Search results for: HEAVY METAL
3442 The Role of Phytoremediation in Reclamation of Soil Pollution and Suitability of Certain Ornamental Plants to Phytoremediation
Authors: Bahriye Gülgün, Gökhan Balik, Şükrü Dursun, Kübra Yazici
Abstract:
The main reasons such as economic growth of society increase of the world population and rapid changes of industrialization cause the amount and the types of pollutants to increase over time. Soil pollution is the typical side effect of industrial activities. As a result of industrial activities, there are large amounts of heavy metal emission every year. Heavy metals are one of the highest pollution sources according to the soil pollution aspect. The usage of hyperaccumulator plants to clean heavy metal polluted soils and the selection of plants for phytoremediation gain importance recently. There are limited numbers of researches on the ornamental plant types of phytoremediation thus; researches on this subject are important. This research is prepared based on the ornamental plant types with phytoremediation abilities.Keywords: phytoremediation, ornamental plants, landscape reclamation, soil reclamation, environmental pollution
Procedia PDF Downloads 4103441 Microalgae as Promising Biostimulants of Plant Tolerance Against Heavy Metals
Authors: Soufiane Fal, Abderahim Aasfar, Ali Ouhssain, Hasnae Choukri, Abelaziz Smouni, Hicham El Arroussi
Abstract:
Heavy metals contamination is a major environmental concern around the world. It has a harmful impact on plant productivity and poses a serious risk to humans and animals health. In the present study, the effect of Microalgae Crude Extract (MCE) on tomato growth and nutrients uptake exposed to 2 mM Pb2+ and Cd2+ was investigated. In results, 2 mM Pb2+ and Cd2+ showed a significant reduction of tomatobiomass and perturbation in nutrients absorption. Moreover, MCE application in tomato plant exposed to Pb2+ and Cd2+ showed a significant enhancement of biomass compared to tomato plants under Pb2+ and Cd2+. On the other hand, MCE application favoured heavy metals accumulation in root and inhibited their translocation to shoot as phytostabilisation mechanism. Tomato plants showed biochemical responses to Pb2+ and Cd2+ stress with elevation of scavenging enzymes and molecules such as POD, CAT, SOD, Proline, and polyphenols, etc. In addition, the treatment by MCE showed a significant reduction level of the majority of these parameters. Furthermore, the metabolomic analysis revealed a significant change in important metabolites. Pb2+ and Cd2+ showed decrease in SFA and increase of UFA, VLFA, alkanes, alkenes, sterols, which known accumulated as tolerance and resistance mechanism to heavy metal (H.M) stress. However, MCE treatment showed the inverse of these response to return tomato plants to normal state and enhanced tolerance and resistance to heavy metal stress. In the present study, we emphasized that MCE can alleviate H.M stress, enhance tomato plant growth nutrients absorption and improve biochemical responses.Keywords: microalgae crude extract, heavy metal stress, nutrient uptake, metabolomic analysis, solanum lycopersicum (Tomato), phytostabilisation
Procedia PDF Downloads 1143440 Balance Transfer of Heavy Metals in Marine Environments Subject to Natural and Anthropogenic Inputs: A Case Study on the Mejerda River Delta
Authors: Mohamed Amine Helali, Walid Oueslati, Ayed Added
Abstract:
Sedimentation rates and total fluxes of heavy metals (Fe, Mn, Pb, Zn and Cu) was measured in three different depths (10m, 20m and 40m) during March and August 2012, offshore of the Mejerda River outlet (Gulf of Tunis, Tunisia). The sedimentation rates are estimated from the fluxes of the suspended particulate matter at 7.32, 5.45 and 4.39 mm y⁻¹ respectively at 10m, 20m and 40m depth. Heavy metals sequestration in sediments was determined by chemical speciation and the total metal contents in each core collected from 10, 20 and 40m depth. Heavy metals intake to the sediment was measured also from the suspended particulate matter, while the fluxes from the sediment to the water column was determined using the benthic chambers technique and from the diffusive fluxes in the pore water. Results shown that iron is the only metal for which the balance transfer between intake/uptake (45 to 117 / 1.8 to 5.8 g m² y⁻¹) and sequestration (277 to 378 g m² y⁻¹) was negative, at the opposite of the Lead which intake fluxes (360 to 480 mg m² y⁻¹) are more than sequestration fluxes (50 to 92 mg m² y⁻¹). The balance transfer is neutral for Mn, Zn, and Cu. These clearly indicate that the contributions of Mejerda have consistently varied over time, probably due to the migration of the River mouth and to the changes in the mining activity in the Mejerda catchment and the recent human activities which affect the delta area.Keywords: delta, fluxes, heavy metals, sediments, sedimentation rates
Procedia PDF Downloads 2023439 An Assessment of Trace Heavy Metal Contamination of Some Edible Oils Regularly Marketed in Benue and Taraba States of Nigeria
Authors: Raphael Odoh, Obida J. Oko, Mary S. Dauda
Abstract:
The determination of Cd, Cr, Cu, Fe,Mn, Ni, Pb and Zn contents in edible oils (palm oil, ground-nut oil and soybean oil) bought from various markets of Benue and Taraba state were carried out with flame atomic absorption spectrophotometric technique. The method 3031 developed acid digestion of oils for metal analysis by atomic absorption or ICP spectrometry was used in the preparation of the edible oil samples for the determination of total metal content in this study. The overall results (µg/g) in palm oil sample ranged from 0.028-0.076, 0.035-0.092, 1.011-1.955, 2.101-4.892, 0.666-0.922, 0.054-0.095, 0.031-0.068 and 1.987-2.971 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively, while in ground-nut oil the overall results ranged from 0.011-0.042, 0.011-0.052, 0.133-0.788, 1.789-2.511, 0.078-0.765, 0.045-0.092, 0.011-0.028 and 1.098-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. Of the heavy metals considered Cd and Ni showed the highest contamination in the soybean oil sample. The overall results in soybean oil samples ranged from 0.011-0.015, 0.017-0.032, 0.453-0.987, 1.789-2.511, 0.089-0.321, 0.011-0.016, 0.012-0.065 and 1.011-1.997 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The concentration of Pb was the highest. The degree of contamination by each metal was estimated by the transfer factor. The transfer factors obtained for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in edible oils (palm oil, ground-nut oil and soybean oil) were 10.800, 16.500, 16.000, 18.813, 15.115, 14.230, 23.000 and 9.418 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in palm oil, and 7.000, 12.500, 8.880, 11.333, 7.708, 10.833, 15.00 and 6.608 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in ground-nut oil while for soybean oil the transfer factors were 13.000, 11.000, 7.642, 11.578, 4.486, 13.00, 12.333 and 4.412 for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn respectively. The inter-element correlation was found among metals in edible oil samples using Pearson’s correlation co-efficient. There were positive and negative correlations among the metals determined. All Metals determined showed degree of contamination but concentrations lower than the USP specification.Keywords: Benue State, contamination, edible oils, heavy metals, markets, Taraba State
Procedia PDF Downloads 3233438 Atomic Absorption Spectroscopic Analysis of Heavy Metals in Cancerous Breast Tissues among Women in Jos, Nigeria
Authors: Opeyemi Peter Idowu
Abstract:
Breast cancer is prevalent in northern Nigerian women, most especially in Jos, Plateau State, owing to anthropogenic activities such as solid earth mineral mining as far back as 1904. In this study, atomic absorption spectrometry was used to determine the concentration of eight heavy metals (Cd, As, Cr, Cu, Fe, Pb, Ni, and Zn) in cancerous and non-cancerous breast tissues of Jos Nigerian Women. The levels of heavy metals ranged from 1.08 to 29.34 mg/kg, 0.29 to 10.76 mg/kg, 0.35 to 51.93 mg/kg, 5.15 to 62.93 mg/kg, 11.64 to 51.10 mg/kg, 0.42 to 83.16 mg/kg, 2.08 to 43.07 mg/kg and 1.67 to 71.53 mg/kg for Cd, As, Cr, Cu, Fe, Pb, Ni and Zn respectively. Using MATLAB R2016a, significant differences (tᵥ = 0.0041 - 0.0317) existed between the levels of all the heavy metals in cancerous and non-cancerous breast tissues except Fe. At 0.01 level of significance, a positive significant correlation existed between Pb and Fe, Pb and Cu, Pb and Fe, Ni and Fe, Cr and Pb, as well as Ni and Cr (r = 0.583 – 0.998) in cancerous breast tissues. Using ANOVA, significant differences also occurred in the levels of these heavy metals in cancerous breast tissues (p = 1.910510×10⁻²⁶). The relatively high levels of the cancer-induced heavy metals (Cd, As, Cr, and Pb) compared with control indicated contamination or exposure to heavy metals, which could be the major cause of cancer in these female subjects. This was evidence of contamination as a result of exposure by ingestion, inhalation, or other means to one anthropogenic activity of the other. Therapeutic measures such as gastric lavage, ascorbic acid consumption, and divalent cation treatment are all effective ways to manage heavy metal toxicity in the subjects to lower the risk of breast cancer.Keywords: breast cancer, heavy metals, spectroscopy, bio-accumulation
Procedia PDF Downloads 263437 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity
Authors: B. S. Yadav, A. Mani, S. Srivastava
Abstract:
Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.Keywords: abiotic stress, biological network, chickpea, microarray
Procedia PDF Downloads 1973436 Spatio-temporal Variations in Heavy Metal Concentrations in Sediment of Qua Iboe River Estuary, Nigeria
Authors: Justina I. R. Udotong, Ime R. Udotong, Offiong U. Eka
Abstract:
The concentrations of heavy metals in sediments of Qua Iboe River Estuary (QIRE) were monitored at four different sampling locations in wet and dry seasons. A preliminary survey to determine the four sampling stations along the river continuum showed that the area spanned between < 0.1% salinity at the control station and 21.5‰ at the fourth station along the river continuum. A preliminary survey to determine the four sampling locations along the river estuary showed variations in salinity and other physicochemical parameters. The estuary was found to be polluted with heavy metals from point and nonpoint sources at varying degrees. Mean values of 7.80 mg/kg, 4.97 mg/kg and 2.80 mg/kg of nickel were obtained for sediment samples from Douglas creek, Qua Iboe and Atlantic sampling locations, respectively in the dry season. The wet season nickel concentrations were however lower. The entire study area was grossly contaminated by iron. At Douglas creek, the concentration of iron in sediment was 9274 ± 9.54 mg/kg while copper, nickel, lead and vanadium were <0.5 mg/kg each as compared to iron. Bioaccumulation was therefore suspected within the study area as values of 31.00 ± 0.79, 36.00 ± 0.10 and 55.00 ± 0.05 mg/kg of zinc were recorded in sediment at Douglas creek, Atlantic and the control sampling locations. The results from this study showed that the source of these heavy metals were from point sources like the corrosion of metal steel pipes from old bridges as well as oily sludge wastes from the Qua Iboe Terminal / tank farm located within the vicinity of the study area.Keywords: heavy metal, Qua Iboe River estuary, seasonal variations, Sediment
