Search results for: optimal reaction network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9791

Search results for: optimal reaction network

8351 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid

Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi

Abstract:

In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.

Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point

Procedia PDF Downloads 88
8350 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters

Authors: Dylan Santos De Pinho, Nabil Ouerhani

Abstract:

Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.

Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization

Procedia PDF Downloads 147
8349 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 125
8348 Transition in Protein Profile, Maillard Reaction Products and Lipid Oxidation of Flavored Ultra High Temperature Treated Milk

Authors: Muhammad Ajmal

Abstract:

- Thermal processing and subsequent storage of ultra-heat treated (UHT) milk leads to alteration in protein profile, Maillard reaction and lipid oxidation. Concentration of carbohydrates in normal and flavored version of UHT milk is considerably different. Transition in protein profile, Maillard reaction and lipid oxidation in UHT flavored milk was determined for 90 days at ambient conditions and analyzed at 0, 45 and 90 days of storage. Protein profile, hydroxymethyl furfural, furosine, Nε-carboxymethyl-l-lysine, fatty acid profile, free fatty acids, peroxide value and sensory characteristics were determined. After 90 days of storage, fat, protein, total solids contents and pH were significantly less than the initial values determined at 0 day. As compared to protein profile normal UHT milk, more pronounced changes were recorded in different fractions of protein in UHT milk at 45 and 90 days of storage. Tyrosine content of flavored UHT milk at 0, 45 and 90 days of storage were 3.5, 6.9 and 15.2 µg tyrosine/ml. After 45 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 3.35%, 10.5%, 7.89%, 18.8%, 53.6%, 20.1%, 26.9 and 37.5%. After 90 days of storage, the decline in αs1-casein, αs2-casein, β-casein, κ-casein, β-lactoglobulin, α-lactalbumin, immunoglobulin and bovine serum albumin were 11.2%, 34.8%, 14.3%, 33.9%, 56.9%, 24.8%, 36.5% and 43.1%. Hydroxy methyl furfural content of UHT milk at 0, 45 and 90 days of storage were 1.56, 4.18 and 7.61 (µmol/L). Furosine content of flavored UHT milk at 0, 45 and 90 days of storage intervals were 278, 392 and 561 mg/100g protein. Nε-carboxymethyl-l-lysine content of UHT flavored milk at 0, 45 and 90 days of storage were 67, 135 and 343mg/kg protein. After 90 days of storage of flavored UHT milk, the loss of unsaturated fatty acids 45.7% from the initial values. At 0, 45 and 90 days of storage, free fatty acids of flavored UHT milk were 0.08%, 0.11% and 0.16% (p<0.05). Peroxide value of flavored UHT milk at 0, 45 and 90 days of storage was 0.22, 0.65 and 2.88 (MeqO²/kg). Sensory analysis of flavored UHT milk after 90 days indicated that appearance, flavor and mouth feel score significantly decreased from the initial values recorded at 0 day. Findings of this investigation evidenced that in flavored UHT milk more pronounced changes take place in protein profile, Maillard reaction products and lipid oxidation as compared to normal UHT milk.

Keywords: UHT flavored milk , hydroxymethyl furfural, lipid oxidation, sensory properties

Procedia PDF Downloads 199
8347 Optimal Seismic Design of Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

In this paper, the optimal seismic design of reinforced concrete shear wall-frame building structures was done using structural optimization. The optimal section sizes were generated through structural optimization based on linear static analysis conforming to American Concrete Institute building design code (ACI 318-14). An analytical procedure was followed to validate the accuracy of the proposed method by comparing stresses on structural members through output files of MATLAB and ETABS. In order to consider the difference of stresses in structural elements by ETABS and MATLAB, and to avoid over-stress members by ETABS, a stress constraint ratio of MATLAB to ETABS was modified and introduced for the most critical load combinations and structural members. Moreover, seismic design of the structure was done following the International Building Code (IBC 2012), American Concrete Institute Building Code (ACI 318-14) and American Society of Civil Engineering (ASCE 7-10) standards. Typical reinforcement requirements for the structural wall, beam and column were discussed and presented using ETABS structural analysis software. The placement and detailing of reinforcement of structural members were also explained and discussed. The outcomes of this study show that the modification of section sizes play a vital role in finding an optimal combination of practical section sizes. In contrast, the optimization problem with size constraints has a higher cost than that of without size constraints. Moreover, the comparison of optimization problem with that of ETABS program shown to be satisfactory and governed ACI 318-14 building design code criteria.

