Search results for: micro data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26622

Search results for: micro data

25182 Advanced Analytical Competency Is Necessary for Strategic Leadership to Achieve High-Quality Decision-Making

Authors: Amal Mohammed Alqahatni

Abstract:

This paper is a non-empirical analysis of existing literature on digital leadership competency, data-driven organizations, and dealing with AI technology (big data). This paper will provide insights into the importance of developing the leader’s analytical skills and style to be more effective for high-quality decision-making in a data-driven organization and achieve creativity during the organization's transformation to be digitalized. Despite the enormous potential that big data has, there are not enough experts in the field. Many organizations faced an issue with leadership style, which was considered an obstacle to organizational improvement. It investigates the obstacles to leadership style in this context and the challenges leaders face in coaching and development. The leader's lack of analytical skill with AI technology, such as big data tools, was noticed, as was the lack of understanding of the value of that data, resulting in poor communication with others, especially in meetings when the decision should be made. By acknowledging the different dynamics of work competency and organizational structure and culture, organizations can make the necessary adjustments to best support their leaders. This paper reviews prior research studies and applies what is known to assist with current obstacles. This paper addresses how analytical leadership will assist in overcoming challenges in a data-driven organization's work environment.

Keywords: digital leadership, big data, leadership style, digital leadership challenge

Procedia PDF Downloads 69
25181 Comparative Investigation of Two Non-Contact Prototype Designs Based on a Squeeze-Film Levitation Approach

Authors: A. Almurshedi, M. Atherton, C. Mares, T. Stolarski, M. Miyatake

Abstract:

Transportation and handling of delicate and lightweight objects is currently a significant issue in some industries. Two common contactless movement prototype designs, ultrasonic transducer design and vibrating plate design, are compared. Both designs are based on the method of squeeze-film levitation, and this study aims to identify the limitations, and challenges of each. The designs are evaluated in terms of levitation capabilities, and characteristics. To this end, theoretical and experimental explorations are made. It is demonstrated that the ultrasonic transducer prototype design is better suited to the terms of levitation capabilities. However, the design has some operating and mechanical designing difficulties. For making accurate industrial products in micro-fabrication and nanotechnology contexts, such as semiconductor silicon wafers, micro-components and integrated circuits, non-contact oil-free, ultra-precision and low wear transport along the production line is crucial for enabling. One of the designs (design A) is called the ultrasonic chuck, for which an ultrasonic transducer (Langevin, FBI 28452 HS) comprises the main part. Whereas the other (design B), is a vibrating plate design, which consists of a plain rectangular plate made of Aluminium firmly fastened at both ends. The size of the rectangular plate is 200x100x2 mm. In addition, four rounded piezoelectric actuators of size 28 mm diameter with 0.5 mm thickness are glued to the underside of the plate. The vibrating plate is clamped at both ends in the horizontal plane through a steel supporting structure. In addition, the dynamic of levitation using the designs (A and B) has been investigated based on the squeeze film levitation (SFL). The input apparatus that is used with designs consist of a sine wave signal generator connected to an amplifier type ENP-1-1U (Echo Electronics). The latter has to be utilised to magnify the sine wave voltage that is produced by the signal generator. The measurements of the maximum levitation for three different semiconductor wafers of weights 52, 70 and 88 [g] for design A are 240, 205 and 187 [um], respectively. Whereas the physical results show that the average separation distance for a disk of 5 [g] weight for design B reaches 70 [um]. By using the methodology of squeeze film levitation, it is possible to hold an object in a non-contact manner. The analyses of the investigation outcomes signify that the non-contact levitation of design A provides more improvement than design B. However, design A is more complicated than design B in terms of its manufacturing. In order to identify an adequate non-contact SFL design, a comparison between two common such designs has been adopted for the current investigation. Specifically, the study will involve making comparisons in terms of the following issues: floating component geometries and material type constraints; final created pressure distributions; dangerous interactions with the surrounding space; working environment constraints; and complication and compactness of the mechanical design. Considering all these matters is essential for proficiently distinguish the better SFL design.