Procedia PDF Downloads 3713435 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk
Authors: Masbubul Ishtiaque Ahmed
Abstract:
Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity
Procedia PDF Downloads 2853434 Heavy Metal Contents in Vegetable Oils of Kazakhstan Origin and Life Risk Assessment
Authors: A. E. Mukhametov, M. T. Yerbulekova, D. R. Dautkanova, G. A. Tuyakova, G. Aitkhozhayeva
Abstract:
The accumulation of heavy metals in food is a constant problem in many parts of the world. Vegetable oils are widely used, both for cooking and for processing in the food industry, meeting the main dietary requirements. One of the main chemical pollutants, heavy metals, is usually found in vegetable oils. These chemical pollutants are carcinogenic, teratogenic and immunotoxic, harmful to consumption and have a negative effect on human health even in trace amounts. Residues of these substances can easily accumulate in vegetable oil during cultivation, processing and storage. In this article, the content of the concentration of heavy metal ions in vegetable oils of Kazakhstan production is studied: sunflower, rapeseed, safflower and linseed oil. Heavy metals: arsenic, cadmium, lead and nickel, were determined in three repetitions by the method of flame atomic absorption. Analysis of vegetable oil samples revealed that the largest lead contamination (Pb) was determined to be 0.065 mg/kg in linseed oil. The content of cadmium (Cd) in the largest amount of 0.009 mg/kg was found in safflower oil. Arsenic (As) content was determined in rapeseed and safflower oils at 0.003 mg/kg, and arsenic (As) was not detected in linseed and sunflower oil. The nickel (Ni) content in the largest amount of 0.433 mg/kg was in linseed oil. The heavy metal contents in the test samples complied with the requirements of regulatory documents for vegetable oils. An assessment of the health risk of vegetable oils with a daily consumption of 36 g per day shows that all samples of vegetable oils produced in Kazakhstan are safe for consumption. But further monitoring is needed, since all these metals are toxic and their harmful effects become apparent only after several years of exposure.Keywords: vegetable oil, sunflower oil, linseed oil, safflower oil, toxic metals, food safety, rape oil
Procedia PDF Downloads 1333433 Impact of Wastewater Irrigation on Soil and Vegetable Quality in Peri Urban Cropping System
Authors: Neelam Patel
Abstract:
Farmers in peri-urban areas of developing countries depend on wastewater for Irrigation but with great environmental and health hazards. Since, irrigation with wastewater is growing in the developing countries but its suitability to environment and other health factors should be checked. Metal pollution is a very serious issue these days, various neuro, physical and mental disorders are prevailing due to the metal pollution. Waste water contaminated with heavy metals got accumulated in the soil and then bioaccumulated in the vegetables irrigated with waste water. A 3-year field experiment on cauliflower has been done by using wastewater with two different methods of irrigation i.e. Drip and Flood irrigation and checked the impact on the cauliflower and soil quality. Heavy metals (Cr, Cu, Ni, Zn and Pb) have been studied in wastewater used for the irrigation and their accumulation in the soil and vegetable was studied. The study reveals that the concentration of heavy metals increases by 100 times from initial in soil. After 3 years, the concentration of Copper(41 ppm) Chromium(39.4 ppm) Lead(62.2ppm) Zinc(100.5 ppm) and Nickel(75.7 ppm) in Flood irrigated soil while in Drip irrigated soil , Copper (36.4 ppm) Chromium(36.8 ppm) Lead(53.7 ppm) Zinc(70.3 ppm) and Nickel (53.9 ppm). In vegetable, the wastewater irrigated shows an increase in the concentration of metals with the time and the accumulation of Nickel (6.98ppm), Lead (30.18 ppm) and Zinc (55.83 ppm) in drip irrigated while in flood irrigated, Nickel (30.58 ppm), Lead (73.95ppm) Zinc (93.50 ppm) and Copper (54.58 ppm) in edible part of cauliflower which is above the permissible limits suggested by different international agencies. On other hand, the nutrients content i.e. Nitrogen, Phosphorus and Potassium in soil was increased in concentration with time. The study pointed out that the metal contaminated waste water consisting the nutrients in it but also heavy metals which causes health issues in human. While the increase in concentration of nutrients in the soil indirectly helpful to the farmers economically by restricting the use of fertilizers. But the metal pollution directly affects the health of human being. The different method of irrigation suggested that the drip irrigated vegetable acquired less metal then the flood one and is a better combo with the waste water for the irrigation.Keywords: drip irrigation, heavy metals, metal contamination, waste water
Procedia PDF Downloads 3273432 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling
Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar
Abstract:
The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling
Procedia PDF Downloads 2223431 Removal of Heavy Metals Pb, Zn and Cu from Sludge Waste of Paper Industries Using Biosurfactant
Authors: Nurul Hidayati
Abstract:
Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as metals. Sludge waste of paper industries as toxic and hazardous material from specific source contains Pb, Zn, and Cu metal from waste soluble ink. An alternative and eco-friendly method of remediation technology is the use of biosurfactants and biosurfactant-producing microorganisms. Soil washing is among the methods available to remove heavy metal from sediments. The purpose of this research is to study effectiveness of biosurfactant with concentration = CMC for the removal of heavy metals, lead, zinc and copper in batch washing test under four different biosurfactant production by microbial origin. Pseudomonas putida T1(8), Bacillus subtilis 3K, Acinetobacter sp, and Actinobacillus sp was grown on mineral salt medium that had been already added with 2% concentration of molasses that it is a low cost application. The samples were kept in a shaker 120 rpm at room temperature for 3 days. Supernatants and sediments of sludge were separated by using a centrifuge and samples from supernatants were measured by atomic absorption spectrophotometer. The highest removal of Pb was up to 14,04% by Acinetobacter sp. Biosurfactant of Pseudomonas putida T1(8) have the highest removal for Zn and Cu up to 6,5% and 2,01% respectively. Biosurfactants have a role for removal process of the metals, including wetting, contact of biosurfactant to the surface of the sediments and detachment of the metals from the sediment. Biosurfactant has proven its ability as a washing agent in heavy metals removal from sediments, but more research is needed to optimize the process of removal heavy metals.Keywords: biosurfactant, removal of heavy metals, sludge waste, paper industries
Procedia PDF Downloads 3303430 Method Validation for Heavy Metal Determination in Spring Water and Sediments
Authors: Habtamu Abdisa
Abstract:
Spring water is particularly valuable due to its high mineral content, which is beneficial for human health. However, anthropogenic activities usually imbalance the natural levels of its composition, which can cause adverse health effects. Regular monitoring of a naturally given environmental resource is of great concern in the world today. The spectrophotometric application is one of the best methods for qualifying and quantifying the mineral contents of environmental water samples. This research was conducted to evaluate the quality of spring water concerning its heavy metal composition. A grab sampling technique was employed to collect representative samples, including duplicates. The samples were then treated with concentrated HNO3 to a pH level below 2 and stored at 4oC. The samples were digested and analyzed for cadmium (Cd), chromium (Cr), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn) following method validation. Atomic Absorption Spectrometry (AAS) was utilized for the sample analysis. Quality control measures, including blanks, duplicates, and certified reference materials (CRMs), were implemented to ensure the accuracy and precision of the analytical results. Of the metals analyzed in the water samples, Cd and Cr were found to be below the detection limit. However, the concentrations of Mn, Cu, Fe, and Zn ranged from mean values of 0.119-0.227 mg/L, 0.142-0.166 mg/L, 0.183-0.267 mg/L, and 0.074-0.181 mg/L, respectively. Sediment analysis revealed mean concentration ranges of 348.31-429.21 mg/kg, 0.23-0.28 mg/kg, 18.73-22.84 mg/kg, 2.76-3.15 mg/kg, 941.84-1128.56 mg/kg, and 42.39-66.53 mg/kg for Mn, Cd, Cu, Cr, Fe, and Zn, respectively. The study results established that the evaluated spring water and its associated sediment met the regulatory standards and guidelines for heavy metal concentrations. Furthermore, this research can enhance the quality assurance and control processes for environmental sample analysis, ensuring the generation of reliable data.Keywords: method validation, heavy metal, spring water, sediment, method detection limit
Procedia PDF Downloads 683429 Toxicological Standardization of Heavy Metals and Microbial Contamination Haematinic Herbal Formulations Marketed in India
Authors: A. V. Chandewar, Sanjay Bais
Abstract:
Backgound: In India, drugs of herbal origin have been used in traditional systems of medicines such as Unani and Ayurveda since ancient times. WHO limit for Escherichia coli is 101/gm cfu, for Staphylococus aureus 105/gm cfu, and for Pseudomonas aeruginosa 103/gm cfu and for Salmonella species nil cfu. WHO mentions maximum permissible limits in raw materials only for arsenic, cadmium, and lead, which amount to 1.0, 0.3, and 10 ppm, respectively. Aim: The main purpose of the investigation was to document evidence for the users, and practitioners of marketed haematinic herbal formulations. In the present study haematinic herbal formulations marketed in Yavatmal India were determined for the presence of microbial and heavy metal content. Method: The investigations were performed by using specific medias and atomic absorption spectrometry. Result: The present work indicates the presence of heavy metal contents in herbal formulations selected for study. It was found that arsenic content in formulations was below the permissible limit in all formulations. The cadmium and lead content in six formulations were above the permissible limits. Such formulations are injurious to health of patient if consumed regularly. The specific medias were used to determining the presence of Escherichia coli 4 samples, Staphylococcus aureus 3 samples, and P. aeruginosa 4 samples. The data indicated suggest that there is requirement of in process improvement to provide better quality for consumer health in order to be competitive in international markets. Summary/Conclusion: The presence of microbial and heavy metal content above WHO limits indicates that the GMP was not followed during manufacturing of herbal formulations marketed in India.Keywords: toxicological standardization, heavy metals, microbial contamination, haematinic herbal formulations
Procedia PDF Downloads 4483428 Effect of Cadmium on Oxidative Enzymes Activity in Persian Clover (Trifolium resupinatum L.)