Keywords: structural optimization, seismic design, linear static analysis, etabs, matlab, rc shear wall-frame structures

Procedia PDF Downloads 173
8346 Structural and Functional Correlates of Reaction Time Variability in a Large Sample of Healthy Adolescents and Adolescents with ADHD Symptoms

Authors: Laura O’Halloran, Zhipeng Cao, Clare M. Kelly, Hugh Garavan, Robert Whelan

Abstract:

Reaction time (RT) variability on cognitive tasks provides the index of the efficiency of executive control processes (e.g. attention and inhibitory control) and is considered to be a hallmark of clinical disorders, such as attention-deficit disorder (ADHD). Increased RT variability is associated with structural and functional brain differences in children and adults with various clinical disorders, as well as poorer task performance accuracy. Furthermore, the strength of functional connectivity across various brain networks, such as the negative relationship between the task-negative default mode network and task-positive attentional networks, has been found to reflect differences in RT variability. Although RT variability may provide an index of attentional efficiency, as well as being a useful indicator of neurological impairment, the brain substrates associated with RT variability remain relatively poorly defined, particularly in a healthy sample. Method: Firstly, we used the intra-individual coefficient of variation (ICV) as an index of RT variability from “Go” responses on the Stop Signal Task. We then examined the functional and structural neural correlates of ICV in a large sample of 14-year old healthy adolescents (n=1719). Of these, a subset had elevated symptoms of ADHD (n=80) and was compared to a matched non-symptomatic control group (n=80). The relationship between brain activity during successful and unsuccessful inhibitions and gray matter volume were compared with the ICV. A mediation analysis was conducted to examine if specific brain regions mediated the relationship between ADHD symptoms and ICV. Lastly, we looked at functional connectivity across various brain networks and quantified both positive and negative correlations during “Go” responses on the Stop Signal Task. Results: The brain data revealed that higher ICV was associated with increased structural and functional brain activation in the precentral gyrus in the whole sample and in adolescents with ADHD symptoms. Lower ICV was associated with lower activation in the anterior cingulate cortex (ACC) and medial frontal gyrus in the whole sample and in the control group. Furthermore, our results indicated that activation in the precentral gyrus (Broadman Area 4) mediated the relationship between ADHD symptoms and behavioural ICV. Conclusion: This is the first study first to investigate the functional and structural correlates of ICV collectively in a large adolescent sample. Our findings demonstrate a concurrent increase in brain structure and function within task-active prefrontal networks as a function of increased RT variability. Furthermore, structural and functional brain activation patterns in the ACC, and medial frontal gyrus plays a role-optimizing top-down control in order to maintain task performance. Our results also evidenced clear differences in brain morphometry between adolescents with symptoms of ADHD but without clinical diagnosis and typically developing controls. Our findings shed light on specific functional and structural brain regions that are implicated in ICV and yield insights into effective cognitive control in healthy individuals and in clinical groups.

Keywords: ADHD, fMRI, reaction-time variability, default mode, functional connectivity

Procedia PDF Downloads 255
8345 Performance Estimation of Two Port Multiple-Input and Multiple-Output Antenna for Wireless Local Area Network Applications

Authors: Radha Tomar, Satish K. Jain, Manish Panchal, P. S. Rathore

Abstract:

In the presented work, inset fed microstrip patch antenna (IFMPA) based two port MIMO Antenna system has been proposed, which is suitable for wireless local area network (WLAN) applications. IFMPA has been designed, optimized for 2.4 GHz and applied for MIMO formation. The optimized parameters of the proposed IFMPA have been used for fabrication of antenna and two port MIMO in a laboratory. Fabrication of the designed MIMO antenna has been done and tested experimentally for performance parameters like Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), Directive Gain (DG), Channel Capacity Loss (CCL), Multiplexing Efficiency (ME) etc and results are compared with simulated parameters extracted with simulated S parameters to validate the results. The simulated and experimentally measured plots and numerical values of these MIMO performance parameters resembles very much with each other. This shows the success of MIMO antenna design methodology.