Keywords: ANSYS, floating, piezoelectric, squeeze-film

Procedia PDF Downloads 149
25180 Analysis of Operating Speed on Four-Lane Divided Highways under Mixed Traffic Conditions

Authors: Chaitanya Varma, Arpan Mehar

Abstract:

The present study demonstrates the procedure to analyse speed data collected on various four-lane divided sections in India. Field data for the study was collected at different straight and curved sections on rural highways with the help of radar speed gun and video camera. The data collected at the sections were analysed and parameters pertain to speed distributions were estimated. The different statistical distribution was analysed on vehicle type speed data and for mixed traffic speed data. It was found that vehicle type speed data was either follows the normal distribution or Log-normal distribution, whereas the mixed traffic speed data follows more than one type of statistical distribution. The most common fit observed on mixed traffic speed data were Beta distribution and Weibull distribution. The separate operating speed model based on traffic and roadway geometric parameters were proposed in the present study. The operating speed model with traffic parameters and curve geometry parameters were established. Two different operating speed models were proposed with variables 1/R and Ln(R) and were found to be realistic with a different range of curve radius. The models developed in the present study are simple and realistic and can be used for forecasting operating speed on four-lane highways.

Keywords: highway, mixed traffic flow, modeling, operating speed

Procedia PDF Downloads 460
25179 Accurate HLA Typing at High-Digit Resolution from NGS Data

Authors: Yazhi Huang, Jing Yang, Dingge Ying, Yan Zhang, Vorasuk Shotelersuk, Nattiya Hirankarn, Pak Chung Sham, Yu Lung Lau, Wanling Yang

Abstract:

Human leukocyte antigen (HLA) typing from next generation sequencing (NGS) data has the potential for applications in clinical laboratories and population genetic studies. Here we introduce a novel technique for HLA typing from NGS data based on read-mapping using a comprehensive reference panel containing all known HLA alleles and de novo assembly of the gene-specific short reads. An accurate HLA typing at high-digit resolution was achieved when it was tested on publicly available NGS data, outperforming other newly-developed tools such as HLAminer and PHLAT.

Keywords: human leukocyte antigens, next generation sequencing, whole exome sequencing, HLA typing

Procedia PDF Downloads 664
25178 Early Childhood Education: Teachers Ability to Assess

Authors: Ade Dwi Utami

Abstract:

Pedagogic competence is the basic competence of teachers to perform their tasks as educators. The ability to assess has become one of the demands in teachers pedagogic competence. Teachers ability to assess is related to curriculum instructions and applications. This research is aimed at obtaining data concerning teachers ability to assess that comprises of understanding assessment, determining assessment type, tools and procedure, conducting assessment process, and using assessment result information. It uses mixed method of explanatory technique in which qualitative data is used to verify the quantitative data obtained through a survey. The technique of quantitative data collection is by test whereas the qualitative data collection is by observation, interview and documentation. Then, the analyzed data is processed through a proportion study technique to be categorized into high, medium and low. The result of the research shows that teachers ability to assess can be grouped into 3 namely, 2% of high, 4% of medium and 94% of low. The data shows that teachers ability to assess is still relatively low. Teachers are lack of knowledge and comprehension in assessment application. The statement is verified by the qualitative data showing that teachers did not state which aspect was assessed in learning, record children’s behavior, and use the data result as a consideration to design a program. Teachers have assessment documents yet they only serve as means of completing teachers administration for the certification program. Thus, assessment documents were not used with the basis of acquired knowledge. The condition should become a consideration of the education institution of educators and the government to improve teachers pedagogic competence, including the ability to assess.

Keywords: assessment, early childhood education, pedagogic competence, teachers

Procedia PDF Downloads 246
25177 Statistical Analysis for Overdispersed Medical Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling over-dispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling over-dispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling over-dispersed medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling over-dispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian, and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling over-dispersed medical count data when ZIP and ZINB are inadequate.

Keywords: zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit

Procedia PDF Downloads 544
25176 Monotone Rational Trigonometric Interpolation

Authors: Uzma Bashir, Jamaludin Md. Ali

Abstract:

This study is concerned with the visualization of monotone data using a piece-wise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and other two are left-free. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

Keywords: trigonometric splines, monotone data, shape preserving, C1 monotone interpolant

Procedia PDF Downloads 271
25175 GPU-Based Back-Projection of Synthetic Aperture Radar (SAR) Data onto 3D Reference Voxels

Authors: Joshua Buli, David Pietrowski, Samuel Britton

Abstract:

Processing SAR data usually requires constraints in extent in the Fourier domain as well as approximations and interpolations onto a planar surface to form an exploitable image. This results in a potential loss of data requires several interpolative techniques, and restricts visualization to two-dimensional plane imagery. The data can be interpolated into a ground plane projection, with or without terrain as a component, all to better view SAR data in an image domain comparable to what a human would view, to ease interpretation. An alternate but computationally heavy method to make use of more of the data is the basis of this research. Pre-processing of the SAR data is completed first (matched-filtering, motion compensation, etc.), the data is then range compressed, and lastly, the contribution from each pulse is determined for each specific point in space by searching the time history data for the reflectivity values for each pulse summed over the entire collection. This results in a per-3D-point reflectivity using the entire collection domain. New advances in GPU processing have finally allowed this rapid projection of acquired SAR data onto any desired reference surface (called backprojection). Mathematically, the computations are fast and easy to implement, despite limitations in SAR phase history data size and 3D-point cloud size. Backprojection processing algorithms are embarrassingly parallel since each 3D point in the scene has the same reflectivity calculation applied for all pulses, independent of all other 3D points and pulse data under consideration. Therefore, given the simplicity of the single backprojection calculation, the work can be spread across thousands of GPU threads allowing for accurate reflectivity representation of a scene. Furthermore, because reflectivity values are associated with individual three-dimensional points, a plane is no longer the sole permissible mapping base; a digital elevation model or even a cloud of points (collected from any sensor capable of measuring ground topography) can be used as a basis for the backprojection technique. This technique minimizes any interpolations and modifications of the raw data, maintaining maximum data integrity. This innovative processing will allow for SAR data to be rapidly brought into a common reference frame for immediate exploitation and data fusion with other three-dimensional data and representations.

Keywords: backprojection, data fusion, exploitation, three-dimensional, visualization

Procedia PDF Downloads 86
25174 Minimum Biofilm Inhibitory Concentration of Lysostaphin on Clinical Isolates of Methicillin Resistant Staphylococcus aureus (MRSA)

Authors: N. Nagalakshmi, Indira Bairy, M. Atulya, Jesil Mathew

Abstract:

S. aureus has the ability to colonize and form biofilms on implanted biomaterials, which is difficult to disrupt, and current antimicrobial therapies for biofilms have largely proven unsuccessful in complete eradication of biofilm. The present study is aimed to determine the lysostaphin activity against biofilm producing MRSA clinical strains. The minimum biofilm inhibition activity of lysostaphin was studied against twelve strong biofilm producing isolates. The biofilm was produced in 96-wells micro-titer plate and biofilm was treated with lysostaphin (0.5 to 16 µg/ml), vancomycin (0.5 to 64 µg/ml) and linezolid (0.5 to 64 µg/ml). The biofilm inhibitory concentration of lysostaphin was found between 4 to 8 µg/ml whereas vancomycin and linezolid inhibited at concentration between 32 to 64 µg/ml. Results indicate that lysostaphin as potential antimicrobial activity against biofilm at lower concentration is comparable with routine antibiotics like vancomycin and linezolid.

Keywords: biofilm, lysostaphin, MRSA, minimum biofilm inhibitory concentration

Procedia PDF Downloads 366
25173 The Covid-19 Pandemic: Transmission, Misinformation, and Implications on Public Health

Authors: Jonathan De Rothewelle

Abstract:

A pandemic, such as that of COVID-19, can be a time of panic and stress; concerns about health supersede others such as work and leisure. With such concern comes the seeking of crucial information— information that, during a global health crisis, could mean the difference between life and death. Whether newspapers, cable news, or radio, media plays an important role in the transmission of medical information to the general public. Moreover, the news media in particular must uphold its obligation to the public to only disseminate factual, useful information. The circulation of misinformation, whether explicit or implicit, may profoundly impact global health. Using a discursive analytic framework founded in linguistics, the images and headlines of top coverage of COVID-19 from the most influential media outlets will be examined. Micro-analyses reveal what may be interpreted as evidence of sensationalism, which may be argued to a form of misinformation, and ultimately a departure from ethical media. Withdrawal from responsible reporting and publishing, expressly in times of epidemic, may cause further confusion and panic.

Keywords: public health, pandemic, public education, media

Procedia PDF Downloads 151
25172 Linkages between Innovation Policies and SMEs' Innovation Activities: Empirical Evidence from 15 Transition Countries

Authors: Anita Richter

Abstract:

Innovation is one of the key foundations of competitive advantage, generating growth and welfare worldwide. Consequently, all firms should innovate to bring new ideas to the market. Innovation is a vital growth driver, particularly for transition countries to move towards knowledge-based, high-income economies. However, numerous barriers, such as financial, regulatory or infrastructural constraints prevent, in particular, new and small firms in transition countries from innovating. Thus SMEs’ innovation output may benefit substantially from government support. This research paper aims to assess the effect of government interventions on innovation activities in SMEs in emerging countries. Until now academic research related to the innovation policies focused either on single country and/or high-income countries assessments and less on cross-country and/or low and middle-income countries. Therefore the paper seeks to close the research gap by providing empirical evidence from 8,500 firms in 15 transition countries (Eastern Europe, South Caucasus, South East Europe, Middle East and North Africa). Using firm-level data from the Business Environment and Enterprise Performance Survey of the World Bank and EBRD and policy data from the SME Policy Index of the OECD, the paper investigates how government interventions affect SME’s likelihood of investing in any technological and non-technological innovation. Using the Standard Linear Regression, the impact of government interventions on SMEs’ innovation output and R&D activities is measured. The empirical analysis suggests that a firm’s decision to invest into innovative activities is sensitive to government interventions. A firm’s likelihood to invest into innovative activities increases by 3% to 8%, if the innovation eco-system noticeably improves (measured by an increase of 1 level in the SME Policy Index). At the same time, a better eco-system encourages SMEs to invest more in R&D. Government reforms in establishing a dedicated policy framework (IP legislation), institutional infrastructure (science and technology parks, incubators) and financial support (public R&D grants, innovation vouchers) are particularly relevant to stimulate innovation performance in SMEs. Particular segments of the SME population, namely micro and manufacturing firms, are more likely to benefit from an increased innovation framework conditions. The marginal effects are particularly strong on product innovation, process innovation, and marketing innovation, but less on management innovation. In conclusion, government interventions supporting innovation will likely lead to higher innovation performance of SMEs. They increase productivity at both firm and country level, which is a vital step in transitioning towards knowledge-based market economies.

Keywords: innovation, research and development, government interventions, economic development, small and medium-sized enterprises, transition countries

Procedia PDF Downloads 324
25171 Integration of Knowledge and Metadata for Complex Data Warehouses and Big Data

Authors: Jean Christian Ralaivao, Fabrice Razafindraibe, Hasina Rakotonirainy

Abstract:

This document constitutes a resumption of work carried out in the field of complex data warehouses (DW) relating to the management and formalization of knowledge and metadata. It offers a methodological approach for integrating two concepts, knowledge and metadata, within the framework of a complex DW architecture. The objective of the work considers the use of the technique of knowledge representation by description logics and the extension of Common Warehouse Metamodel (CWM) specifications. This will lead to a fallout in terms of the performance of a complex DW. Three essential aspects of this work are expected, including the representation of knowledge in description logics and the declination of this knowledge into consistent UML diagrams while respecting or extending the CWM specifications and using XML as pivot. The field of application is large but will be adapted to systems with heteroge-neous, complex and unstructured content and moreover requiring a great (re)use of knowledge such as medical data warehouses.

Keywords: data warehouse, description logics, integration, knowledge, metadata

Procedia PDF Downloads 138
25170 Size Selective Synthesis of Sulfur Nanoparticles and Their Anticancer Activity

Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein

Abstract:

Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, syn-thesis of nano-composites for lithium batteries, modification of carbon nano tubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work Sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM and TEM in order to confirm their sizes and structures.Application of nanotechnology is suggested for diag-nosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.

Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, XRD

Procedia PDF Downloads 654
25169 The Effect of Land Cover on Movement of Vehicles in the Terrain

Authors: Krisstalova Dana, Mazal Jan

Abstract:

This article deals with geographical conditions in terrain and their effect on the movement of vehicles, their effect on speed and safety of movement of people and vehicles. Finding of the optimal routes outside the communication is studied in the army environment, but it occur in civilian as well, primarily in crisis situation, or by the provision of assistance when natural disasters such as floods, fires, storms etc., have happened. These movements require the optimization of routes when effects of geographical factors should be included. The most important factor is the surface of a terrain. It is based on several geographical factors as are slopes, soil conditions, micro-relief, a type of surface and meteorological conditions. Their mutual impact has been given by coefficient of deceleration. This coefficient can be used for the commander`s decision. New approaches and methods of terrain testing, mathematical computing, mathematical statistics or cartometric investigation are necessary parts of this evaluation.

