Search results for: CASE technology
3469 Views of Middle-Aged Women in Malaysia towards Menopause: A Qualitative Study
Authors: Halimatus Sakdiah Minhat, Hamizah Sulaiman
Abstract:
Introduction: Old age is commonly link with menopause among women. The main purpose of this study is to explore the views of middle-aged women and its association with menopause. Methods: Qualitative interviews in the form of focus group discussions (FGD) were conducted among women aged between 35 and 59 years old living in urban localities in two different states in Malaysia. Selection of respondents were conducted using the maximum variation sampling, focussing on five age categories which are between 35 to 39, 40 to 44, 45 to 49, 50 to 54 and 55 to 59 years old. Each FGD involved 5 to 7 respondents and lasted for 1 to 2 hours each. The content of the interviews were recorded, transcribed verbatim after each interview before the next focus group discussion is conducted. Field notes of reflexive observations were recorded by the rapporteur. Individual transcripts were analysed using standard methods of qualitative thematic analysis. The material was read through twice and later coded. The codes were further collapsed into several key themes related to perceptions towards menopause among the respondents. Results: A total number of 36 middle-aged women were consented for the interviews. The contents of the interviews revealed that younger women tend to associate menopause with being old, which were dominated by the younger aged categories of less than 50 years old. Majority of the respondents linked menopause with end of woman’s reproductive capacity or inability to give birth, lethargic or endless feeling of tiredness and insomnia, emotional instability or having more sensitive feelings and also the beginning of many health problems such as osteoarthritis which they perceived very synonyms with being old. Conclusion: The findings of this study indirectly reflect the negative views towards menopause among the middle-aged women in Malaysia. Being residents in the urban areas equipped with advanced technology and health information, do not exclude them from having negative views about menopause. However, this is a qualitative study which only focussing on age ranges, regardless of their socioeconomic and demographic background, which make further studies on related issues are necessaries. The fact that it was a qualitative interview, the findings could not be generalised and only specific to the targeted population.Keywords: Menopause, Middle-aged women, old, Malaysia
Procedia PDF Downloads 2963468 Information Tree: Establishment of Lifestyle-Based IT Visual Model
Authors: Chiung-Hui Chen
Abstract:
Traditional service channel is losing its edge due to emerging service technology. To establish interaction with the clients, the service industry is using effective mechanism to give clients direct access to services with emerging technologies. Thus, as service science receives attention, special and unique consumption pattern evolves; henceforth, leading to new market mechanism and influencing attitudes toward life and consumption patterns. The market demand for customized services is thus valued due to the emphasis of personal value, and is gradually changing the demand and supply relationship in the traditional industry. In respect of interior design service, in the process of traditional interior design, a designer converts to a concrete form the concept generated from the ideas and needs dictated by a user (client), by using his/her professional knowledge and drawing tool. The final product is generated through iterations of communication and modification, which is a very time-consuming process. Although this process has been accelerated with the help of computer graphics software today, repeated discussions and confirmations with users are still required to complete the task. In consideration of what is addressed above a space user’s life model is analyzed with visualization technique to create an interaction system modeled after interior design knowledge. The space user document intuitively personal life experience in a model requirement chart, allowing a researcher to analyze interrelation between analysis documents, identify the logic and the substance of data conversion. The repeated data which is documented are then transformed into design information for reuse and sharing. A professional interior designer may sort out the correlation among user’s preference, life pattern and design specification, thus deciding the critical design elements in the process of service design.Keywords: information design, life model-based, aesthetic computing, communication
Procedia PDF Downloads 3023467 Electrochemistry Analysis of Oxygen Reduction with Microalgal on Microbial Fuel Cell
Authors: Azri Yamina Mounia, Zitouni Dalila, Aziza Majda, Tou Insaf, Sadi Meriem
Abstract:
To confront the fossil fuel crisis and the consequences of global warning, many efforts were devoted to develop alternative electricity generation and attracted numerous researchers, especially in the microbial fuel cell field, because it allows generating electric energy and degrading multiple organics compounds at the same time. However, one of the main constraints on power generation is the slow rate of oxygen reduction at the cathode electrode. This paper describes the potential of algal biomass (Chlorella vulgaris) as photosynthetic cathodes, eliminating the need for a mechanical air supply and the use of often expensive noble metal cathode catalysts, thus improving the sustainability and cost-effectiveness of the MFC system. During polarizations, MFC power density using algal biomass was 0.4mW/m², whereas the MFC with mechanic aeration showed a value of 0.2mW/m². Chlorella vulgaris was chosen due to its fastest growing. C. vulgaris grown in BG11 medium in sterilized Erlenmeyer flask. C. vulgaris was used as a bio‐cathode. Anaerobic activated sludge from the plant of Beni‐Messous WWTP(Algiers) was used in an anodic compartment. A dual‐chamber reactor MFC was used as a reactor. The reactor has been fabricated in the laboratory using plastic jars. The cylindrical and rectangular jars were used as the anode and cathode chambers, respectively. The volume of anode and cathode chambers was 0.8 and 2L, respectively. The two chambers were connected with a proton exchange membrane (PEM). The plain graphite plates (5 x 2cm) were used as electrodes for both anode and cathode. The cyclic voltammetry analysis of oxygen reduction revealed that the cathode potential was proportional to the amount of oxygen available in the cathode surface electrode. In the case of algal aeration, the peak reduction value of -2.18A/m² was two times higher than in mechanical aeration -1.85A/m². The electricity production reached 70 mA/m² and was stimulated immediately by the oxygen produced by algae up to the value of 20 mg/L.Keywords: Chlorella vulgaris, cyclic voltammetry, microbial fuel cell, oxygen reduction
Procedia PDF Downloads 673466 Dependency on Social Media and Psychological Well-Being among Young Adults: Case Study of University Students in Pakistan
Authors: Ghazala Yasmeen, Zahid Yousaf
Abstract:
Frequent social media use has significantly changed people's life and communication styles during the last two decades. Social media use has multiple dimensions, and there are nuanced relationships between it and how it affects different societal subgroups. With the increased popularity and rapid growth of social networking sites, people are experiencing potential social media addiction, which causes severe mental health problems. How social media is dramatically influencing the lives and mental health of its users, and particularly of the students, creating psychological issues, e.g., isolation, depression, and anxiety, will be the primary objective of this study. This research will address the problems confronted by many students who are regular social media users and can undergo mental distress. This study aims to explore how social media use can lead to isolation, depression, and anxiety. This research will also investigate the effects of cyber-bullying on social, emotional, and psychological wellbeing. For this purpose, the researcher will use the survey technique as a method of inquiry. Ryff's theory of Psychological wellbeing will be used as a theoretical framework to explore the association between social media addiction and psychological effects among users. For data collection, the researcher will use the quantitative research method through a survey questionnaire from three universities in Pakistan from the public and private sectors. This study will imply a two-stage random sampling technique. At first, the researcher will select 20% of students from universities. In the second stage, 20% of students using different social networking sites will be chosen, and draw a representative sample from these will be. The intended study will use questionnaires comprising two portions. The first section will consist of social media engagement by the students, following impacts on their mental health and reported attitude towards psychological wellbeing. This study will spotlight the considerations of parents, educationists, and policymakers to take measures against the devastating effects of cyber-crimes on young adults.Keywords: anxiety, depression, isolation, social media, wellbeing
Procedia PDF Downloads 843465 Numerical Investigation on the Effect of Aluminium Nanoparticles on Characteristic Velocity of Kerosene-Oxygen Combustion
Authors: Al Ameen H., Rakesh P.