Keywords: multiple-input and multiple-output, wireless local area network, vector network analyzer, envelope correlation coefficient

Procedia PDF Downloads 55
8344 Analyses of Adverse Drug Reactions Reported of Hospital in Taiwan

Authors: Yu-Hong Lin

Abstract:

Background: An adverse drug reaction (ADR) reported is an injury which caused by taking medicines. Sometimes the severity of ADR reported may be minor, but sometimes it could be a life-threatening situation. In order to provide healthcare professionals as a better reference in clinical practice, we do data collection and analysis from our hospital. Methods: This was a retrospective study of ADRs reported performed from 2014 to 2015 in our hospital in Taiwan. We collected assessment items of ADRs reported, which contain gender and age, occurring sources, Anatomical Therapeutic Chemical (ATC) classification of suspected drugs, types of adverse reactions, Naranjo score calculating by Naranjo Adverse Drug Reaction Probability Scale and so on. Results: The investigation included two hundred and seven ADRs reported. Most of ADRs reported were occurring in outpatient department (92%). The average age of ADRs reported was 65.3 years. Less than 65 years of age were in the majority in this study (54%). Majority of all ADRs reported were males (51%). According to ATC classification system, the major classification of suspected drugs was cardiovascular system (19%) and antiinfectives for systemic use (18%) respectively. Among the adverse reactions, Dermatologic Effects (35%) were the major type of ADRs. Also, the major Naranjo scores of all ADRs reported ranged from 1 to 4 points (91%), which represents a possible correlation between ADRs reported and suspected drugs. Conclusions: Definitely, ADRs reported is still an extremely important information for healthcare professionals. For that reason, we put all information of ADRs reported into our hospital's computer system, and it will improve the safety of medication use. By hospital's computer system, it can remind prescribers to think of information about patient's ADRs reported. No drugs are administered without risk. Therefore, all healthcare professionals should have a responsibility to their patients, who themselves are becoming more aware of problems associated with drug therapy.

Keywords: adverse drug reaction, Taiwan, healthcare professionals, safe use of medicines

Procedia PDF Downloads 230
8343 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 198
8342 Electrochemical Behavior of Iron (III) Complexes with Catechol at Different pH

Authors: K. M. Salim Reza, M. Hafiz Mia, M. A. Aziz, M. A. Motin, M. M. Rahman, M. A. Hasem

Abstract:

The redox behavior of Fe (III) in presence of Catechol (Cc) has been carried out in buffer solution of different pH, scan rate, variation of Fe (III) concentration and Cc concentration. Uncoordinated Fe(III) or Cc has been found to undergo reversible electrode reaction whereas coordinated Fe-Cc is irreversible. The peak positions of the voltammogram of Fe- Cc shifted with respect to that of free Fe (III) or Cc and also developed a new peak at 0.12 V. The peak current of Fe-Cc decreases significantly compared with that of free Fe(III) or Cc in the same experimental conditions. These behaviors ascribed the formation of complex of Fe with Cc. The complex was formed either by the addition of Cc into Fe(III) or by the addition of Fe(III) into Cc. The effect of pH of Fe-Cc complex was studied by varying pH from 2 to 8.5. The electro chemical oxidation of Fe-Cc is facilitated in lower pH media. The slope of the plots of anodic peak current, Ep against pH of Fe-Cc complexe is 30 mV, indicates that the oxidation of Fe-Cc complexes proceeded via the 2e−/2H+ processes. The proportionality of the anodic and cathodic peak currents with square root of scan rate of suggests that the peak current of the different complexes at each redox reaction is controlled by diffusion process.

Keywords: cyclic voltammetry, Fe-Cc Complex, pH effect, redox interaction

Procedia PDF Downloads 359
8341 Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array

Authors: Badar Muneer, Waseem Shabir, Faisal Karim Shaikh

Abstract:

Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA.

