Search results for: modeling of geomaterials
2527 Undrained Bearing Capacity of Circular Foundations on two Layered Clays
Authors: S. Benmebarek, S. Benmoussa, N. Benmebarek
Abstract:
Natural soils are often deposited in layers. The estimation of the bearing capacity of the soil using conventional bearing capacity theory based on the properties of the upper layer introduces significant inaccuracies if the thickness of the top layer is comparable to the width of the foundation placed on the soil surface. In this paper, numerical computations using the FLAC code are reported to evaluate the two clay layers effect on the bearing capacity beneath rigid circular rough footing subject to axial static load. The computation results of the parametric study are used to illustrate the sensibility of the bearing capacity, the shape factor and the failure mechanisms to the layered strength and layered thickness.Keywords: numerical modeling, circular footings, layered clays, bearing capacity, failure
Procedia PDF Downloads 5002526 Modelling of Induction Motor Including Skew Effect Using MWFA for Performance Improvement
Authors: M. Harir, A. Bendiabdellah, A. Chaouch, N. Benouzza
Abstract:
This paper deals with the modelling and simulation of the squirrel cage induction motor by taking into account all space harmonic components, as well as the introduction of the bars skew, in the calculation of the linear evolution of the magnetomotive force (MMF) between the slots extremities. The model used is based on multiple coupled circuits and the modified winding function approach (MWFA). The effect of skewing is included in the calculation of motors inductances with an axial asymmetry in the rotor. The simulation results in both time and spectral domains show the effectiveness and merits of the model and the error that may be caused if the skew of the bars is neglected.Keywords: modeling, MWFA, skew effect, squirrel cage induction motor, spectral domain
Procedia PDF Downloads 4422525 A Theoretical Framework of Multifactor Systematic Risks in Equity Market: Behavioral Finance Paradigm
Authors: Jasman Tuyon, Zamri Ahmad
Abstract:
Behavioral asset pricing research has been gaining momentum since in 1990s. However, it is still incomplete and has been criticized for some philosophical, theoretical and model specification limitations. Due to these drawbacks, investors’ behaviors as a source of risk in behavioral asset pricing modeling still remains disputable. This paper aims to address these issues with an alternative perspective based on behavioral finance paradigm. Specifically, this paper proposes a theoretical linkages of both fundamental and behavioral risks on stock prices formation and an extension of the multifactor stock pricing model by combining multi-factor fundamentals and behavioral risks factors.Keywords: behavioral finance, multifactor asset pricing, behavioral risks, fundamental risks
Procedia PDF Downloads 5042524 Electromagnetic Source Direction of Arrival Estimation via Virtual Antenna Array
Authors: Meiling Yang, Shuguo Xie, Yilong Zhu
Abstract:
Nowadays, due to diverse electric products and complex electromagnetic environment, the localization and troubleshooting of the electromagnetic radiation source is urgent and necessary especially on the condition of far field. However, based on the existing DOA positioning method, the system or devices are complex, bulky and expensive. To address this issue, this paper proposes a single antenna radiation source localization method. A single antenna moves to form a virtual antenna array combined with DOA and MUSIC algorithm to position accurately, meanwhile reducing the cost and simplify the equipment. As shown in the results of simulations and experiments, the virtual antenna array DOA estimation modeling is correct and its positioning is credible.Keywords: virtual antenna array, DOA, localization, far field
Procedia PDF Downloads 3772523 Parallel Opportunity for Water Conservation and Habitat Formation on Regulated Streams through Formation of Thermal Stratification in River Pools
Authors: Todd H. Buxton, Yong G. Lai
Abstract:
Temperature management in regulated rivers can involve significant expenditures of water to meet the cold-water requirements of species in summer. For this purpose, flows released from Lewiston Dam on the Trinity River in Northern California are 12.7 cms with temperatures around 11oC in July through September to provide adult spring Chinook cold water to hold in deep pools and mature until spawning in fall. The releases are more than double the flow and 10oC colder temperatures than the natural conditions before the dam was built. The high, cold releases provide springers the habitat they require but may suppress the stream food base and limit future populations of salmon by reducing the juvenile fish size and survival to adults via the positive relationship between the two. Field and modeling research was undertaken to explore whether lowering summer releases from Lewiston Dam may promote thermal stratification in river pools so that both the cold-water needs of adult salmon and warmer water requirements of other organisms in the stream biome may be met. For this investigation, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated with field measurements in two deep pools on the Trinity River. Modeling and field observations were then used to identify the flows and temperatures that may form and maintain thermal stratification under different meteorologic conditions. Under low flows, a pool was found to be well mixed and thermally homogenous until temperatures began to stratify shortly after sunrise. Stratification then strengthened through the day until shading from trees and mountains cooled the inlet flow and decayed the thermal gradient, which collapsed shortly before sunset and returned the pool to a well-mixed state. This diurnal process of stratification formation and destruction was closely predicted by the 3D CFD model. Both the model and field observations indicate that thermal stratification maintained the coldest temperatures of the day at ≥2m depth in a pool and provided water that was around 8oC warmer in the upper 2m of the pool. Results further indicate that the stratified pool under low flows provided almost the same daily average temperatures as when flows were an order of magnitude higher and stratification was prevented, indicating significant water savings may be realized in regulated streams while also providing a diversity in water temperatures the ecosystem requires. With confidence in the 3D CFD model, the model is now being applied to a dozen pools in the Trinity River to understand how pool bathymetry influences thermal stratification under variable flows and diurnal temperature variations. This knowledge will be used to expand the results to 52 pools in a 64 km reach below Lewiston Dam that meet the depth criteria (≥2 m) for spring Chinook holding. From this, rating curves will be developed to relate discharge to the volume of pool habitat that provides springers the temperature (<15.6oC daily average), velocity (0.15 to 0.4 m/s) and depths that accommodate the escapement target for spring Chinook (6,000 adults) under maximum fish densities measured in other streams (3.1 m3/fish) during the holding time of year (May through August). Flow releases that meet these goals will be evaluated for water savings relative to the current flow regime and their influence on indicator species, including the Foothill Yellow-Legged Frog, and aspects of the stream biome that support salmon populations, including macroinvertebrate production and juvenile Chinook growth rates.Keywords: 3D CFD modeling, flow regulation, thermal stratification, chinook salmon, foothill yellow-legged frogs, water managment
Procedia PDF Downloads 672522 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction
Abstract:
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.Keywords: HCI, sign language recognition, object tracking, hand segmentation
Procedia PDF Downloads 4152521 A Study on Numerical Modelling of Rigid Pavement: Temperature and Thickness Effect
Authors: Amin Chegenizadeh, Mahdi Keramatikerman, Hamid Nikraz
Abstract:
Pavement engineering plays a significant role to develop cost effective and efficient highway and road networks. In general, pavement regarding structure is categorized in two core group namely flexible and rigid pavements. There are various benefits in application of rigid pavement. For instance, they have a longer life and lower maintenance costs in compare with the flexible pavement. In rigid pavement designs, temperature and thickness are two effective parameters that could widely affect the total cost of the project. In this study, a numerical modeling using Kenpave-Kenslab was performed to investigate the effect of these two important parameters in the rigid pavement.Keywords: rigid pavement, Kenpave, Kenslab, thickness, temperature
Procedia PDF Downloads 3762520 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model
Procedia PDF Downloads 3172519 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara
Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum
Abstract:
This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater
Procedia PDF Downloads 6382518 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks
Authors: Aydin Azizi, Aburrahman Tanira
Abstract:
The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel
Procedia PDF Downloads 4072517 A Review Paper for Detecting Zero-Day Vulnerabilities
Authors: Tshegofatso Rambau, Tonderai Muchenje
Abstract:
Zero-day attacks (ZDA) are increasing day by day; there are many vulnerabilities in systems and software that date back decades. Companies keep discovering vulnerabilities in their systems and software and work to release patches and updates. A zero-day vulnerability is a software fault that is not widely known and is unknown to the vendor; attackers work very quickly to exploit these vulnerabilities. These are major security threats with a high success rate because businesses lack the essential safeguards to detect and prevent them. This study focuses on the factors and techniques that can help us detect zero-day attacks. There are various methods and techniques for detecting vulnerabilities. Various companies like edges can offer penetration testing and smart vulnerability management solutions. We will undertake literature studies on zero-day attacks and detection methods, as well as modeling approaches and simulations, as part of the study process.Keywords: zero-day attacks, exploitation, vulnerabilities
Procedia PDF Downloads 1052516 A New Measurement for Assessing Constructivist Learning Features in Higher Education: Lifelong Learning in Applied Fields (LLAF) Tempus Project
Authors: Dorit Alt, Nirit Raichel
Abstract:
Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities.This form of instruction is criticized for encouraging students to acquire inert knowledge that can be used in instructional settings at best, however cannot be transferred into real-life complex problem settings. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools, based on the constructivist approach for learning that put a premium on adaptability to the emerging requirements of present society. This presentation will be limited to teachers' education only and to the contribution of the project in providing a scale designed to measure the extent to which the constructivist activities are efficiently applied in the learning environment. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.Keywords: constructivist learning, higher education, mix-methodology, structural equation modeling
Procedia PDF Downloads 3192515 Fine-Scale Modeling the Influencing Factors of Multi-Time Dimensions of Transit Ridership at Station Level: The Study of Guangzhou City
Authors: Dijiang Lyu, Shaoying Li, Zhangzhi Tan, Zhifeng Wu, Feng Gao
Abstract:
Nowadays, China is experiencing rapidly urban rail transit expansions in the world. The purpose of this study is to finely model factors influencing transit ridership at multi-time dimensions within transit stations’ pedestrian catchment area (PCA) in Guangzhou, China. This study was based on multi-sources spatial data, including smart card data, high spatial resolution images, points of interest (POIs), real-estate online data and building height data. Eight multiple linear regression models using backward stepwise method and Geographic Information System (GIS) were created at station-level. According to Chinese code for classification of urban land use and planning standards of development land, residential land-use were divided into three categories: first-level (e.g. villa), second-level (e.g. community) and third-level (e.g. urban villages). Finally, it concluded that: (1) four factors (CBD dummy, number of feeder bus route, number of entrance or exit and the years of station operation) were proved to be positively correlated with transit ridership, but the area of green land-use and water land-use negative correlated instead. (2) The area of education land-use, the second-level and third-level residential land-use were found to be highly connected to the average value of morning peak boarding and evening peak alighting ridership. But the area of commercial land-use and the average height of buildings, were significantly positive associated with the average value of morning peak alighting and evening peak boarding ridership. (3) The area of the second-level residential land-use was rarely correlated with ridership in other regression models. Because private car ownership is still large in Guangzhou now, and some residents living in the community around the stations go to work by transit at peak time, but others are much more willing to drive their own car at non-peak time. The area of the third-level residential land-use, like urban villages, was highly positive correlated with ridership in all models, indicating that residents who live in the third-level residential land-use are the main passenger source of the Guangzhou Metro. (4) The diversity of land-use was found to have a significant impact on the passenger flow on the weekend, but was non-related to weekday. The findings can be useful for station planning, management and policymaking.Keywords: fine-scale modeling, Guangzhou city, multi-time dimensions, multi-sources spatial data, transit ridership
Procedia PDF Downloads 1432514 Modeling of Austenitic Stainless Steel during Face Milling Using Response Surface Methodology