Authors: Homayun Ghasemi, Mojtaba Yousefirad, Mozhgan Farzamisepehr
Abstract:
Heavy metals are among soil pollutant resources that in case of accumulation in the soil and absorption by the plant, enter into the food chain and poison the plants or the people who consume those plants. This research was performed in order to examine the role of cadmium as a heavy metal in the activity of catalase and peroxidase as well as protein concentration in Trifolium resupinatum L. based on a randomized block design with three repetitions. The used treatments included consumption of Cd (NO3)2 at four levels, namely, 0, 100, 200, and 300 ppm. The plants under study were treated for 10 days. The results of the study showed that catalase activity decreased by the increase of cadmium. Moreover, peroxidase activity increased by an increase inthe consumption of cadmium. The analysis of protein level showed that plantlet protein decreased in high cadmium concentrations. The findings also demonstrated that cadmium concentration in roots was higher than in shoots.Keywords: catalase, heavy metal, peroxidase, protein
Procedia PDF Downloads 2483427 Exposure Assessment to Heavy Metals and Flame Retardants Among Moroccan Children and Their Impact on the Epigenetic Profile
Authors: Kaoutar Chbihi, Aziza Menouni, Emilie Hardy, Matteo Creta, Nathalie Grova, An Van Nieuwenhuyse, Lode Godderis, Samir El Jaafari, Radu-Corneliu Duca
Abstract:
Industrial products and materials are often treated with additional compounds like brominated flame retardants (BFRs) and heavy metals in order to prevent their ignition, increase their functionality and improve their performance like electrical conductivity. Consequently, this could potentially expose children to harmful chemicals through indoor dust and through hand-to-mouth or toy-chewing behaviors. The aim of this study was to assess the exposure of Moroccan children aged 5-11 years to BFRs and heavy metal elements and investigate their impacts on the epigenetic profile, namely through global DNA methylation modifications. First, parents were asked to answer a questionnaire on children’s lifestyle, then blood and urine samples were collected from (n= 93) children, following the ethical guidelines, for biomonitoring and DNA methylation analysis, using a set of solid phase extraction (SPE), LC-MS/MS, GC-MS/MS and ICP/MS techniques. BFRs were detected in 54.84% of samples with a median concentration of 0.01 nmol/mL (range: 0.004-0.051 nmol/mL), while metal elements were detected in more than 90% of samples. No association was found between BFRs and global DNA methylation, unlike metal element levels that showed significant variations with global DNA methylation biomarkers, namely 5-mdC, 5-OH-mdC and N⁶-mA levels. To conclude, Moroccan children could be significantly exposed to flame retardant compounds and heavy metal elements through several routes, such as dust or equipment usage and are therefore susceptible to the adverse health effects that could be linked with such chemicals. Further research is required to assess the exposure to environmental pollutants among the Moroccan population in order to protect Moroccan health and prevent the incidence of diseases.Keywords: biomonitoring, children, DNA methylation, epigenetics, flame retardants, heavy metals, Morocco
Procedia PDF Downloads 973426 Evaluating Acid Buffering Capacity of Sewage Sludge Barrier for Inhibiting Remobilization of Heavy Metals in Tailing Impoundment
Authors: Huyuan Zhang, Yi Chen
Abstract:
Compacted sewage sludge has been proved to be feasible as a barrier material for tailing impoundment because of its low permeability and retardation of heavy metals. The long-term penetration of acid mine drainage, however, would acidify the barrier system and result in remobilization of previously immobilized heavy metal pollutants. In this study, the effect of decreasing pH on the mobility of three typical heavy metals (Zn, Pb, and Cu) is investigated by acid titration test on sewage sludge under various conditions. The remobilization of heavy metals is discussed based on the acid buffering capacity of sewage sludge-leachate system. Test results indicate that heavy metals are dramatically released out when pH is decreased below 6.2, and their amounts take the order of Zn > Cu > Pb. The acid buffering capacity of sewage sludge decreases with the solid-liquid ratio but increases with the anaerobic incubation time, and it is mainly governed by dissolution of contained carbonate and organics. These results reveal that the sewage sludge possesses enough acid buffering capacity to consume protons within the acid mine drainage. Thus, this study suggests that an explosive remobilization of heavy metals is not expected in a long-term perspective.Keywords: acid buffering capacity, barrier, heavy metals, remobilization, sewage sludge
Procedia PDF Downloads 3203425 Heavy Metals (Pb, Cu, Fe, and Zn) Level in Shellfish (Etheria elliptica), Water, and Sediments of River Ogbese, Ondo State, Nigeria
Authors: O. O. Olawusi-Peters, O. E. Aguda, F. O. Okoye
Abstract:
Investigations on the accumulation of heavy metals in water and sediments of River Ogbese were carried out between December 2010 and February 2011 using Atomic Absorption Spectrophotometer. Etheria elliptica a sessile organism was also used to determine the concentration of heavy metal in the aquatic environmental. In water, Cu had the highest concentration (0.55–0.13 mg/l ±0.1) while in sediments, the highest value obtained was in Fe (1.46-3.89mg/l±0.27). The minimum concentrations recorded were in Pb; which was below detectable level. The result also revealed that the shell accumulated more heavy metals than the flesh of the mussel with Cu in the shell exhibiting a negative correlation with all the metals in the flesh. However, the condition factor (K) value is 6.44, an indication of good health. The length-weight relationship is expressed as W=-0.48xL 1.94 (r2=0.29) showing the growth pattern to be negatively allometric.Keywords: condition factor, Etheria elliptica, heavy metals, River Ogbese
Procedia PDF Downloads 4773424 Heavy Metal Reduction in Plant Using Soil Amendment
Authors: C. Chaiyaraksa, T. Khamko
Abstract:
This study investigated the influence of limestone and sepiolite on heavy metals accumulation in the soil and soybean. The soil was synthesized to contaminate with zinc 150 mg/kg, copper 100 mg/kg, and cadmium 1 mg/kg. The contaminated soil was mixed with limestone and sepiolite at the ratio of 1:0, 0:1, 1:1, and 2:1. The amount of soil modifier added to soil was 0.2%, 0.4%, and 0.8%. The metals determination was performed on soil both before and after soybean planting and in the root, shoot, and seed of soybean after harvesting. The study was also on metal translocate from root to seed and on bioaccumulation factor. Using of limestone and sepiolite resulted in a reduction of metals accumulated in soybean. For soil containing a high concentration of copper, cadmium, and zinc, a mixture of limestone and sepiolite (1:1) was recommended to mix with soil with the amount of 0.2%. Zinc could translocate from root to seed more than copper, and cadmium. From studying the movement of metals from soil to accumulate in soybean, the result was that soybean could absorb the highest amount of cadmium, followed by zinc, and copper, respectively.Keywords: heavy metals, limestone, sepiolite, soil, soybean
Procedia PDF Downloads 1543423 Removal of Heavy Metal from Wastewater using Bio-Adsorbent
Authors: Rakesh Namdeti
Abstract:
The liquid waste-wastewater- is essentially the water supply of the community after it has been used in a variety of applications. In recent years, heavy metal concentrations, besides other pollutants, have increased to reach dangerous levels for the living environment in many regions. Among the heavy metals, Lead has the most damaging effects on human health. It can enter the human body through the uptake of food (65%), water (20%), and air (15%). In this background, certain low-cost and easily available biosorbent was used and reported in this study. The scope of the present study is to remove Lead from its aqueous solution using Olea EuropaeaResin as biosorbent. The results showed that the biosorption capacity of Olea EuropaeaResin biosorbent was more for Lead removal. The Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich (D-R) models were used to describe the biosorption equilibrium of Lead Olea EuropaeaResin biosorbent, and the biosorption followed the Langmuir isotherm. The kinetic models showed that the pseudo-second-order rate expression was found to represent well the biosorption data for the biosorbent.Keywords: novel biosorbent, central composite design, Lead, isotherms, kinetics
Procedia PDF Downloads 783422 Physiochemical Analysis of Ground Water in Zaria, Kaduna state, Nigeria
Authors: E. D. Paul, F. G. Okibe, C. E. Gimba, S. Yakubu
Abstract:
Some physicochemical characteristics and heavy metal concentrations of water samples collected from ten boreholes in Samaru, Zaria, Kaduna state, Nigeria were analysed in order to assess the drinking water quality. Physicochemical parameters were determined using classical methods while the heavy metals were determined using Atomic Absorption Spectrometry. Results of the analysis obtained were as follows: Temperature 29 – 310C, pH 5.74 – 6.19, Electrical conductivity 3.21 – 7.54 µs, DO 0.51 – 1.00 mg/L, BOD 0.0001 – 0.006 mg/L, COD 160 – 260 mg/L, TDS 2.08 – 4.55 mg/L, Total Hardness 97.44 – 401.36 mg/L CaCO3, and Chloride 0.97 – 59.12 mg/L. Concentrations of heavy metals were in the range; Zinc 0.000 – 0.7568 mg/L, Lead 0.000 – 0.070 mg/L and Cadmium 0.000 – 0.009 mg/L. The implications of these findings are discussed.Keywords: ground water, water quality, heavy metals, Atomic Absorption Spectrometry (AAS)
Procedia PDF Downloads 5333421 Metal Binding Phage Clones in a Quest for Heavy Metal Recovery from Water
Authors: Tomasz Łęga, Marta Sosnowska, Mirosława Panasiuk, Lilit Hovhannisyan, Beata Gromadzka, Marcin Olszewski, Sabina Zoledowska, Dawid Nidzworski
Abstract:
Toxic heavy metal ion contamination of industrial wastewater has recently become a significant environmental concern in many regions of the world. Although the majority of heavy metals are naturally occurring elements found on the earth's surface, anthropogenic activities such as mining and smelting, industrial production, and agricultural use of metals and metal-containing compounds are responsible for the majority of environmental contamination and human exposure. The permissible limits (ppm) for heavy metals in food, water and soil are frequently exceeded and considered hazardous to humans, other organisms, and the environment as a whole. Human exposure to highly nickel-polluted environments causes a variety of pathologic effects. In 2008, nickel received the shameful name of “Allergen of the Year” (GILLETTE 2008). According to the dermatologist, the frequency of nickel allergy is still growing, and it can’t be explained only by fashionable piercing and nickel devices used in medicine (like coronary stents and endoprostheses). Effective remediation methods for removing heavy metal ions from soil and water are becoming increasingly important. Among others, methods such as chemical precipitation, micro- and nanofiltration, membrane separation, conventional coagulation, electrodialysis, ion exchange, reverse and forward osmosis, photocatalysis and polymer or carbon nanocomposite absorbents have all been investigated so far. The importance of environmentally sustainable industrial production processes and the conservation of dwindling natural resources has highlighted the need for affordable, innovative biosorptive materials capable of recovering specific chemical elements from dilute aqueous solutions. The use of combinatorial phage display techniques for selecting and recognizing material-binding peptides with a selective affinity for any target, particularly inorganic materials, has gained considerable interest in the development of advanced bio- or nano-materials. However, due to the limitations of phage display libraries and the biopanning process, the accuracy of molecular recognition for inorganic materials remains a challenge. This study presents the isolation, identification and characterisation of metal binding phage clones that preferentially recover nickel.Keywords: Heavy metal recovery, cleaning water, phage display, nickel
Procedia PDF Downloads 993420 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment
Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan
Abstract:
MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.Keywords: bio-electrochemical, nanowires, novel, wastewater
Procedia PDF Downloads 3873419 Comparative Studies on the Concentration of Some Heavy Metal in Urban Particulate Matter, Bangkok, Thailand
Authors: Sivapan Choo-In
Abstract:
The main objective of this study was investigate particulate matter concentration on main and secondary roadside in urban area. And studied on the concentration of some heavy metal including lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in particulate matter in Bangkok area. The averaged particle concentration for main roadside are higher than secondary roadside. The particulate matter less than 10 micron concentration contribute the majority of the Total Suspended Particulate for main road and zinc concentration were higher than copper and lead for both site.Keywords: air pollution, air quality, polution, monitoring
Procedia PDF Downloads 3243418 Design and Synthesis of Copper-Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal From Waste Water
Authors: Feleke Terefe Fanta
Abstract:
Background: The existence of heavy metals and coliform bacteria contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, Ethiopia has become a public concern as human population increases and land development continues. Hence, it is the right time to design treatment technologies that can handle multiple pollutants. Results: In this study, we prepared a synthetic zeolites and copper doped zeolite composite adsorbents as cost effective and simple approach to simultaneously remove heavy metals and total coliforms from wastewater of Akaki river. The synthesized copper–zeolite X composite was obtained by ion exchange method of copper ions into zeolites frameworks. Iodine test, XRD, FTIR and autosorb IQ automated gas sorption analyzer were used to characterize the adsorbents. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. These concentrations decreased to Cd (0.005 mg/L), Cr (0.052 mg/L) and Pb (bellow detection limit, BDL) for sample treated with bare zeolite X while a further decrease in concentration of Cd (0.005 mg/L), Cr (BDL) and Pb (BDL) was observed for the sample treated with copper–zeolite composite. Zeolite X and copper-modified zeolite X showed complete elimination of total coliforms after 90 and 50 min contact time respectively. Conclusion: The results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbents. Furthermore, these sorbents are efficient in significantly reducing physical parameters such as electrical conductivity, turbidity, BOD and COD.Keywords: WASTE WATER, COPPER DOPED ZEOITE X, ADSORPITION, HEAVY METAL, DISINFECTION, AKAKI RIVER
Procedia PDF Downloads 713417 Protective Approach of Mentha Piperita against Cadmium Induced Renotoxicity in Albino Rats
Authors: Baby Tabassum, Priya Bajaj
Abstract:
Cadmium is the second most hazardous heavy metal occurring in both elemental as well as compound forms. It is a highly toxic metal with a very high bio-concentration factor (BCF>100). WHO permitted groundwater cadmium concentration is 0.005 mg/L only, but reality is far away from this limit. A number of natural and anthropogenic industrial activities contribute to the spread of cadmium into the environment. The present study had been designated to find out the renal changes at functional level after cadmium intoxication and protection against these changes offered by Mentha piperata. For the purpose, albino rats were selected as the model organism. Cadmium significantly increases the serum level of serum proteins and nitrogenous wastes showing reduced filtration rate of kidneys. Pretreatment with Mentha piperata leaf extract causes significant retention of these levels to normalcy. These findings conclude that Cadmium exposure affects renal functioning but Mentha could prevent it, proving its nephro-protective potential against heavy metal toxicity.Keywords: albino rat, cadmium, Mentha piperata, nephrotoxicity
Procedia PDF Downloads 3993416 Effect of Salinity and Heavy Metal Toxicity on Gene Expression, and Morphological Characteristics in Stevia rebaudiana Plants
Authors: Umara Nissar Rafiqi, Irum Gul, Nazima Nasrullah, Monica Saifi, Malik Z. Abdin
Abstract:
Background: Stevia rebaudiana, a member of Asteraceae family is an important medicinal plant and produces a commercially used non-caloric natural sweetener, which is also an alternate herbal cure for diabetes. Steviol glycosides are the main sweetening compounds present in these plants. Secondary metabolites are crucial to the adaption of plants to the environment and its overcoming stress conditions. In agricultural procedures, the abiotic stresses like salinity, high metal toxicity and drought, in particular, are responsible for the majority of the reduction that differentiates yield potential from harvestable yield. Salt stress and heavy metal toxicity lead to increased production of reactive oxygen species (ROS). To avoid oxidative damage due to ROS and osmotic stress, plants have a system of anti-oxidant enzymes along with several stress induced enzymes. This helps in scavenging the ROS and relieve the osmotic stress in different cell compartments. However, whether stress induced toxicity modulates the activity of these enzymes in Stevia rebaudiana is poorly understood. Aim: The present study focussed on the effect of salinity, heavy metal toxicity (lead and mercury) on physiological traits and transcriptional profiling of Stevia rebaudiana. Method: Stevia rebaudiana plants were collected from the Central Institute of Medicinal and Aromatic plants (CIMAP), Patnagar, India and maintained under controlled conditions in a greenhouse at Hamdard University, Delhi, India. The plants were subjected to different concentrations of salt (0, 25, 50 and 75 mM respectively) and heavy metals, lead and mercury (0, 100, 200 and 300 µM respectively). The physiological traits such as shoot length, root numbers, leaf growth were evaluated. The samples were collected at different developmental stages and analysed for transcription profiling by RT-PCR. Transcriptional studies in stevia rebaudiana involves important antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), cytochrome P450 monooxygenase (CYP) and stress induced aquaporin (AQU), auxin repressed protein (ARP-1), Ndhc gene. The data was analysed using GraphPad Prism and expressed as mean ± SD. Result: Low salinity and lower metal toxicity did not affect the fresh weight of the plant. However, this was substantially decreased by 55% at high salinity and heavy metal treatment. With increasing salinity and heavy metal toxicity, the values of all studied physiological traits were significantly decreased. Chlorosis in treated plants was also observed which could be due to changes in Fe:Zn ratio. At low concentrations (upto 25 mM) of NaCl and heavy metals, we did not observe any significant difference in the gene expressions of treated plants compared to control plants. Interestingly, at high salt concentration and high metal toxicity, a significant increase in the expression profile of stress induced genes was observed in treated plants compared to control (p < 0.005). Conclusion: Stevia rebaudiana is tolerant to lower salt and heavy metal concentration. This study also suggests that with the increase in concentrations of salt and heavy metals, harvest yield of S. rebaudiana was hampered.Keywords: Stevia rebaudiana, natural sweetener, salinity, heavy metal toxicity