Keywords: feeding network, laminated waveguide, PIFA, transverse slots

Procedia PDF Downloads 311
8340 Physiological Roles of Relaxin on Prefertilizing Activities of Spermatozoa

Authors: A. G. Miah, U. Salma, K. Schellander

Abstract:

Relaxin was first described in 1926 by Frederick Hisaw. Previously it was considered as only the hormone of pregnant mammals due to its important roles in pregnancy and parturition. From the last decade, the physiological role of relaxin in male reproduction has been given experimental attention, and the results have made it clear that relaxin can no longer be considered strictly as only the hormone of female reproduction. The accessory glands (specially, the prostate glands) of the male reproductive system are the source of seminal relaxin, which is secreted into the seminal plasma and saturated with spermatozoa just after ejaculation. Several studies have reported that relaxin has important roles in improving motility in human sperm. Thereafter, the growing interest on relaxin has intensified efforts to investigate the role of relaxin in other sperm physiological phenomena like, capacitation, acrosome reaction, and their mediating factors associated with successful fertilization. Therefore, this review aims to provide up-to-date information about the physiological roles of relaxin in sperm motility, capacitation, acrosome reaction, and their mediating factors, such as, utilization of glucose, cholesterol efflux, Ca2+-influx, intracellular cAMP and protein tyrosine phosphorylation. Some studies have shown relaxin to increase the percentage of progressive motility and induce capacitation and acrosome reaction through increasing the utilization of glucose and mediating the cholesterol efflux, Ca2+-influx, intracellular cAMP and protein tyrosine phosphorylation. Thus, the review suggests that the supplementation of relaxin into the capacitating medium may contribute the possible beneficial roles in fresh and cryopreserved spermatozoal prefertilization events.

Keywords: relaxin, physiological roles, prefertilizing activities, spermatozoa

Procedia PDF Downloads 568
8339 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 66
8338 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural

Authors: Baeza S. Roberto

Abstract:

The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes are included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.

Keywords: neural network, dry relaxation, knitting, linear regression

Procedia PDF Downloads 585
8337 IoT: State-of-the-Art and Future Directions

Authors: Bashir Abdu Muzakkari, Aisha Umar Sulaiman, Mohamed Afendee Muhamad, Sanah Abdullahi Muaz

Abstract:

The field of the Internet of Things (IoT) is rapidly expanding and has the potential to completely change how we work, live, and interact with the world. The Internet of Things (IoT) is the term used to describe a network of networked physical objects, including machinery, vehicles, and buildings, which are equipped with electronics, software, sensors, and network connectivity. This review paper aims to provide a comprehensive overview of the current state of IoT, including its definition, key components, development history, and current applications. The paper will also discuss the challenges and opportunities presented by IoT, as well as its potential impact on various industries, such as healthcare, agriculture, and transportation. In addition, this paper will highlight the ethical and security concerns associated with IoT and the need for effective solutions to address these challenges. The paper concludes by highlighting the prospects of IoT and the directions for future research in this field.

Keywords: internet of things, IoT, sensors, network

Procedia PDF Downloads 173
8336 Detection of Respiratory Syncytial Virus (hRSV) by PCR Technique in Lower Respiratory Tract Infection (LRTI) in Babylon City

Authors: Amal Raqib Shameran, Ghanim Aboud Al-Mola

Abstract:

Respiratory syncytial virus (hRSV) is the major pathogens of respiratory tract infections (RTI) among infants and children in the world. They are classified in family Paramyxoviridae and sub-family Pneumovirinae. The current work aimed to detect the role of RSV in the lower respiratory tract infection (LRTI) in Hilla, Iraq. The samples were collected from 50 children who were admitted to hospital suffering from lower respiratory tract infections (LRTI). 50 nasal and pharyngeal swabs were taken from patients at the period from January 2010 till April 2011, hospitalized in Hilla Maternity and Children Hospital. The results showed that the proportion of children infected with hRSV accounted for 24% 12/50 with lower respiratory tract infections (LRTI) when they tested by polymerase chain reaction (RT-PCR).

Keywords: respiratory syncytial virus, respiratory tract infections, infants, polymerase chain reaction (PCR)

Procedia PDF Downloads 355
8335 Climate Physical Processes Mathematical Modeling for Dome-Like Traditional Residential Building

Authors: Artem Sedov, Aigerim Uyzbayeva, Valeriya Tyo

Abstract:

The presented article is showing results of dynamic modeling with Mathlab software of optimal automatic room climate control system for two experimental houses in Astana, one of which has circle plan and the other one has square plan. These results are showing that building geometry doesn't influence on climate system PID-controls configuring. This confirms theoretical implication that optimal automatic climate control system parameters configuring should depend on building's internal space volume, envelope heat transfer, number of people inside, supply ventilation air flow and outdoor temperature.