Abstract:
To improve the combustion efficiency of fuels and to reduce the emissions of pollutants as well as to improve heat transfer characteristics of fuels, both non-metallic and metallic nanoparticles can be added into it. By varying the concentration and size of nano particles added into the fuels, behaviour of droplet combustion and hence heat generated can be altered. In case of solid or liquid fuels, surface area of the fuel in contact with oxidizer(gaseous) is small because of higher density compared to gases. If the surface area of fuel exposed to the oxidizer is very small, then the combustion will not occur, because the combustion rate is proportional to the surface area of fuel droplet. To avoid such instance there is a way to increase the exposed surface area. To increase the specific surface area available for reaction, the particle size can be reduced. If the additives are solid then by reducing the particles size the specific surface area of liquid fuel can be increased. For the liquid fuels the exposed surface area available for combustion can be increased by suspending nanoparticles. Addition of non-metallic and metallic nanoparticles in fuels improves its combustion efficiency by enhancing the thermo-physical properties. The burn rate constants and temperatures of Kerosene-Oxygen combustion for fuel droplet sizes of 50μm, 75μm, 100μm and 125μm under varying concentrations of 25%, 50%, 75% and 100% are studied numerically and its characteristic velocities are determined. Later the burn rate constants of fuel with concentrations of 0.5%, 1.0% and 2.0% by weight of aluminium nanoparticles are added. The spray combustion characteristics of such nano-fuel has improved the combustion temperature by the addition of aluminium nanoparticles. Thus, aluminium nanoparticles have improved burn rate and characteristic velocity of Kerosene-Oxygen combustion. An increase of 40% in characteristic velocity is observed.Keywords: burn rate, characteristic velocity, combustion, thermo-physical properties
Procedia PDF Downloads 993464 An Assessment on Socio-Economic Impacts of Smallholder Eucalyptus Tree Plantation in the Case of Northwest Ethiopia
Authors: Mersha Tewodros Getnet, Mengistu Ketema, Bamlaku Alemu, Girma Demilew
Abstract:
The availability of forest products determines the possibilities for forest-based livelihood options. Plantation forest is a widespread economic activity in highland areas of the Amhara regional state, owing primarily to degradation and limited access to natural forests. As a result, tree plantation has become one of the rural livelihood options in the area. Therefore, given the increasing importance of smallholder plantations in highland areas of Amhara Regional States, the aim of this research was to evaluate the extent of smallholder plantations and their socio-economic impact. To address the abovementioned research, a sequential embedded mixed research design was employed. This qualitative and quantitative information was gathered from both primary and secondary sources. Primary data were collected from 385 sample households, which were chosen using a three-stage, multi-stage sampling method based on the Cochran sample size formula. Both descriptive and inferential statistics were used to analyze the data. Smallholder eucalyptus plantations in the study area were discovered to be common, and they are now part of the livelihood portfolio for meeting both household wood consumption and generating cash income. According to the PSM model's ATT results, income from selling farm forest products certainly contributes more to total household income, farm expenditure per cultivated land, and education spending than non-planter households. As a result, the government must strengthen plantation practices by prioritizing specific intervention areas while implementing measures to counteract the plantation's inequality-increasing effect through a variety of means, including progressive taxation.Keywords: smallholder plantation, Eucalyptus, propensity score matching, average treatment effect and income
Procedia PDF Downloads 1443463 Physical Properties of Rice Field Receiving Irrigation Polluted by Gold Mine Tailing: Case Study in Dharmasraya, West Sumatra, Indonesia
Authors: Yulna Yulnafatmawita, Syafrimen Yasin, Lusi Maira
Abstract:
Irrigation source is one of the factors affecting physical properties of rice field. This research was aimed to determine the impact of polluted irrigation wáter on soil physical properties of rice field. The study site was located in Koto Nan IV, Dharmasraya Regency, West Sumatra, Indonesia. The rice field was irrigated with wáter from Momongan river in which people do gold mining. The soil was sampled vertically from the top to 100 cm depth with 20 cm increment of soil profile from 2 year-fallowed rice field, as well as from the top 20 cm of cultivated rice field from the terrace-1 (the highest terrace) to terrace-5 (the lowest terrace) position. Soil samples were analysed in laboratory. For comparison, rice field receiving irrigation wáter from non-polluted source was also sampled at the top 20 cm and anaysed for the physical properties. The result showed that there was a change in soil physical properties of rice field after 9 years of getting irrigation from the river. Based on laboratory analyses, the total suspended solid (TSS) in the tailing reached 10,736 mg/L. The texture of rice field at polluted rice field (PRF) was dominated (>55%) by sand particles at the top 100 cm soil depth, and it tended to linearly decrease (R2=0.65) from the top 20 cm to 100 cm depth. Likewise, the sand particles also linearly decreased (R2=0.83), but clay particles linearly increased (R2=0.74) horizontally as the distance from the wáter input (terrace-1) was fartherst. Compared to nonpolluted rice field (NPRF), percentage of sand was higher, and clay was lower at PRF. This sandy texture of soil in PRF increased soil hydraulic conductivity (up to 19.1 times), soil bulk density (by 38%), and sharply decreased SOM (by 88.5 %), as well as soil total pore (by 22.1%) compared to the NPRF at the top 20 cm soil. The rice field was suggested to be reclaimed before reusing it. Otherwise the soil characteristics requirement, especially soil wáter retention, for rice field could not be fulfilled.Keywords: gold mine tailing, polluted irrigation, rice field, soil physical properties
Procedia PDF Downloads 2923462 Boundary Layer Control Using a Magnetic Field: A Case Study in the Framework of Ferrohydrodynamics
Authors: C. F. Alegretti, F. R. Cunha, R. G. Gontijo
Abstract:
This work investigates the effects of an applied magnetic field on the geometry-driven boundary layer detachment flow of a ferrofluid over a sudden expansion. Both constitutive equation and global magnetization equation for a ferrofluid are considered. Therefore, the proposed formulation consists in a coupled magnetic-hydrodynamic problem. Computational simulations are carried out in order to explore, not only the viability to control flow instabilities, but also to evaluate the consistency of theoretical aspects. The unidirectional sudden expansion in a ferrofluid flow is investigated numerically under the perspective of Ferrohydrodynamics in a two-dimensional domain using a Finite Differences Method. The boundary layer detachment induced by the sudden expansion results in a recirculating zone, which has been extensively studied in non-magnetic hydrodynamic problems for a wide range of Reynolds numbers. Similar investigations can be found in literature regarding the sudden expansion under the magnetohydrodynamics framework, but none considering a colloidal suspension of magnetic particles out of the superparamagnetic regime. The vorticity-stream function formulation is implemented and results in a clear coupling between the flow vorticity and its magnetization field. Our simulations indicate a systematic decay on the length of the recirculation zone as increasing physical parameters of the flow, such as the intensity of the applied field and the volume fraction of particles. The results all are discussed from a physical point of view in terms of the dynamical non-dimensional parameters. We argue that the decrease/reduction in the recirculation region of the flow is a direct consequence of the magnetic torque balancing the action of the torque produced by viscous and inertial forces of the flow. For the limit of small Reynolds and magnetic Reynolds parameters, the diffusion of vorticity balances the diffusion of the magnetic torque on the flow. These mechanics control the growth of the recirculation region.Keywords: boundary layer detachment, ferrofluid, ferrohydrodynamics, magnetization, sudden expansion
Procedia PDF Downloads 2063461 Stability Analysis of Slopes during Pile Driving
Authors: Yeganeh Attari, Gudmund Reidar Eiksund, Hans Peter Jostad
Abstract:
In Geotechnical practice, there is no standard method recognized by the industry to account for the reduction of safety factor of a slope as an effect of soil displacement and pore pressure build-up during pile installation. Pile driving disturbs causes large strains and generates excess pore pressures in a zone that can extend many diameters from the installed pile, resulting in a decrease of the shear strength of the surrounding soil. This phenomenon may cause slope failure. Moreover, dissipation of excess pore pressure set-up may cause weakening of areas outside the volume of soil remoulded during installation. Because of complex interactions between changes in mean stress and shearing, it is challenging to predict installation induced pore pressure response. Furthermore, it is a complex task to follow the rate and path of pore pressure dissipation in order to analyze slope stability. In cohesive soils it is necessary to implement soil models that account for strain softening in the analysis. In the literature, several cases of slope failure due to pile driving activities have been reported, for instance, a landslide in Gothenburg that resulted in a slope failure destroying more than thirty houses and Rigaud landslide in Quebec which resulted in loss of life. Up to now, several methods have been suggested to predict the effect of pile driving on total and effective stress, pore pressure changes and their effect on soil strength. However, this is still not well understood or agreed upon. In Norway, general approaches applied by geotechnical engineers for this problem are based on old empirical methods with little accurate theoretical background. While the limitations of such methods are discussed, this paper attempts to capture the reduction in the factor of safety of a slope during pile driving, using coupled Finite Element analysis and cavity expansion method. This is demonstrated by analyzing a case of slope failure due to pile driving in Norway.Keywords: cavity expansion method, excess pore pressure, pile driving, slope failure
Procedia PDF Downloads 1543460 Basic Business-Forces behind the Surviving and Sustainable Organizations: The Case of Medium Scale Contractors in South Africa
Authors: Iruka C. Anugwo, Winston M. Shakantu
Abstract:
The objective of this study is to uncover the basic business-forces that necessitated the survival and sustainable performance of the medium scale contractors in the South African construction market. This study is essential as it set to contribute towards long-term strategic solutions for combating the incessant failure of start-ups construction organizations within South African. The study used a qualitative research methodology; as the most appropriate approach to elicit and understand, and uncover the phenomena that are basic business-forces for the active contractors in the market. The study also adopted a phenomenological study approach; and in-depth interviews were conducted with 20 medium scale contractors in Port Elizabeth, South Africa, between months of August to October 2015. This allowed for an in-depth understanding of the critical and basic business-forces that influenced their survival and performance beyond the first five years of business operation. Findings of the study showed that for potential contractors (startups), to survival in the competitive business environment such as construction industry, they must possess the basic business-forces. These forces are educational knowledge in construction and business management related disciplines, adequate industrial experiences, competencies and capabilities to delivery excellent services and products as well as embracing the spirit of entrepreneurship. Convincingly, it can be concluded that the strategic approach to minimize the endless failure of startups construction businesses; the potential construction contractors must endeavoring to access and acquire the basic educationally knowledge, training and qualification; need to acquire industrial experiences in collaboration with required competencies, capabilities and entrepreneurship acumen. Without these basic business-forces as been discovered in this study, the majority of the contractors gaining entrance in the market will find it difficult to develop and grow a competitive and sustainable construction organization in South Africa.Keywords: basic business-forces, medium scale contractors, South Africa, sustainable organisations
Procedia PDF Downloads 2963459 Handling Damage to the Glendeng Bridge Abutment in Tuban Regency
Authors: Alfanditya Ghazanfar
Abstract:
The damage to the Glendeng Bridge on November 3, 2020, involved a landslide on the retaining wall of the approach road in the Tuban Regency area, suspected to be caused by erosion of the Bengawan Solo River. Subsequently, the bridge pillars experienced shifts, leading to the settlement of the bridge's superstructure (steel frame). This study aims to evaluate and identify the causes of abutment damage to develop a protection system to prevent future abutment failures. The methodology for this case study includes inventorying secondary data such as cone penetration test data, machine boring data, topographic measurements, and water surface elevation data, followed by data interpretation to analyze the damage. The interpretation activities include soil data, water surface elevation data, and slope stability analysis using PLAXIS software to obtain the Factor of Safety (FoS) values in evaluating the damage to the existing abutment. Based on the analysis of slope stability using PLAXIS software, it was found that in 2020, under pre-flood conditions (Low Water Level - LWL), the operational load stage yielded a minimum FoS of 1.184. After the flood, during the operational load stage, the condition was classified as "Structural Failure." The cause was soil infiltration during water levels reaching the LWL; soil submerged in floodwater experienced landslides as it became saturated upon water recession. In 2021, reinforcement efforts produced a minimum FoS of 1.097 during the construction stage due to the inability of the retaining wall foundation, placed in soft soil, to support the embankment load. The 2022 reinforcement evaluation yielded a minimum FoS of 1.8, categorized as "safe" due to rehabilitation measures, including extending the span and installing 48-meter-deep foundations to reach hard soil layers.Keywords: slope stability, abutment damage, bridge abutment, bridge
Procedia PDF Downloads 133458 Correlation of Structure and Antiviral Activity of Alkaloids of Polygonum L. Plants Growing in Kazakhstan
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina
Abstract:
Currently to treat infectious diseases bioactive substances of plant origin having fewer side effects than synthetic medicines and medicines similar to natural components of a human body by the structure and action, become very important. One of the groups of secondary metabolites of the plants - alkaloids can be related the number of the most promising sources of medicines of plant origin. Currently, the structure of more than 7500 compounds has been identified. Analyzing the scope of research in the field of chemistry, pharmacology and technology of alkaloids, we can make a conclusion about that there is no system approach during the research of relation structure-activity on different groups of these substances. It is connected not only with a complex structure of their molecules, but also with insufficient information on the nature of their effect on organs, tissues and other targets in organism. The purpose of this research was to identify pharmacophore groups in the structure of alkaloids of endemic Polygonum L. plants growing in Kazakhstan responsible for their antiviral action. To isolate alkaloids pharmacopoeian methods were used. Antiviral activity of alkaloids of Polygonum L. plants was researched in the Institute of Microbiology and Virology of the Ministry of Education and Science of the Republic of Kazakhstan. Virus-inhibiting properties of compounds were studies in experiments with ortho- and paramyxoviruses on the model of chick-embryos. Anti-viral properties were determined using ‘screening test’ method designed to neutralization of a virus at the amount of 100EID50 with set concentrations of medicines. The difference of virus titer compared to control group was deemed as the criterion of antiviral action. It has been established that Polygonum L. alkaloids has high antiviral effect to influenza and parainfluenza viruses. The analysis of correlation of the structure and antiviral activity of alkaloids allowed identifying the main pharmacophore groups, among which the most important are glycosidation, the presence of carbonyl and hydroxyl groups, molecular weight and molecular size.Keywords: alkaloids, antiviral, bioactive substances, isolation, pharmacophore groups, Polygonum L.
Procedia PDF Downloads 4413457 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films
Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz
Abstract:
Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification
Procedia PDF Downloads 3653456 Streamlining Cybersecurity Risk Assessment for Industrial Control and Automation Systems: Leveraging the National Institute of Standard and Technology’s Risk Management Framework (RMF) Using Model-Based System Engineering (MBSE)
Authors: Gampel Alexander, Mazzuchi Thomas, Sarkani Shahram
Abstract:
The cybersecurity landscape is constantly evolving, and organizations must adapt to the changing threat environment to protect their assets. The implementation of the NIST Risk Management Framework (RMF) has become critical in ensuring the security and safety of industrial control and automation systems. However, cybersecurity professionals are facing challenges in implementing RMF, leading to systems operating without authorization and being non-compliant with regulations. The current approach to RMF implementation based on business practices is limited and insufficient, leaving organizations vulnerable to cyberattacks resulting in the loss of personal consumer data and critical infrastructure details. To address these challenges, this research proposes a Model-Based Systems Engineering (MBSE) approach to implementing cybersecurity controls and assessing risk through the RMF process. The study emphasizes the need to shift to a modeling approach, which can streamline the RMF process and eliminate bloated structures that make it difficult to receive an Authorization-To-Operate (ATO). The study focuses on the practical application of MBSE in industrial control and automation systems to improve the security and safety of operations. It is concluded that MBSE can be used to solve the implementation challenges of the NIST RMF process and improve the security of industrial control and automation systems. The research suggests that MBSE provides a more effective and efficient method for implementing cybersecurity controls and assessing risk through the RMF process. The future work for this research involves exploring the broader applicability of MBSE in different industries and domains. The study suggests that the MBSE approach can be applied to other domains beyond industrial control and automation systems.Keywords: authorization-to-operate (ATO), industrial control systems (ICS), model-based system’s engineering (MBSE), risk management framework (RMF)
Procedia PDF Downloads 1063455 Role of Symbolism in the Journey towards Spirituality: A Case Study of Mosque Architecture in Bahrain
Authors: Ayesha Agha Shah
Abstract:
The purpose of a mosque or a place of worship is to build a spiritual relation with God. If the sense of spirituality is not achieved, then sacred architecture appears to be lacking depth. Form and space play a significant role to enhance the architectural quality to impart a divine feel to a place. To achieve this divine feeling, form and space, and unity of opposites, either abstract or symbolic can be employed. It is challenging to imbue the emptiness of a space with qualitative experience. Mosque architecture mostly entails traditional forms and design typology. This approach for Muslim worship produces distinct landmarks in the urban neighborhoods of Muslim societies, while creating a great sense of spirituality. The universal symbolic characters in the mosque architecture had prototype geometrical forms for a long time in history. However, modern mosques have deviated from this approach to employ different built elements and symbolism, which are often hard to be identified as related to mosques or even as Islamic. This research aims to explore the sense of spirituality in modern mosques and questions whether the modification of geometrical features produce spirituality in the same manner. The research also seeks to investigate the role of ‘geometry’ in the modern mosque architecture. The research employs the analytical study of some modern mosque examples in the Kingdom of Bahrain, reflecting on the geometry and symbolism adopted in the new mosque architecture design. It buttresses the analysis by the engagement of people’s perceptions derived using a survey of opinions. The research expects to see the significance of geometrical architectural elements in the mosque designs. It will find answers to the questions such as; what is the role of the form of the mosque, interior spaces and the effect of the modified symbolic features in the modern mosque design? How can the symbolic geometry, forms and spaces of a mosque invite a believer to leave the worldly environment behind and move towards spirituality?Keywords: geometry, mosque architecture, spirituality, symbolism
Procedia PDF Downloads 1193454 Influence of Recycled Polymer-Based Aggregates on Mechanical Properties of Polymer Concrete
Authors: Ahmet Kurklu, Abdussamed Sarp, Gokmen Arikan, Akin Eren, Arif Ulu, Ferit Cakir
Abstract:
Our natural resources are diminishing day by day with the needs of the growing world population. There is a danger that these resources will be depleted if they are not used in a controlled manner. As a result of the rapid increase in the consumption of limited natural resources, one of the issues where studies have gained importance is recycling. Many countries have carried out various research and development activities on recycling and reuse to prevent wastage of resources. For sustainable and healthy living, the limited amount of raw material resources in nature should be consumed consciously, and the necessary awareness should be given for recycling activities. One of the sectors where the consumption of raw materials is high is the construction sector. With the changing consumption habits of the evolving technology in the construction sector, the need to use special concrete along with the normal concrete has arisen. With the increasing need for specialty concretes, polymer concrete, which was discovered in the early 1900s, has evolved to the present day. Polymer concretes are special concretes with high strength, water impermeability, resistance to chemical action, and low surface roughness. Thanks to these properties, they find wide applications in many fields such as swimming pools, drainage systems, repair works. In the study, the effect of using recycled aggregates instead of natural aggregates in the production of polymer concrete on the performance of polymer concrete is investigated. In the experiments conducted for this purpose, the use of natural aggregate is reduced at certain rates, and instead, recycled aggregate is added at the same rate. The recycled aggregate to be used in the study is obtained from the polymer concrete drainage channel production facility of Mert Casting Co., Istanbul, Turkey. In order to clearly observe the effect of recycled materials on the product in the study, the other components (resin, hardener, accelerator, and additive) are kept constant in the concrete mix. In the study, fresh and hardened concrete tests are to be carried out on the mixes to be prepared.Keywords: concrete, mechanical properties, polymer concrete, recycle aggregate
Procedia PDF Downloads 1483453 Sociolinguistic and Classroom Functions of Using Code-Switching in CLIL Context
Authors: Khatuna Buskivadze
Abstract:
The aim of the present study is to investigate the sociolinguistic and classroom functions and frequency of Teacher’s Code Switching (CS) in the Content and Language Integrated (CLIL) Lesson. Nowadays, Georgian society struggles to become the part of the European world, the English language itself plays a role in forming new generations with European values. Based on our research conducted in 2019, out of all 114 private schools in Tbilisi, full- programs of CLIL are taught in 7 schools, while only some subjects using CLIL are conducted in 3 schools. The goal of the former research was to define the features of Content and Language Integrated learning (CLIL) methodology within the process of teaching English on the Example of Georgian private high schools. Taking the Georgian reality and cultural features into account, the modified version of the questionnaire, based on the classification of using CS in ESL Classroom proposed By Ferguson (2009) was used. The qualitative research revealed students’ and teacher’s attitudes towards teacher’s code-switching in CLIL lesson. Both qualitative and quantitative research were conducted: the observations of the teacher’s lessons (Recording of T’s online lessons), interview and the questionnaire among Math’s T’s 20 high school students. We came to the several conclusions, some of them are given here: Math’s teacher’s CS behavior mostly serves (1) the conversational function of interjection; (2) the classroom functions of introducing unfamiliar materials and topics, explaining difficult concepts, maintaining classroom discipline and the structure of the lesson; The teacher and 13 students have negative attitudes towards using only Georgian in teaching Math. The higher level of English is the more negative is attitude towards using Georgian in the classroom. Although all the students were Georgian, their competence in English is higher than in Georgian, therefore they consider English as an inseparable part of their identities. The overall results of the case study of teaching Math (Educational discourse) in one of the private schools in Tbilisi will be presented at the conference.Keywords: attitudes, bilingualism, code-switching, CLIL, conversation analysis, interactional sociolinguistics.
