis, aluminum piston, MgZrO₃, YTZ, mullite and alumina
Procedia PDF Downloads 1516891 Epoxidation of Cycloalkenes Using Bead Shape Ti-Al-Beta Zeolite
Authors: Zahra Asgar Pour
Abstract:
Two types of Ti-Al-containing zeolitic beads with an average diameter of 450 to 750 µm and hierarchical porosity were synthesized using a hard template method and tested as heterogeneous catalysts in the epoxidation of cycloalkenes (i.e. cyclohexene and cis-cyclooctene) with aqueous hydrogen peroxide (H₂O₂) or tert-butyl hydroperoxide(TBHP) as the oxidant agent. The first type of zeolitic beads was prepared by hydrothermal treatment of a primarygel (containing the Si, Ti, and Al precursors) in the presence of porous anion-exchange resin beads as the hard shaping template. After calcination, these beads (Ti-Al-Beta-HDT-B) consisted of both crystalline zeolite Beta and an amorphous silicate phase. The second type of zeolitic beads (Ti-Beta-PS-deAl-14.4-B) was obtained by post-synthesis dealumination of Al-containing zeolite Beta beads using 14.4 M HNO₃, followed by Ti grafting (3 wt% per gram of zeolite). The prepared materials were characterised by means of XRD, N2-physisorption, UV-vis, XRF, SEM, and TEM and tested as heterogeneous epoxidation catalysts. This post-synthetically prepared catalyst demonstrated higher activity (cyclohexene conversion of 22.7 % and epoxide selectivity of 33.5 %) after 5 h at60 °C, which emanates from the crystalline structure and higher degrees of hydrophobicity. In addition, the post-synthetically prepared beads were prone to partial Ti leaching in the presence of H₂O₂, whereas they showed to be resistant against Ti leaching using tert-butyl hydroperoxide as the oxidant agent.Keywords: epoxidation, structured catalysts, hierarchical porosity, bead-shape catalysts
Procedia PDF Downloads 108