Search results for: particle separation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2784

Search results for: particle separation

1344 Ionic Liquid 1-Butyl-3-Methylimidazolium Bromide as Reaction Medium for the Synthesis of Flavanones under Solvent-Free Conditions

Authors: Cecilia Espindola, Juan Carlos Palacios

Abstract:

Flavonoids are a large group of natural compounds which are found in many fruits and vegetables. A subgroup of these called flavanones display a wide range of biological activities, and they also have an important physiological role in plants. The ionic liquid (ILs) are compounds consisting of an organic cation with an organic or inorganic anion. Due to its unique properties such as high electrical conductivity, wide temperature range of the liquid state, thermal and electrochemical stability, high ionic density and low volatility and flammability, are considered as ecological solvents in organic synthesis, catalysis, electrolytes in accumulators, and electrochemistry, non-volatile plasticizers, and chemical separation. It was synthesized ionic liquid IL 1-butyl-3-methylimidazolium bromide free-solvent and used as reaction medium for flavanones synthesis, under several reaction conditions of temperature, time and production. The obtained compounds were analyzed by melting point, elemental analysis, IR and UV-vis spectroscopy.

Keywords: 1-butyl-3-methylimidazolium bromide, flavonoids, free-solvent, IR spectroscopy

Procedia PDF Downloads 107
1343 Axiomatic Design and Organization Design: Opportunities and Challenges in Transferring Axiomatic Design to the Social Sciences

Authors: Nicolay Worren, Christopher A. Brown

Abstract:

Axiomatic design (AD) has mainly been applied to support the design of physical products and software solutions. However, it was intended as a general design approach that would also be applicable to the design of social systems, including organizations (i.e., organization design). In this article, we consider how AD may be successfully transferred to the field of organizational design. On the one hand, it provides a much-needed pragmatic approach that can help leaders clarify the link between the purpose and structure of their organizations, identify ineffective organizational structures, and increase the chance of achieving strategic goals. On the other hand, there are four conceptual challenges that may create uncertainty and resistance among scholars and practitioners educated in the social sciences: 1) The exclusive focus in AD on negative interdependencies ('coupling'); 2) No obvious way of representing the need for integration across design parameters (DPs); 3) A lack of principles for handling control processes that seem to require 'deliberate coupling' of FRs; and 4) A lack of principles for handling situations where conflicting FRs (i.e., coupling) might require integration rather than separation. We discuss alternative options for handling these challenges so that scholars and practitioners can make use of AD for organization design.

Keywords: axiomatic design, organization design, social systems, concept definitions

Procedia PDF Downloads 112
1342 Identification and Quantification of Phenolic Compounds In Cassia tora Collected from Three Different Locations Using Ultra High Performance Liquid Chromatography – Electro Spray Ionization – Mass Spectrometry (UHPLC-ESI-MS-MS)

Authors: Shipra Shukla, Gaurav Chaudhary, S. K. Tewari, Mahesh Pal, D. K. Upreti

Abstract:

Cassia tora L. is widely distributed in tropical Asian countries, commonly known as sickle pod. Various parts of the plant are reported for their medicinal value due to presence of anthraquinones, phenolic compounds, emodin, β-sitosterol, and chrysophanol. Therefore a sensitive analytical procedure using UHPLC-ESI-MS/MS was developed and validated for simultaneous quantification of five phenolic compounds in leaf, stem and root extracts of Cassia tora. Rapid chromatographic separation of compounds was achieved on Acquity UHPLC BEH C18 column (50 mm×2.1 mm id, 1.7µm) column in 2.5 min. Quantification was carried out using negative electrospray ionization in multiple-reaction monitoring mode. The method was validated as per ICH guidelines and showed good linearity (r2 ≥ 0.9985) over the concentration range of 0.5-200 ng/mL. The intra- and inter-day precisions and accuracy were within RSDs ≤ 1.93% and ≤ 1.90%, respectively. The developed method was applied to investigate variation of five phenolic compounds in the three geographical collections. Results indicated significant variation among analyzed samples collected from different locations in India.

Keywords: Cassia tora, phenolic compounds, quantification, UHPLC-ESI-MS/MS

Procedia PDF Downloads 252
1341 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials

Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi

Abstract:

Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.

Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance

Procedia PDF Downloads 351
1340 Spark Plasma Sintering of Aluminum-Based Composites Reinforced by Nanocrystalline Carbon-Coated Intermetallic Particles

Authors: B. Z. Manuel, H. D. Esmeralda, H. S. Felipe, D. R. Héctor, D. de la Torre Sebastián, R. L. Diego

Abstract:

Aluminum Matrix Composites reinforced with nanocrystalline Ni3Al carbon-coated intermetallic particles, were synthesized by powder metallurgy. Powder mixture of aluminum with 0.5-volume fraction of reinforcement particles was compacted by spark plasma sintering (SPS) technique and the compared with conventional sintering process. The better results for SPS technique were obtained in 520ºC-5kN-3min.The hardness (70.5±8 HV) and the elastic modulus (95 GPa) were evaluated in function of sintering conditions for SPS technique; it was found that the incorporation of these kind of reinforcement particles in aluminum matrix improve its mechanical properties. The densities were about 94% and 97% of the theoretical density. The carbon coating avoided the interfacial reaction between matrix-particle at high temperature (520°C) without show composition change either intermetallic dissolution.

Keywords: aluminum matrix composites, intermetallics, spark plasma sintering, nanocrystalline

Procedia PDF Downloads 438
1339 The Effect of Manure Loaded Biochar on Soil Microbial Communities

Authors: T. Weber, D. MacKenzie

Abstract:

The script in this paper describes the use of advanced simulation environment using electronic systems (microcontroller, operational amplifiers, and FPGA). The simulation was used for non-linear dynamic systems behaviour with required observer structure working with parallel real-time simulation based on state-space representation. The proposed deposited model was used for electrodynamic effects including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time and such systems. For further purpose, the spatial temperature distribution may also be used. With upon system, the uncertainties and disturbances may be determined. This provides the estimation of the more precise system states for the required system and additionally the estimation of the ionising disturbances that arise due to radiation effects in space systems. The results have also shown that a system can be developed specifically with the real-time calculation (estimation) of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. TID (Total Ionising Dose) of 1 Gy and Single Effect Transient (SET) free operation up to 50 MeVcm²/mg may assure certain functions. Single-Event Latch-up (SEL) results on the placement of several transistors in the shared substrate of an integrated circuit; ionising radiation can activate an additional parasitic thyristor. This short circuit between semiconductor-elements can destroy the device without protection and measurements. Single-Event Burnout (SEB) on the other hand, increases current between drain and source of a MOSFET and destroys the component in a short time. A Single-Event Gate Rupture (SEGR) can destroy a dielectric of semiconductor also. In order to be able to react to these processes, it must be calculated within a shorter time that ionizing radiation and dose is present. For this purpose, sensors may be used for the realistic evaluation of the diffusion and ionizing effects of the test system. For this purpose, the Peltier element is used for the evaluation of the dynamic temperature increases (dT/dt), from which a measure of the ionization processes and thus radiation will be detected. In addition, the piezo element may be used to record highly dynamic vibrations and oscillations to absorb impacts of charged particle flux. All available sensors shall be used to calibrate the spatial distributions also. By measured value of size and known location of the sensors, the entire distribution in space can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms.

Keywords: cattle, biochar, manure, microbial activity

Procedia PDF Downloads 92
1338 The Fate of Plastic Debris and Microplastic Particles in Mangroves in the Sultanate of Oman

Authors: Muna Al-Tarshi

Abstract:

The distribution and accumulation dynamics of anthropogenic marine debris (AMD) and microplastic particles in mangrove habitats in the region are poorly understood. The abundance, sorting, and diversity aspects of AMD and microplastics were investigated in three types of mangroves creeks ( Natural mangrove, afforested mangrove, and non-planted). Abundance, concentration, and particles form of microplastics have been illustrated in three substrate in mangrove habitats e.g. sediment, water, and aquatic organisms. Density separation method by using highly saturated solution was implemented to extract the plastic particles from the sediment samples. The average size of particles in each transect was done using image software, and the polymer type was determined via FTIR. There was variability in abundance of microplastics and marine debris between the habitats and within the substrates in the habitats.Biomonitoring program was developed to detect the pollution of microplastics in mangrove habitats in Sultanate of Oman. Sediment dwelling species were the best choice. Testing whether the zooplankton (Artemia) eating the microplastics via FlowCam technique have been studied. The zooplanktons (Artemia) were eating the microplastics as mistaken food.

Keywords: microplastics, marine debris, flowcam, FTIR, polymer, artemia

Procedia PDF Downloads 100
1337 Neutral Heavy Scalar Searches via Standard Model Gauge Boson Decays at the Large Hadron Electron Collider with Multivariate Techniques

Authors: Luigi Delle Rose, Oliver Fischer, Ahmed Hammad

Abstract:

In this article, we study the prospects of the proposed Large Hadron electron Collider (LHeC) in the search for heavy neutral scalar particles. We consider a minimal model with one additional complex scalar singlet that interacts with the Standard Model (SM) via mixing with the Higgs doublet, giving rise to an SM-like Higgs boson and a heavy scalar particle. Both scalar particles are produced via vector boson fusion and can be tested via their decays into pairs of SM particles, analogously to the SM Higgs boson. Using multivariate techniques, we show that the LHeC is sensitive to heavy scalars with masses between 200 and 800 GeV down to scalar mixing of order 0.01.