Keywords: climate control system, climate physics, dome-like building, mathematical modeling

Procedia PDF Downloads 366
8334 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement

Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas

Abstract:

The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.

Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor

Procedia PDF Downloads 91
8333 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-world, resilience to damage

Procedia PDF Downloads 547
8332 Nonlinear Modeling of the PEMFC Based on NNARX Approach

Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo

Abstract:

Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.

Keywords: PEMFC, neural network, nonlinear modeling, NNARX

Procedia PDF Downloads 381
8331 Software-Defined Networking: A New Approach to Fifth Generation Networks: Security Issues and Challenges Ahead

Authors: Behrooz Daneshmand

Abstract:

Software Defined Networking (SDN) is designed to meet the future needs of 5G mobile networks. The SDN architecture offers a new solution that involves separating the control plane from the data plane, which is usually paired together. Network functions traditionally performed on specific hardware can now be abstracted and virtualized on any device, and a centralized software-based administration approach is based on a central controller, facilitating the development of modern applications and services. These plan standards clear the way for a more adaptable, speedier, and more energetic network beneath computer program control compared with a conventional network. We accept SDN gives modern inquire about openings to security, and it can significantly affect network security research in numerous diverse ways. Subsequently, the SDN architecture engages systems to effectively screen activity and analyze threats to facilitate security approach modification and security benefit insertion. The segregation of the data planes and control and, be that as it may, opens security challenges, such as man-in-the-middle attacks (MIMA), denial of service (DoS) attacks, and immersion attacks. In this paper, we analyze security threats to each layer of SDN - application layer - southbound interfaces/northbound interfaces - controller layer and data layer. From a security point of see, the components that make up the SDN architecture have a few vulnerabilities, which may be abused by aggressors to perform noxious activities and hence influence the network and its administrations. Software-defined network assaults are shockingly a reality these days. In a nutshell, this paper highlights architectural weaknesses and develops attack vectors at each layer, which leads to conclusions about further progress in identifying the consequences of attacks and proposing mitigation strategies.

Keywords: software-defined networking, security, SDN, 5G/IMT-2020

Procedia PDF Downloads 99
8330 BlueVision: A Visual Tool for Exploring a Blockchain Network

Authors: Jett Black, Jordyn Godsey, Gaby G. Dagher, Steve Cutchin

Abstract:

Despite the growing interest in distributed ledger technology, many data visualizations of blockchain are limited to monotonous tabular displays or overly abstract graphical representations that fail to adequately educate individuals on blockchain components and their functionalities. To address these limitations, it is imperative to develop data visualizations that offer not only comprehensive insights into these domains but education as well. This research focuses on providing a conceptual understanding of the consensus process that underlies blockchain technology. This is accomplished through the implementation of a dynamic network visualization and an interactive educational tool called BlueVision. Further, a controlled user study is conducted to measure the effectiveness and usability of BlueVision. The findings demonstrate that the tool represents significant advancements in the field of blockchain visualization, effectively catering to the educational needs of both novice and proficient users.

Keywords: blockchain, visualization, consensus, distributed network

Procedia PDF Downloads 62
8329 Population Dynamics in Aquatic Environments: Spatial Heterogeneity and Optimal Harvesting

Authors: Sarita Kumari, Ranjit Kumar Upadhyay

Abstract:

This paper deals with plankton-fish dynamics where the fish population is growing logistically and nonlinearly harvested. The interaction between phytoplankton and zooplankton population is considered to be Crowley-Martin type functional response. It has been assumed that phytoplankton grows logistically and is affected by a space-dependent growth rate. Conditions for the existence of a positive equilibrium point and their stability analysis (both local and global) have been discussed for the non-spatial system. We have discussed maximum sustainable yields as well as optimal harvesting policy for maximizing the economic gain. The stability and existence of Hopf –bifurcation analysis have been discussed for the spatial system. Different conditions for turning pattern formation have been established through diffusion-driven instability analysis. Numerical simulations have been carried out for both non-spatial and spatial models. Phase plane analysis, the largest Lyapunov exponent, and bifurcation theory are used to numerically analyzed the non-spatial system. Our study shows that spatial heterogeneity, the mortality rate of phytoplankton, and constant harvesting of the fish population each play an important role in the dynamical behavior of the marine system.