Authors: A. A. Selaimia, H. Bensouilah, M. A. Yallese, I. Meddour, S. Belhadi, T. Mabrouki
Abstract:
The objective of this work is to model the output responses namely; surface roughness (Ra), cutting force (Fc), during the face milling of the austenitic stainless steel X2CrNi18-9 with coated carbide tools (GC4040). For raison, response surface methodology (RMS) is used to determine the influence of each technological parameter. A full factorial design (L27) is chosen for the experiments, and the ANOVA is used in order to evaluate the influence of the technological cutting parameters namely; cutting speed (Vc), feed per tooth, and depth of cut (ap) on the out-put responses. The results reveal that (Ra) is mostly influenced by (fz) and (Fc) is found considerably affected by (ap).Keywords: austenitic stainless steel, ANOVA, coated carbide, response surface methodology (RSM)
Procedia PDF Downloads 3742513 Framework for the Modeling of the Supply Chain Collaborative Planning Process
Authors: D. Pérez, M. M. E. Alemany
Abstract:
In this work a Framework to model the Supply Chain (SC) Collaborative Planning (CP) Process is proposed, and particularly its Decisional view. The main Framework contributions with regards to previous related works are the following, 1) the consideration of not only the Decision view, the most important one due to the Process type, but other additional three views which are the Physical, Organisation and Information ones, closely related and complementing the Decision View, 2) the joint consideration of two interdependence types, the Temporal (among Decision Centres belonging to different Decision Levels) and Spatial (among Decision Centres belonging to the same Decision Level) to support the distributed Decision-Making process in SC where several decision Centres interact among them in a collaborative manner.Keywords: collaborative planning, decision view, distributed decision-making, framework
Procedia PDF Downloads 4712512 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas
Authors: Julien Caudeville, Muriel Ismert
Abstract:
Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.Keywords: health risk, environment, composite indicator, hotspot areas
Procedia PDF Downloads 2502511 Partial Differential Equation-Based Modeling of Brain Response to Stimuli
Authors: Razieh Khalafi
Abstract:
The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.Keywords: brain, stimuli, partial differential equation, response, EEG signal
Procedia PDF Downloads 5572510 Assessing Pain Using Morbid Motion Monitor System in the Pain Management of Nurse Practitioner
Authors: Mohammad Reza Dawoudi
Abstract:
With the increasing rate of patients suffering from chronic pain, several methods for evaluating of chronic pain are suggested. Motion of morbid has been defined as the rate of pine and it is linked with various co-morbid conditions. This study provides a summary of procedure useful to statistics performing direct behavioral observation in hospital settings. We describe the need for and usefulness of comprehensive “morbid motions” observations; provide a primer on the identification, definition, and assessment of morbid behaviors; and outline and discuss specific statistical procedures, including formulating referral motions, describing and conducting the observation. We also provide practical devices for observing and analyzing the obtained information into a report that guides clinical intervention.Keywords: assessing pain, DNA modeling, image matching technique, pain scale
Procedia PDF Downloads 4152509 Modeling a Closed Loop Supply Chain with Continuous Price Decrease and Dynamic Deterministic Demand
Authors: H. R. Kamali, A. Sadegheih, M. A. Vahdat-Zad, H. Khademi-Zare
Abstract:
In this paper, a single product, multi-echelon, multi-period closed loop supply chain is surveyed, including a variety of costs, time conditions, and capacities, to plan and determine the values and time of the components procurement, production, distribution, recycling and disposal specially for high-tech products that undergo a decreasing production cost and sale price over time. For this purpose, the mathematic model of the problem that is a kind of mixed integer linear programming is presented, and it is finally proved that the problem belongs to the category of NP-hard problems.Keywords: closed loop supply chain, continuous price decrease, NP-hard, planning
Procedia PDF Downloads 3672508 Modeling Diel Trends of Dissolved Oxygen for Estimating the Metabolism in Pristine Streams in the Brazilian Cerrado
Authors: Wesley A. Saltarelli, Nicolas R. Finkler, Adriana C. P. Miwa, Maria C. Calijuri, Davi G. F. Cunha
Abstract:
The metabolism of the streams is an indicator of ecosystem disturbance due to the influences of the catchment on the structure of the water bodies. The study of the respiration and photosynthesis allows the estimation of energy fluxes through the food webs and the analysis of the autotrophic and heterotrophic processes. We aimed at evaluating the metabolism in streams located in the Brazilian savannah, Cerrado (Sao Carlos, SP), by determining and modeling the daily changes of dissolved oxygen (DO) in the water during one year. Three water bodies with minimal anthropogenic interference in their surroundings were selected, Espraiado (ES), Broa (BR) and Canchim (CA). Every two months, water temperature, pH and conductivity are measured with a multiparameter probe. Nitrogen and phosphorus forms are determined according to standard methods. Also, canopy cover percentages are estimated in situ with a spherical densitometer. Stream flows are quantified through the conservative tracer (NaCl) method. For the metabolism study, DO (PME-MiniDOT) and light (Odyssey Photosynthetic Active Radiation) sensors log data for at least three consecutive days every ten minutes. The reaeration coefficient (k2) is estimated through the method of the tracer gas (SF6). Finally, we model the variations in DO concentrations and calculate the rates of gross and net primary production (GPP and NPP) and respiration based on the one station method described in the literature. Three sampling were carried out in October and December 2015 and February 2016 (the next will be in April, June and August 2016). The results from the first two periods are already available. The mean water temperatures in the streams were 20.0 +/- 0.8C (Oct) and 20.7 +/- 0.5C (Dec). In general, electrical conductivity values were low (ES: 20.5 +/- 3.5uS/cm; BR 5.5 +/- 0.7uS/cm; CA 33 +/- 1.4 uS/cm). The mean pH values were 5.0 (BR), 5.7 (ES) and 6.4 (CA). The mean concentrations of total phosphorus were 8.0ug/L (BR), 66.6ug/L (ES) and 51.5ug/L (CA), whereas soluble reactive phosphorus concentrations were always below 21.0ug/L. The BR stream had the lowest concentration of total nitrogen (0.55mg/L) as compared to CA (0.77mg/L) and ES (1.57mg/L). The average discharges were 8.8 +/- 6L/s (ES), 11.4 +/- 3L/s and CA 2.4 +/- 0.5L/s. The average percentages of canopy cover were 72% (ES), 75% (BR) and 79% (CA). Significant daily changes were observed in the DO concentrations, reflecting predominantly heterotrophic conditions (respiration exceeded the gross primary production, with negative net primary production). The GPP varied from 0-0.4g/m2.d (in Oct and Dec) and the R varied from 0.9-22.7g/m2.d (Oct) and from 0.9-7g/m2.d (Dec). The predominance of heterotrophic conditions suggests increased vulnerability of the ecosystems to artificial inputs of organic matter that would demand oxygen. The investigation of the metabolism in the pristine streams can help defining natural reference conditions of trophic state.Keywords: low-order streams, metabolism, net primary production, trophic state
Procedia PDF Downloads 2622507 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage
Procedia PDF Downloads 3952506 Extended Boolean Petri Nets Generating N-Ary Trees
Authors: Riddhi Jangid, Gajendra Pratap Singh
Abstract:
Petri nets, a mathematical tool, is used for modeling in different areas of computer sciences, biological networks, chemical systems and many other disciplines. A Petri net model of a given system is created by the graphical representation that describes the properties and behavior of the system. While looking for the behavior of any system, 1-safe Petri nets are of particular interest to many in the application part. Boolean Petri nets correspond to those class in 1- safe Petri nets that generate all the binary n-vectors in their reachability analysis. We study the class by changing different parameters like the token counts in the places and how the structure of the tree changes in the reachability analysis. We discuss here an extended class of Boolean Petri nets that generates n-ary trees in their reachability-based analysis.Keywords: marking vector, n-vector, petri nets, reachability
Procedia PDF Downloads 862505 Analysis of Maintenance Operations in an Industrial Bakery Line
Authors: Mehmet Savsar
Abstract:
This paper presents a practical case application of simulation modeling and analysis in a specific industrial setting. Various maintenance related parameters of the equipment in the system under consideration are determined and a simulation model is developed to study system behavior. System performance is determined based on established parameters and operational policies, which included system operation with and without preventive maintenance implementation. The results show that preventive maintenance practice has significant effects on improving system productivity. The simulation procedures outlined in this paper can be used by operation managers to perform production line analysis under different maintenance policies in various industrial settings.Keywords: simulation, production line, machine failures, maintenance, industrial bakery