Keywords: beyond the standard model, large hadron electron collider, multivariate analysis, scalar singlet

Procedia PDF Downloads 123
1336 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms

Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin

Abstract:

This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.

Keywords: machine learning, business models, convex analysis, online learning

Procedia PDF Downloads 129
1335 Optimization of Biodiesel Production from Palm Oil over Mg-Al Modified K-10 Clay Catalyst

Authors: Muhammad Ayoub, Abrar Inayat, Bhajan Lal, Sintayehu Mekuria Hailegiorgis

Abstract:

Biodiesel which comes from pure renewable resources provide an alternative fuel option for future because of limited fossil fuel resources as well as environmental concerns. The transesterification of vegetable oils for biodiesel production is a promising process to overcome this future crises of energy. The use of heterogeneous catalysts greatly simplifies the technological process by facilitating the separation of the post-reaction mixture. The purpose of the present work was to examine a heterogeneous catalyst, in particular, Mg-Al modified K-10 clay, to produce methyl esters of palm oil. The prepared catalyst was well characterized by different latest techniques. In this study, the transesterification of palm oil with methanol was studied in a heterogeneous system in the presence of Mg-Al modified K-10 clay as solid base catalyst and then optimized these results with the help of Design of Experiments software. The results showed that methanol is the best alcohol for this reaction condition. The best results was achieved for optimization of biodiesel process. The maximum conversion of triglyceride (88%) was noted after 8 h of reaction at 60 ̊C, with a 6:1 molar ratio of methanol to palm oil and 3 wt % of prepared catalyst.

Keywords: palm oil, transestrefication, clay, biodiesel, mesoporous clay, K-10

Procedia PDF Downloads 377
1334 Directional Search for Dark Matter Using Nuclear Emulsion

Authors: Ali Murat Guler

Abstract:

A variety of experiments have been developed over the past decades, aiming at the detection of Weakly Interactive Massive Particles (WIMPs) via their scattering in an instrumented medium. The sensitivity of these experiments has improved with a tremendous speed, thanks to a constant development of detectors and analysis methods. Detectors capable of reconstructing the direction of the nuclear recoil induced by the WIMP scattering are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Measurement of WIMP’s direction will allow us to detect the galactic origin of dark matter and, therefore to have a clear signal-background separation. The NEWSdm experiment, based on nuclear emulsions, is intended to measure the direction of WIMP-induced nuclear coils with a solid-state detector, thus with high sensitivity. We discuss the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and novel read-out systems achieving nanometric resolution. We also report results of a technical test conducted in Gran Sasso.

Keywords: dark matter, direct detection, nuclear emulsion, WIMPS

Procedia PDF Downloads 261
1333 Reliability Verification of the Performance Evaluation of Multiphase Pump

Authors: Joon-Hyung Kim, Him-Chan Lee, Jin-Hyuk Kim, Yong-Kab Lee, Young-Seok Choi

Abstract:

The crude oil in an oil well exists in various phases such as gas, seawater, and sand, as well as oil. Therefore, a phase separator is needed at the front of a single-phase pump for pressurization and transfer. On the other hand, the application of a multiphase pump can provide such advantages as simplification of the equipment structure and cost savings, because there is no need for a phase separation process. Therefore, the crude oil transfer method using a multiphase pump is being applied to recently developed oil wells. Due to this increase in demand, technical demands for the development of multiphase pumps are sharply increasing, but the progress of research into related technologies is insufficient, due to the nature of multiphase pumps that require high levels of skills. This study was conducted to verify the reliability of pump performance evaluation using numerical analysis, which is the basis of the development of a multiphase pump. For this study, a model was designed by selecting the specifications of the pump under study. The performance of the designed model was evaluated through numerical analysis and experiment, and the results of the performance evaluation were compared to verify the reliability of the result using numerical analysis.

Keywords: multiphase pump, numerical analysis, experiment, performance evaluation, reliability verification

Procedia PDF Downloads 414
1332 CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers

Authors: Nader Pourmahmoud, Amir Hassanzadeh

Abstract:

This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment.

Keywords: energy separation, inlet pressure, numerical simulation, vortex chamber, vortex tube

Procedia PDF Downloads 356
1331 A New Tool for Global Optimization Problems: Cuttlefish Algorithm

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms.