Keywords: optimal harvesting, pattern formation, spatial heterogeneity, Crowley-Martin functional response

Procedia PDF Downloads 173
8328 Understanding and Improving Neural Network Weight Initialization

Authors: Diego Aguirre, Olac Fuentes

Abstract:

In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.

Keywords: deep learning, image classification, supervised learning, weight initialization

Procedia PDF Downloads 135
8327 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction

Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj

Abstract:

Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.

Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide

Procedia PDF Downloads 207
8326 Critical Evaluation and Analysis of Effects of Different Queuing Disciplines on Packets Delivery and Delay for Different Applications

Authors: Omojokun Gabriel Aju

Abstract:

Communication network is a process of exchanging data between two or more devices via some forms of transmission medium using communication protocols. The data could be in form of text, images, audio, video or numbers which can be grouped into FTP, Email, HTTP, VOIP or Video applications. The effectiveness of such data exchange will be proved if they are accurately delivered within specified time. While some senders will not really mind when the data is actually received by the receiving device, inasmuch as it is acknowledged to have been received by the receiver. The time a data takes to get to a receiver could be very important to another sender, as any delay could cause serious problem or even in some cases rendered the data useless. The validity or invalidity of a data after delay will therefore definitely depend on the type of data (information). It is therefore imperative for the network device (such as router) to be able to differentiate among the packets which are time sensitive and those that are not, when they are passing through the same network. So, here is where the queuing disciplines comes to play, to handle network resources when such network is designed to service widely varying types of traffics and manage the available resources according to the configured policies. Therefore, as part of the resources allocation mechanisms, a router within the network must implement some queuing discipline that governs how packets (data) are buffered while waiting to be transmitted. The implementation of the queuing discipline will regulate how the packets are buffered while waiting to be transmitted. In achieving this, various queuing disciplines are being used to control the transmission of these packets, by determining which of the packets get the highest priority, less priority and which packets are dropped. The queuing discipline will therefore control the packets latency by determining how long a packet can wait to be transmitted or dropped. The common queuing disciplines are first-in-first-out queuing, Priority queuing and Weighted-fair queuing (FIFO, PQ and WFQ). This paper critically evaluates and analyse through the use of Optimized Network Evaluation Tool (OPNET) Modeller, Version 14.5 the effects of three queuing disciplines (FIFO, PQ and WFQ) on the performance of 5 different applications (FTP, HTTP, E-Mail, Voice and Video) within specified parameters using packets sent, packets received and transmission delay as performance metrics. The paper finally suggests some ways in which networks can be designed to provide better transmission performance while using these queuing disciplines.

Keywords: applications, first-in-first-out queuing (FIFO), optimised network evaluation tool (OPNET), packets, priority queuing (PQ), queuing discipline, weighted-fair queuing (WFQ)

Procedia PDF Downloads 358
8325 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.

Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding

Procedia PDF Downloads 305
8324 A New Graph Theoretic Problem with Ample Practical Applications

Authors: Mehmet Hakan Karaata

Abstract:

In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring.

Keywords: algorithm, cycle, graph algorithm, graph theory, network structuring

Procedia PDF Downloads 386
8323 Solving Operating Room Scheduling Problem by Using Dispatching Rule

Authors: Yang-Kuei Lin, Yin-Yi Chou

Abstract:

In this research, we have considered operating room scheduling problem. The objective is to minimize total operating cost. The total operating cost includes idle cost and overtime cost. We have proposed a dispatching rule that can guarantee to find feasible solutions for the studied problem efficiently. We compared the proposed dispatching rule with the optimal solutions found by solving Inter Programming, and other solutions found by using modified existing dispatching rules. The computational results indicates that the proposed heuristic can find near optimal solutions efficiently.

Keywords: assignment, dispatching rule, operation rooms, scheduling

Procedia PDF Downloads 233
8322 ED Machining of Particulate Reinforced Metal Matrix Composites

Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar

Abstract:

This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.

Keywords: metal matrix composites (MMCS), metal removal rate (MRR), surface roughness (SR), surface integrity (SI), tool wear rate (TWR), technique for order preference by similarity to ideal solution (TOPSIS)

Procedia PDF Downloads 291