Procedia PDF Downloads 4902504 An Incremental Refinement Approach to a Development of Dynamic Host Configuration Protocol (DHCP) Using Event-B
Authors: Rajaa Filali, Mohamed Bouhdadi
Abstract:
This paper presents an incremental development of the Dynamic Host Configuration Protocol (DHCP) in Event-B. DHCP is widely used communication protocol, which provides a standard mechanism to obtain configuration parameters. The specification is performed in a stepwise manner and verified through a series of refinements. The Event-B formal method uses the Rodin platform to modeling and verifying some properties of the protocol such as safety, liveness and deadlock freedom. To model and verify the protocol, we use the formal technique Event-B which provides an accessible and rigorous development method. This interaction between modelling and proving reduces the complexity and helps to eliminate misunderstandings, inconsistencies, and specification gaps.Keywords: DHCP protocol, Event-B, refinement, proof obligation, Rodin
Procedia PDF Downloads 2332503 Comparative Exergy Analysis of Vapor Compression Refrigeration System Using Alternative Refrigerants
Authors: Gulshan Sachdeva, Vaibhav Jain
Abstract:
In present paper, the performance of various alternative refrigerants is compared to find the substitute of R22, the widely used hydrochlorofluorocarbon refrigerant in developing countries. These include the environmentally friendly hydrofluorocarbon (HFC) refrigerants such as R134A, R410A, R407C and M20. In the present study, a steady state thermodynamic model (includes both first and second law analysis) which simulates the working of an actual vapor-compression system is developed. The model predicts the performance of system with alternative refrigerants. Considering the recent trends of replacement of ozone depleting refrigerants and improvement in system efficiency, R407C is found to be potential candidate to replace R22 refrigerant in the present study.Keywords: refrigeration, compression system, performance study, modeling, R407C
Procedia PDF Downloads 3192502 Designing a Robust Controller for a 6 Linkage Robot
Authors: G. Khamooshian
Abstract:
One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.Keywords: 3-RRS, 6 linkage, parallel robot, control
Procedia PDF Downloads 1622501 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 1772500 Distance Protection Performance Analysis
Authors: Abdelsalam Omar
Abstract:
This paper presents simulation-based case study that indicate the need for accurate dynamic modeling of distance protection relay. In many cases, a static analysis based on current and voltage phasors may be sufficient to assess the performance of distance protection. There are several circumstances under which such a simplified study does not provide the depth of analysis necessary to obtain accurate results, however. This letter present study of the influences of magnetizing inrush and power swing on the performance of distance protection relay. One type of numerical distance protection relay has been investigated: 7SA511. The study has been performed in order to demonstrate the relay response when dynamic model of distance relay is utilized.Keywords: distance protection, magnitizing inrush, power swing, dynamic model of protection relays, simulatio
Procedia PDF Downloads 4912499 Nonstationarity Modeling of Economic and Financial Time Series
Authors: C. Slim
Abstract:
Traditional techniques for analyzing time series are based on the notion of stationarity of phenomena under study, but in reality most economic and financial series do not verify this hypothesis, which implies the implementation of specific tools for the detection of such behavior. In this paper, we study nonstationary non-seasonal time series tests in a non-exhaustive manner. We formalize the problem of nonstationary processes with numerical simulations and take stock of their statistical characteristics. The theoretical aspects of some of the most common unit root tests will be discussed. We detail the specification of the tests, showing the advantages and disadvantages of each. The empirical study focuses on the application of these tests to the exchange rate (USD/TND) and the Consumer Price Index (CPI) in Tunisia, in order to compare the Power of these tests with the characteristics of the series.Keywords: stationarity, unit root tests, economic time series, ADF tests
Procedia PDF Downloads 4262498 Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes
Authors: Dariush Jafari, S. Mostafa Nowee
Abstract:
In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.Keywords: thermodynamic modeling, ANN, solubility, ternary electrolyte system
Procedia PDF Downloads 387