Procedia PDF Downloads 1963415 Bio-Estimation of Selected Heavy Metals in Shellfish and Their Surrounding Environmental Media
Authors: Ebeed A. Saleh, Kadry M. Sadek, Safaa H. Ghorbal
Abstract:
Due to the determination of the pollution status of fresh resources in the Egyptian territorial waters is very important for public health, this study was carried out to reveal the levels of heavy metals in the shellfish and their environment and its relation to the highly developed industrial activities in those areas. A total of 100 shellfish samples from the Rosetta, Edku, El-Maadiya, Abo-Kir and El-Max coasts [10 crustaceans (shrimp) and 10 mollusks (oysters)] were randomly collected from each coast. Additionally, 10 samples from both the water and the sediment were collected from each coast. Each collected sample was analyzed for cadmium, chromium, copper, lead and zinc residues using a Perkin Elmer atomic absorption spectrophotometer (AAS). The results showed that the levels of heavy metals were higher in the water and sediment from Abo-Kir. The heavy metal levels decreased successively for the Rosetta, Edku, El-Maadiya, and El-Max coasts, and the concentrations of heavy metals, except copper and zinc, in shellfish exhibited the same pattern. For the concentration of heavy metals in shellfish tissue, the highest was zinc and the concentrations decreased successively for copper, lead, chromium and cadmium for all coasts, except the Abo-Kir coast, where the chromium level was highest and the other metals decreased successively for zinc, copper, lead and cadmium. In Rosetta, chromium was higher only in the mollusks, while the level of this metal was lower in the crustaceans; this trend was observed at the Edku, El-Maadiya and El-Max coasts as well. Herein, we discuss the importance of such contamination for public health and the sources of shellfish contamination with heavy metals. We suggest measures to minimize and prevent these pollutants in the aquatic environment and, furthermore, how to protect humans from excessive intake.Keywords: atomic absorption, heavy metals, sediment, shellfish, water
Procedia PDF Downloads 3193414 Potential of Sunflower (Helianthus annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals
Authors: Violina R. Angelova, Mariana N. Perifanova-Nemska, Galina P. Uzunova, Krasimir I. Ivanov, Huu Q. Lee
Abstract:
A field study was conducted to evaluate the efficacy of the sunflower (Helianthus annuus L.) for phytoremediation of contaminated soils. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with a randomized, complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vemicompost amendments added at 20 and 40 t/daa) were carried out. The accumulation of heavy metals in the sunflower plant and the quality of the sunflower oil (heavy metals and fatty acid composition) were determined. The tested organic amendments significantly influenced the uptake of Pb, Zn and Cd by the sunflower plant. The incorporation of 40 t/decare of compost and 20 t/decare of vermicompost to the soil led to an increase in the ability of the sunflower to take up and accumulate Cd, Pb and Zn. Sunflower can be subjected to the accumulators of Pb, Zn and Cd and can be successfully used for phytoremediation of contaminated soils with heavy metals. The 40 t/daa compost treatment led to a decrease in heavy metal content in sunflower oil to below the regulated limits. Oil content and fatty acids composition were affected by compost and vermicompost amendment treatments. Adding compost and vermicompost increased the oil content in the seeds. Adding organic amendments increased the content of stearic, palmitoleic and oleic acids, and reduced the content of palmitic and gadoleic acids in sunflower oil. The possibility of further industrial processing of seeds to oil and use of the obtained oil will make sunflowers economically interesting crops for farmers of phytoremediation technology.Keywords: heavy metals, phytoremediation, polluted soils, sunflower
Procedia PDF Downloads 2333413 Consumer Health Risk Assessment from Some Heavy Metal Bioaccumulation in Common Carp (Cyprinus Carpio) from Lake Koka, Ethiopia
Authors: Mathewos Temesgen, Lemi Geleta
Abstract:
Lake Koka is one of the Ethiopian Central Rift Valleys lakes, where the absorbance of domestic, agricultural, and industrial waste from the nearby industrial and agro-industrial activities is very common. The aim of this research was to assess the heavy metal bioaccumulation in edible parts of common carp (Cyprinus carpio) in Lake Koka and the health risks associated with the dietary intake of the fish. Three sampling sites were selected randomly for primary data collection. Physicochemical parameters (pH, Total Dissolved Solids, Dissolved Oxygen and Electrical Conductivity) were measured in-situ. Four heavy metals (Cd, Cr, Pb, and Zn) in water and bio-accumulation in the edible parts of the fish were analyzed with flame atomic absorption spectrometry. The mean values of TDS, EC, DO and pH of the lake water were 458.1 mg/L, 905.7 µ s/cm, 7.36 mg/L, and 7.9, respectively. The mean concentrations of Zn, Cr, and Cd in the edible part of fish were also 0.18 mg/kg, ND-0.24 mg/kg, and ND-0.03 mg/kg, respectively. Pb was, however, not identified. The amount of Cr in the examined fish muscle was above the level set by FAO, and the accumulation of the metals showed marked differences between sampling sites (p<0.05). The concentrations of Cd, Pb and were below the maximum permissible limit. The results also indicated that Cr has a high transfer factor value and Zn has the lowest. The carcinogenic hazard ratio values were below the threshold value (<1) for the edible parts of fish. The estimated weekly intake of heavy metals from fish muscles ranked as Cr>Zn>Cd, but the values were lower than the Reference Dose limit for metals. The carcinogenic risk values indicated a low health risk due to the intake of individual metals from fish. Furthermore, the hazard index of the edible part of fish was less than unity. Generally, the water quality is not a risk for the survival and reproduction of fish, and the heavy metal contents in the edible parts of fish exhibited low carcinogenic risk through the food chain.Keywords: bio-accumulation, cyprinus carpio, hazard index, heavy metals, Lake Koka
Procedia PDF Downloads 114