Procedia PDF Downloads 1663452 Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production
Authors: Mohammed W. Abdulrahman
Abstract:
The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 oC. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.Keywords: sustainable energy, clean energy, Cu-Cl cycle, heat transfer, hydrogen, oxygen
Procedia PDF Downloads 3023451 Attitudes of Grade School and Kindergarten Teachers towards the Implementation of Mother-Tongue Based Language in Education
Authors: Irene Guatno Toribio
Abstract:
This study purported to determine and describe the attitudes of grade school and kindergarten teachers in District I, Division of City Schools in Parañaque towards the implementation of mother tongue-based multilingual education instruction. Employing a descriptive method of research, this study specifically looked into the attitudes of the participants towards the implementation of mother tongue-based language in terms of curricular content, teaching methods, instructional materials used, and administrative support. A total of nineteen teachers, eight (8) of which were kindergarten teachers and eleven (11) were grade one teachers. A self-made survey questionnaire was developed by the researcher and validated by the experts. This constituted the main instrument in gathering the needed data and information relative to the major concern of the study, which were analyzed and interpreted through the use of descriptive statistics. The findings of this study revealed that grade one and kindergarten teachers have a positive attitude towards the integration and inclusion of mother-tongue based language in the curriculum. In terms of suggested teaching methods, the kindergarten teacher’s attitude towards the use of storytelling and interactive activities is highly positive, while two groups of teachers both recommend the use of big books and painting kit as an instructional materials. While the kindergarten teachers would tend to cling on the use of big books, this was not the case for grade school teachers who would rather go for the use of painting kit which was not favored by the kindergarten teachers. Finally, in terms of administrative support, the grade one teacher is very satisfied when it comes to the support of their school administrator. While the kindergarten teachers has developed the feeling that the school administration has failed to give them enough materials in their activities, the grade school teachers, on the other hand, have developed the feeling that the same school administration might have failed to strictly evaluate the kindergarten teachers. Based on the findings of this study, it is recommended that the school administration must provide seminars to teachers to better equip them with the needed knowledge and competencies in implementing the Mother-Tongue Based, Multilingual Education (MTB-MLE).Keywords: attitude, grade school, kindergarten teachers, mother-tongue
Procedia PDF Downloads 3243450 Scheduling Residential Daily Energy Consumption Using Bi-criteria Optimization Methods
Authors: Li-hsing Shih, Tzu-hsun Yen
Abstract:
Because of the long-term commitment to net zero carbon emission, utility companies include more renewable energy supply, which generates electricity with time and weather restrictions. This leads to time-of-use electricity pricing to reflect the actual cost of energy supply. From an end-user point of view, better residential energy management is needed to incorporate the time-of-use prices and assist end users in scheduling their daily use of electricity. This study uses bi-criteria optimization methods to schedule daily energy consumption by minimizing the electricity cost and maximizing the comfort of end users. Different from most previous research, this study schedules users’ activities rather than household appliances to have better measures of users’ comfort/satisfaction. The relation between each activity and the use of different appliances could be defined by users. The comfort level is at the highest when the time and duration of an activity completely meet the user’s expectation, and the comfort level decreases when the time and duration do not meet expectations. A questionnaire survey was conducted to collect data for establishing regression models that describe users’ comfort levels when the execution time and duration of activities are different from user expectations. Six regression models representing the comfort levels for six types of activities were established using the responses to the questionnaire survey. A computer program is developed to evaluate electricity cost and the comfort level for each feasible schedule and then find the non-dominated schedules. The Epsilon constraint method is used to find the optimal schedule out of the non-dominated schedules. A hypothetical case is presented to demonstrate the effectiveness of the proposed approach and the computer program. Using the program, users can obtain the optimal schedule of daily energy consumption by inputting the intended time and duration of activities and the given time-of-use electricity prices.Keywords: bi-criteria optimization, energy consumption, time-of-use price, scheduling
Procedia PDF Downloads 653449 Implementation and Challenges of Assessment Methods in the Case of Physical Education Class in Some Selected Preparatory Schools of Kirkos Sub-City
Authors: Kibreab Alene Fenite
Abstract:
The purpose of this study is to investigate the implementation and challenges of different assessment methods for physical education class in some selected preparatory schools of kirkos sub city. The participants in this study are teachers, students, department heads and school principals from 4 selected schools. Of the total 8 schools offering in kirkos sub city 4 schools (Dandi Boru, Abiyot Kirse, Assay, and Adey Ababa) are selected by using simple random sampling techniques and from these schools all (100%) of teachers, 100% of department heads and school principals are taken as a sample as their number is manageable. From the total 2520 students, 252 (10%) of students are selected using simple random sampling. Accordingly, 13 teachers, 252 students, 4 department heads and 4 school principals are taken as a sample from the 4 selected schools purposefully. As a method of data gathering tools; questionnaire and interview are employed. To analyze the collected data, both quantitative and qualitative methods are used. The result of the study revealed that assessment in physical education does not implement properly: lack of sufficient materials, inadequate time allotment, large class size, and lack of collaboration and working together of teachers towards assessing the performance of students, absence of guidelines to assess the physical education subject, no different assessment method that is implementing on students with disabilities in line with their special need are found as major challenges in implementing the current assessment method of physical education. To overcome these problems the following recommendations have been forwarded. These are: the necessary facilities and equipment should be available; In order to make reliable, accurate, objective and relevant assessment, teachers of physical education should be familiarized with different assessment techniques; Physical education assessment guidelines should be prepared, and guidelines should include different types of assessment methods; qualified teachers should be employed, and different teaching room must be build.Keywords: assessment, challenges, equipment, guidelines, implementation, performance
Procedia PDF Downloads 2853448 The Impact of Gender Difference on Crop Productivity: The Case of Decha Woreda, Ethiopia
Authors: Getinet Gezahegn Gebre
Abstract:
The study examined the impact of gender differences on Crop productivity in Decha woreda of south west Kafa zone, located 140 Km from Jimma Town and 460 km south west of Addis Ababa, between Bonga town and Omo River. The specific objectives were to assess the extent to which the agricultural production system is gender oriented, to examine access and control over productive resources, and to estimate men’s and women’s productivity in agriculture. Cross-sectional data collected from a total of 140 respondents were used in this study, whereby 65 were female headed and 75 were male headed households. The data were analyzed by using Statistical Package for Social Science (SPSS). Descriptive statistics such as frequency, mean, percentage, t-test, and chi-square were used to summarize and compare the information between the two groups. Moreover, Cobb-Douglas(CD) production function was to estimate the productivity difference in agriculture between male and female headed households. Results of the study showed that male headed households (MHH) own more productive resources such as land, livestock, labor, and other agricultural inputs as compared to female headed households (FHH). Moreover, the estimate of CD production function shows that livestock, herbicide use, land size, and male labor were statistically significant for MHH, while livestock, land size, herbicides use and female labor were significant variables for FHH. The crop productivity difference between MHH and FHH was about 68.83% in the study area. However, if FHH had equal access to the inputs as MHH, the gross value of the output would be higher by 23.58% for FHH. This might suggest that FHH would be more productive than MHH if they had equal access to inputs as MHH. Based on the results obtained, the following policy implication can be drawn: accessing FHH to inputs that increase the productivity of agriculture, such as herbicides, livestock, and male labor; increasing the productivity of land; and introducing technologies that reduce the time and energy of women, especially for inset processing.Keywords: gender difference, crop, productivity, efficiency
Procedia PDF Downloads 1023447 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production: A Cost-Minimization Approach
Authors: Yoftahe Nigussie Worku
Abstract:
This report unveils a meticulous project focused on the design intricacies of a Fire Tube Boiler tailored for the efficient generation of saturated steam. The overarching objective is to produce 2000kg/h of saturated steam at 12-bar design pressure, achieved through the development of an advanced fire tube boiler. This design is meticulously crafted to harmonize cost-effectiveness and parameter refinement, with a keen emphasis on material selection for component parts, construction materials, and production methods throughout the analytical phases. The analytical process involves iterative calculations, utilizing pertinent formulas to optimize design parameters, including the selection of tube diameters and overall heat transfer coefficients. The boiler configuration incorporates two passes, a strategic choice influenced by tube and shell size considerations. The utilization of heavy oil fuel no. 6, with a higher heating value of 44000kJ/kg and a lower heating value of 41300kJ/kg, results in a fuel consumption of 140.37kg/hr. The boiler achieves an impressive heat output of 1610kW with an efficiency rating of 85.25%. The fluid flow pattern within the boiler adopts a cross-flow arrangement strategically chosen for inherent advantages. Internally, the welding of the tube sheet to the shell, secured by gaskets and welds, ensures structural integrity. The shell design adheres to European Standard code sections for pressure vessels, encompassing considerations for weight, supplementary accessories (lifting lugs, openings, ends, manhole), and detailed assembly drawings. This research represents a significant stride in optimizing fire tube boiler technology, balancing efficiency and safety considerations in the pursuit of enhanced saturated steam production.Keywords: fire tube, saturated steam, material selection, efficiency
Procedia PDF Downloads 873446 Fusion of Finger Inner Knuckle Print and Hand Geometry Features to Enhance the Performance of Biometric Verification System
Authors: M. L. Anitha, K. A. Radhakrishna Rao
Abstract:
With the advent of modern computing technology, there is an increased demand for developing recognition systems that have the capability of verifying the identity of individuals. Recognition systems are required by several civilian and commercial applications for providing access to secured resources. Traditional recognition systems which are based on physical identities are not sufficiently reliable to satisfy the security requirements due to the use of several advances of forgery and identity impersonation methods. Recognizing individuals based on his/her unique physiological characteristics known as biometric traits is a reliable technique, since these traits are not transferable and they cannot be stolen or lost. Since the performance of biometric based recognition system depends on the particular trait that is utilized, the present work proposes a fusion approach which combines Inner knuckle print (IKP) trait of the middle, ring and index fingers with the geometrical features of hand. The hand image captured from a digital camera is preprocessed to find finger IKP as region of interest (ROI) and hand geometry features. Geometrical features are represented as the distances between different key points and IKP features are extracted by applying local binary pattern descriptor on the IKP ROI. The decision level AND fusion was adopted, which has shown improvement in performance of the combined scheme. The proposed approach is tested on the database collected at our institute. Proposed approach is of significance since both hand geometry and IKP features can be extracted from the palm region of the hand. The fusion of these features yields a false acceptance rate of 0.75%, false rejection rate of 0.86% for verification tests conducted, which is less when compared to the results obtained using individual traits. The results obtained confirm the usefulness of proposed approach and suitability of the selected features for developing biometric based recognition system based on features from palmar region of hand.Keywords: biometrics, hand geometry features, inner knuckle print, recognition
Procedia PDF Downloads 2243445 Optimal MRO Process Scheduling with Rotable Inventory to Minimize Total Earliness
Authors: Murat Erkoc, Kadir Ertogral
Abstract:
Maintenance, repair and overhauling (MRO) of high cost equipment used in many industries such as transportation, military and construction are typically subject to regulations set by local governments or international agencies. Aircrafts are prime examples for this kind of equipment. Such equipment must be overhauled at certain intervals for continuing permission of use. As such, the overhaul must be completed by strict deadlines, which often times cannot be exceeded. Due to the fact that the overhaul is typically a long process, MRO companies carry so called rotable inventory for exchange of expensive modules in the overhaul process of the equipment so that the equipment continue its services with minimal interruption. The extracted module is overhauled and returned back to the inventory for future exchange, hence the name rotable inventory. However, since the rotable inventory and overhaul capacity are limited, it may be necessary to carry out some of the exchanges earlier than their deadlines in order to produce a feasible overhaul schedule. An early exchange results with a decrease in the equipment’s cycle time in between overhauls and as such, is not desired by the equipment operators. This study introduces an integer programming model for the optimal overhaul and exchange scheduling. We assume that there is certain number of rotables at hand at the beginning of the planning horizon for a single type module and there are multiple demands with known deadlines for the exchange of the modules. We consider an MRO system with identical parallel processing lines. The model minimizes total earliness by generating optimal overhaul start times for rotables on parallel processing lines and exchange timetables for orders. We develop a fast exact solution algorithm for the model. The algorithm employs full-delay scheduling approach with backward allocation and can easily be used for overhaul scheduling problems in various MRO settings with modular rotable items. The proposed procedure is demonstrated by a case study from the aerospace industry.Keywords: rotable inventory, full-delay scheduling, maintenance, overhaul, total earliness