Keywords: movement in a terrain, geographical factors, surface of a field, mathematical evaluation, optimization and searching paths

Procedia PDF Downloads 425
25168 Data Analytics in Energy Management

Authors: Sanjivrao Katakam, Thanumoorthi I., Antony Gerald, Ratan Kulkarni, Shaju Nair

Abstract:

With increasing energy costs and its impact on the business, sustainability today has evolved from a social expectation to an economic imperative. Therefore, finding methods to reduce cost has become a critical directive for Industry leaders. Effective energy management is the only way to cut costs. However, Energy Management has been a challenge because it requires a change in old habits and legacy systems followed for decades. Today exorbitant levels of energy and operational data is being captured and stored by Industries, but they are unable to convert these structured and unstructured data sets into meaningful business intelligence. It must be noted that for quick decisions, organizations must learn to cope with large volumes of operational data in different formats. Energy analytics not only helps in extracting inferences from these data sets, but also is instrumental in transformation from old approaches of energy management to new. This in turn assists in effective decision making for implementation. It is the requirement of organizations to have an established corporate strategy for reducing operational costs through visibility and optimization of energy usage. Energy analytics play a key role in optimization of operations. The paper describes how today energy data analytics is extensively used in different scenarios like reducing operational costs, predicting energy demands, optimizing network efficiency, asset maintenance, improving customer insights and device data insights. The paper also highlights how analytics helps transform insights obtained from energy data into sustainable solutions. The paper utilizes data from an array of segments such as retail, transportation, and water sectors.

Keywords: energy analytics, energy management, operational data, business intelligence, optimization

Procedia PDF Downloads 364
25167 Efficient Frequent Itemset Mining Methods over Real-Time Spatial Big Data

Authors: Hamdi Sana, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, there is a huge increase in the use of spatio-temporal applications where data and queries are continuously moving. As a result, the need to process real-time spatio-temporal data seems clear and real-time stream data management becomes a hot topic. Sliding window model and frequent itemset mining over dynamic data are the most important problems in the context of data mining. Thus, sliding window model for frequent itemset mining is a widely used model for data stream mining due to its emphasis on recent data and its bounded memory requirement. These methods use the traditional transaction-based sliding window model where the window size is based on a fixed number of transactions. Actually, this model supposes that all transactions have a constant rate which is not suited for real-time applications. And the use of this model in such applications endangers their performance. Based on these observations, this paper relaxes the notion of window size and proposes the use of a timestamp-based sliding window model. In our proposed frequent itemset mining algorithm, support conditions are used to differentiate frequents and infrequent patterns. Thereafter, a tree is developed to incrementally maintain the essential information. We evaluate our contribution. The preliminary results are quite promising.

Keywords: real-time spatial big data, frequent itemset, transaction-based sliding window model, timestamp-based sliding window model, weighted frequent patterns, tree, stream query

Procedia PDF Downloads 162
25166 The Extent of Big Data Analysis by the External Auditors

Authors: Iyad Ismail, Fathilatul Abdul Hamid

Abstract:

This research was mainly investigated to recognize the extent of big data analysis by external auditors. This paper adopts grounded theory as a framework for conducting a series of semi-structured interviews with eighteen external auditors. The research findings comprised the availability extent of big data and big data analysis usage by the external auditors in Palestine, Gaza Strip. Considering the study's outcomes leads to a series of auditing procedures in order to improve the external auditing techniques, which leads to high-quality audit process. Also, this research is crucial for auditing firms by giving an insight into the mechanisms of auditing firms to identify the most important strategies that help in achieving competitive audit quality. These results are aims to instruct the auditing academic and professional institutions in developing techniques for external auditors in order to the big data analysis. This paper provides appropriate information for the decision-making process and a source of future information which affects technological auditing.

Keywords: big data analysis, external auditors, audit reliance, internal audit function

Procedia PDF Downloads 70
25165 Size Selective Synthesis of Sulfur Nanoparticles and Their Anti Cancer Activity

Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein

Abstract:

Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, synthesis of nanocomposites for lithium batteries, modification of carbon nanotubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro-emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work, sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM, and TEM in order to confirm their sizes and structures. Application of nanotechnology is suggested for diagnosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.

Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, anti cancer activity, XRD

Procedia PDF Downloads 515
25164 A Model of Teacher Leadership in History Instruction

Authors: Poramatdha Chutimant

Abstract:

The objective of the research was to propose a model of teacher leadership in history instruction for utilization. Everett M. Rogers’ Diffusion of Innovations Theory is applied as theoretical framework. Qualitative method is to be used in the study, and the interview protocol used as an instrument to collect primary data from best practices who awarded by Office of National Education Commission (ONEC). Open-end questions will be used in interview protocol in order to gather the various data. Then, information according to international context of history instruction is the secondary data used to support in the summarizing process (Content Analysis). Dendrogram is a key to interpret and synthesize the primary data. Thus, secondary data comes as the supportive issue in explanation and elaboration. In-depth interview is to be used to collected information from seven experts in educational field. The focal point is to validate a draft model in term of future utilization finally.