Keywords: Cuttlefish Algorithm, bio-inspired algorithms, optimization, global optimization problems

Procedia PDF Downloads 547
1330 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 305
1329 Arbutin-loaded Butylglyceryl Dextran Nanoparticles for Topical Delivery

Authors: Mohammad F. Bostanudin, Tan S. Fei, Azwan M. Lazim

Abstract:

Toward the development of colloidal systems that are able to enhance permeation across the skin, a material combining the non-toxic and non-immunogenic of dextran with alkylglycerols permeation enhancing property has been designed. To this purpose, a range of butylglyceryl dextrans (DEX-OX4) were synthesized via functionalization with n-butylglycidyl ether and the successful functionalization was confirmed by NMR and FT-IR spectroscopies, along with GPC with a degree of modification in the range 6.3–35.7 %. A reduced viscosity and an increased molecular weight of DEX-OX4 were also recorded when compared to that of the native dextran. DEX-OX4 was further formulated into nanocarriers and loaded with α-arbutin prior to be investigated for their particle size, morphology, stability, loading ability, and release profiles. The resulting nanoparticles were found to be close-to-spherical and relatively stable at pH 5 and 7, with size 180–220 nm (ζ-potential -22 to -25 mV), and a loading degree of 11.7 %. Lack of toxicity at application-relevant concentrations and increased permeation across skin biological membrane model were demonstrated by nanoparticles in-vitro results against immortalized skin human keratinocytes cells (HaCaT).

Keywords: butylglycerols, dextran, nanoparticles, transdermal

Procedia PDF Downloads 110
1328 Assessment of Fluid Flow Hydrodynamics for Cylindrical and Conical Fluidized Bed Reactor

Authors: N. G. Thangan, A. B. Deoghare, P. M. Padole

Abstract:

Computational Fluid Dynamics (CFD) aids in modeling the prototype of a real world processes. CFD approach is useful in predicting the fluid flow, heat transfer mass transfer and other flow related phenomenon. In present study, hydrodynamic characteristics of gas-solid cylindrical fluidized bed is compared with conical fluidized beds. A 2D fluidized bed consists of different configurations of particle size of iron oxide, bed height and superficial velocities of nitrogen. Simulations are performed to capture the complex physics associated with it. The Eulerian multiphase model is prepared in ANSYS FLUENT v.14 which is used to simulate fluidization process. It is analyzed with nitrogen as primary phase and iron oxide as secondary phase. The bed hydrodynamics is assessed prominently to examine effect on fluidization time, pressure drop, minimum fluidization velocity, and gas holdup in the system.

Keywords: fluidized bed, bed hydrodynamics, Eulerian multiphase approach, computational fluid dynamics

Procedia PDF Downloads 433
1327 Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles

Authors: Huseyin Kavas

Abstract:

Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION.

Keywords: magnetic materials, nanostructures, self-assembly, FMR

Procedia PDF Downloads 90
1326 Linear Array Geometry Synthesis with Minimum Sidelobe Level and Null Control Using Taguchi Method

Authors: Amara Prakasa Rao, N. V. S. N. Sarma

Abstract:

This paper describes the synthesis of linear array geometry with minimum sidelobe level and null control using the Taguchi method. Based on the concept of the orthogonal array, Taguchi method effectively reduces the number of tests required in an optimization process. Taguchi method has been successfully applied in many fields such as mechanical, chemical engineering, power electronics, etc. Compared to other evolutionary methods such as genetic algorithms, simulated annealing and particle swarm optimization, the Taguchi method is much easier to understand and implement. It requires less computational/iteration processing to optimize the problem. Different cases are considered to illustrate the performance of this technique. Simulation results show that this method outperforms the other evolution algorithms (like GA, PSO) for smart antenna systems design.

Keywords: array factor, beamforming, null placement, optimization method, orthogonal array, Taguchi method, smart antenna system

Procedia PDF Downloads 374
1325 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method

Authors: Karuna Tuchinda, Sasithon Bland

Abstract:

This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.

Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction

Procedia PDF Downloads 361
1324 Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes

Authors: Ibrahim Gomaa, Hoda M. O. Mokhtar

Abstract:

Although most of the existing skyline queries algorithms focused basically on querying static points through static databases; with the expanding number of sensors, wireless communications and mobile applications, the demand for continuous skyline queries has increased. Unlike traditional skyline queries which only consider static attributes, continuous skyline queries include dynamic attributes, as well as the static ones. However, as skyline queries computation is based on checking the domination of skyline points over all dimensions, considering both the static and dynamic attributes without separation is required. In this paper, we present an efficient algorithm for computing continuous skyline queries without discriminating between static and dynamic attributes. Our algorithm in brief proceeds as follows: First, it excludes the points which will not be in the initial skyline result; this pruning phase reduces the required number of comparisons. Second, the association between the spatial positions of data points is examined; this phase gives an idea of where changes in the result might occur and consequently enables us to efficiently update the skyline result (continuous update) rather than computing the skyline from scratch. Finally, experimental evaluation is provided which demonstrates the accuracy, performance and efficiency of our algorithm over other existing approaches.