Procedia PDF Downloads 5483444 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes
Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje
Abstract:
The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR
Procedia PDF Downloads 1613443 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification
Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran
Abstract:
The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM
Procedia PDF Downloads 2553442 Shear Strength Parameters of an Unsaturated Lateritic Soil
Authors: Jeferson Brito Fernades, Breno Padovezi Rocha, Roger Augusto Rodrigues, Heraldo Luiz Giacheti
Abstract:
The geotechnical projects demand the appropriate knowledge of soil characteristics and parameters. The determination of geotechnical soil parameters can be done by means of laboratory or in situ tests. In countries with tropical weather, like Brazil, unsaturated soils are very usual. In these soils, the soil suction has been recognized as an important stress state variable, which commands the geo-mechanical behavior. Triaxial and direct shear tests on saturated soils samples allow determine only the minimal soil shear strength, in other words, no suction contribution. This paper briefly describes the triaxial test with controlled suction as well as discusses the influence of suction on the shear strength parameters of a lateritic tropical sandy soil from a Brazilian research site. In this site, a sample pit was excavated to retrieve disturbed and undisturbed soil blocks. The samples extracted from these blocks were tested in laboratory to represent the soil from 1.5, 3.0 and 5.0 m depth. The stress curves and shear strength envelopes determined by triaxial tests varying suction and confining pressure are presented and discussed. The water retention characteristics on this soil complement this analysis. In situ CPT tests were also carried out at this site in different seasons of the year. In this case, the soil suction profile was determined by means of the soil water retention. This extra information allowed assessing how soil suction also affected the CPT data and the shear strength parameters estimative via correlation. The major conclusions of this paper are: the undisturbed soil samples contracted before shearing and the soil shear strength increased hyperbolically with suction; and it was possible to assess how soil suction also influenced CPT test data based on the water content soil profile as well as the water retention curve. This study contributed with a better understanding of the shear strength parameters and the soil variability of a typical unsaturated tropical soil.Keywords: site characterization, triaxial test, CPT, suction, variability
Procedia PDF Downloads 4233441 The Rule of Architectural Firms in Enhancing Building Energy Efficiency in Emerging Countries: Processes and Tools Evaluation of Architectural Firms in Egypt
Authors: Mahmoud F. Mohamadin, Ahmed Abdel Malek, Wessam Said
Abstract:
Achieving energy efficient architecture in general, and in emerging countries in particular, is a challenging process that requires the contribution of various governmental, institutional, and individual entities. The rule of architectural design is essential in this process as it is considered as one of the earliest steps on the road to sustainability. Architectural firms have a moral and professional responsibility to respond to these challenges and deliver buildings that consume less energy. This study aims to evaluate the design processes and tools in practice of Egyptian architectural firms based on a limited survey to investigate if their processes and methods can lead to projects that meet the Egyptian Code of Energy Efficiency Improvement. A case study of twenty architectural firms in Cairo was selected and categorized according to their scale; large-scale, medium-scale, and small-scale. A questionnaire was designed and distributed to the firms, and personal meetings with the firms’ representatives took place. The questionnaire answered three main points; the design processes adopted, the usage of performance-based simulation tools, and the usage of BIM tools for energy efficiency purposes. The results of the study revealed that only little percentage of the large-scale firms have clear strategies for building energy efficiency in their building design, however the application is limited to certain project types, or according to the client request. On the other hand, the percentage of medium-scale firms is much less, and it is almost absent in the small-scale ones. This demonstrates the urgent need of enhancing the awareness of the Egyptian architectural design community of the great importance of implementing these methods starting from the early stages of the building design. Finally, the study proposed recommendations for such firms to be able to create a healthy built environment and improve the quality of life in emerging countries.Keywords: architectural firms, emerging countries, energy efficiency, performance-based simulation tools
Procedia PDF Downloads 2863440 Planning the Journey of Unifying Medical Record Numbers in Five Facilities and the Expected Challenges: Case Study in Saudi Arabia
Authors: N. Al Khashan, H. Al Shammari, W. Al Bahli
Abstract:
Patients who are eligible to receive treatment at the National Guard Health Affairs (NGHA), Saudi Arabia will typically have four medical record numbers (MRN), one in each of the geographical areas. More hospitals and primary healthcare facilities in other geographical areas will launch soon which means more MRNs. When patients own four MRNs, this will cause major drawbacks in patients’ quality of care such as creating new medical files in different regions for relocated patients and using referral system among regions. Consequently, the access to a patient’s medical record from other regions and the interoperability of health information between the four hospitals’ information system would be challenging. Thus, there is a need to unify medical records among these five facilities. As part of the effort to increase the quality of care, a new Hospital Information Systems (HIS) was implemented in all NGHA facilities by the end of 2016. NGHA’s plan is put to be aligned with the Saudi Arabian national transformation program 2020; whereby 70% citizens and residents of Saudi Arabia would have a unified medical record number that enables transactions between multiple Electronic Medical Records (EMRs) vendors. The aim of the study is to explore the plan, the challenges and barriers of unifying the 4 MRNs into one Enterprise Patient Identifier (EPI) in NGHA hospitals by December 2018. A descriptive study methodology was used. A journey map and a project plan are created to be followed by the project team to ensure a smooth implementation of the EPI. It includes the following: 1) Approved project charter, 2) Project management plan, 3) Change management plan, 4) Project milestone dates. Currently, the HIS is using the regional MRN. Therefore, the HIS and all integrated health care systems in all regions will need modification to move from MRN to EPI without interfering with patient care. For now, the NGHA have successfully implemented an EPI connected with the 4 MRNs that work in the back end in the systems’ database.Keywords: consumer health, health informatics, hospital information system, universal medical record number
Procedia PDF Downloads 200