Keywords: continuous query processing, dynamic database, moving object, skyline queries

Procedia PDF Downloads 198
1323 Manufacturing an Eminent Mucolytic Medicine Using an Efficient Synthesis Path

Authors: Farzaneh Ziaee, Mohammad Ziaee

Abstract:

N-acetyl-L-cysteine (NAC) is a well-known mucolytic agent, and recently its efficacy has been examined for the prevention and remediation of several diseases such as lung infections caused by Coronavirus. Also, it is administrated as the main antidote in paracetamol overdose and is effective for the treatment of idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD). This medicine is used as an antioxidant to prevent diabetic kidney disease (nephropathy). In this study, a method for the acylation of amino acids is employed to manufacture this drug in a height yield. Regarding this patented path, NAC can be made in a single batch step at ambient pressure and temperature. Moreover, this study offers a technique to make peptide bonds which is of interest for pharmaceutical and medicinal industries. The separation process was undertaken using appropriate solvents to achieve an excellent purification level. The synthesized drug was characterized via proton nuclear magnetic resonance (1H NMR), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and melting point.

Keywords: N-acetylcysteine, synthesis, mucolytic medication, lung anti-inflammatory, COVID-19, antioxidant, pharmaceutical supplement, characterization

Procedia PDF Downloads 179
1322 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 324
1321 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with filler-volume-based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Keywords: thermal stability, silica-reinforced, epoxy composite, coefficient of thermal expansion, empirical model

Procedia PDF Downloads 282
1320 Whale Optimization Algorithm for Optimal Reactive Power Dispatch Solution Under Various Contingency Conditions

Authors: Medani Khaled Ben Oualid

Abstract:

Most of researchers solved and analyzed the ORPD problem in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.

Keywords: optimal reactive power dispatch, metaheuristic techniques, whale optimization algorithm, real power loss minimization, contingency conditions

Procedia PDF Downloads 78
1319 Flocculation on the Treatment of Olive Oil Mill Wastewater: Pre-Treatment

Authors: G. Hodaifa, J. A. Páez, C. Agabo, E. Ramos, J. C. Gutiérrez, A. Rosal

Abstract:

Currently, the continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) is a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, the advanced oxidation technologies (Fenton process, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarified-sludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed over time and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were obtained. Also, the variation on the electric conductivity reduction percentage (1-8%) was determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49).

Keywords: flocculants, flocculation, olive oil mill wastewater, water quality

Procedia PDF Downloads 524
1318 Shear Enhanced Flotation Technology Applied to Treat Winery Wastewater

Authors: Bernard Bladergroen, David Vlotman, Bradley Cerff

Abstract:

The agricultural sector is one which requires and consumes large amounts of water globally. Commercial wine production, in particular, uses extensive volumes of fresh water and generates significant volumes of wastewater through various processes. The wastewater produced by wineries typically exhibits elevated levels of chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), acidic pH and varying salinity and nutrient contents. This study investigates the performance of a shear-enhanced flotation separation (SEFS) pilot plant as a primary treatment stage during winery wastewater processing by modifying a conventional Dissolved Air Flotation (DAF) system. The SEFS pilot plant achieved a 99% reduction in both turbidity and TSS in comparison to the 97% achieved with the conventional DAF system. The COD was reduced by 66% and 51% for the SEFS and DAF systems, respectively. SEFS shows the advantages of hydrodynamic shear to enhance the coagulation and subsequent flocculation processes with a significant reduction of coagulant and flocculant (36% and 31%, respectively).

Keywords: shear enhanced flotation, suspended solids, primary wastewater treatment, zeta potential

Procedia PDF Downloads 48
1317 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace

Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali

Abstract:

The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.

Keywords: induction furnaces, amorphous silica, carbon microstructure, silicon

Procedia PDF Downloads 387
1316 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor

Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung

Abstract:

The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V∙s at 250 °C.

Keywords: single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, thin-film transistor (TFT)

Procedia PDF Downloads 513
1315 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System

Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan

Abstract:

With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.

Keywords: dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation, pressure drop

Procedia PDF Downloads 152