Keywords: history study, nationalism, patriotism, responsible citizenship, teacher leadership

Procedia PDF Downloads 280
25163 A CMOS-Integrated Hall Plate with High Sensitivity

Authors: Jin Sup Kim, Min Seo

Abstract:

An improved cross-shaped hall plate with high sensitivity is described in this paper. Among different geometries that have been simulated and measured using Helmholtz coil. The paper describes the physical hall plate design and implementation in a 0.18-µm CMOS technology. In this paper, the biasing is a constant voltage mode. In the voltage mode, magnetic field is converted into an output voltage. The output voltage is typically in the order of micro- to millivolt and therefore, it must be amplified before being transmitted to the outside world. The study, design and performance optimization of hall plate has been carried out with the COMSOL Multiphysics. It is used to estimate the voltage distribution in the hall plate with and without magnetic field and to optimize the geometry. The simulation uses the nominal bias current of 1mA. The applied magnetic field is in the range from 0 mT to 20 mT. Measured results of the one structure over the 10 available samples show for the best sensitivity of 2.5 %/T at 20mT.

Keywords: cross-shaped hall plate, sensitivity, CMOS technology, Helmholtz coil

Procedia PDF Downloads 197
25162 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.

Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model

Procedia PDF Downloads 68
25161 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO

Procedia PDF Downloads 442
25160 Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data

Authors: Phumelele Kubheka, Pius Owolawi, Gbolahan Aiyetoro

Abstract:

Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model.

Keywords: big data, latent Dirichlet allocation, latent semantic indexing, telco, topic modeling, twitter

Procedia PDF Downloads 150
25159 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 353
25158 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework

Authors: Abbas Raza Ali

Abstract:

Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.

Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation

Procedia PDF Downloads 175
25157 Programming with Grammars

Authors: Peter M. Maurer Maurer

Abstract:

DGL is a context free grammar-based tool for generating random data. Many types of simulator input data require some computation to be placed in the proper format. For example, it might be necessary to generate ordered triples in which the third element is the sum of the first two elements, or it might be necessary to generate random numbers in some sorted order. Although DGL is universal in computational power, generating these types of data is extremely difficult. To overcome this problem, we have enhanced DGL to include features that permit direct computation within the structure of a context free grammar. The features have been implemented as special types of productions, preserving the context free flavor of DGL specifications.

Keywords: DGL, Enhanced Context Free Grammars, Programming Constructs, Random Data Generation

Procedia PDF Downloads 147
25156 A Model Architecture Transformation with Approach by Modeling: From UML to Multidimensional Schemas of Data Warehouses

Authors: Ouzayr Rabhi, Ibtissam Arrassen

Abstract:

To provide a complete analysis of the organization and to help decision-making, leaders need to have relevant data; Data Warehouses (DW) are designed to meet such needs. However, designing DW is not trivial and there is no formal method to derive a multidimensional schema from heterogeneous databases. In this article, we present a Model-Driven based approach concerning the design of data warehouses. We describe a multidimensional meta-model and also specify a set of transformations starting from a Unified Modeling Language (UML) metamodel. In this approach, the UML metamodel and the multidimensional one are both considered as a platform-independent model (PIM). The first meta-model is mapped into the second one through transformation rules carried out by the Query View Transformation (QVT) language. This proposal is validated through the application of our approach to generating a multidimensional schema of a Balanced Scorecard (BSC) DW. We are interested in the BSC perspectives, which are highly linked to the vision and the strategies of an organization.

Keywords: data warehouse, meta-model, model-driven architecture, transformation, UML

Procedia PDF Downloads 160
25155 Secured Embedding of Patient’s Confidential Data in Electrocardiogram Using Chaotic Maps

Authors: Butta Singh

Abstract:

This paper presents a chaotic map based approach for secured embedding of patient’s confidential data in electrocardiogram (ECG) signal. The chaotic map generates predefined locations through the use of selective control parameters. The sample value difference method effectually hides the confidential data in ECG sample pairs at these predefined locations. Evaluation of proposed method on all 48 records of MIT-BIH arrhythmia ECG database demonstrates that the embedding does not alter the diagnostic features of cover ECG. The secret data imperceptibility in stego-ECG is evident through various statistical and clinical performance measures. Statistical metrics comprise of Percentage Root Mean Square Difference (PRD) and Peak Signal to Noise Ratio (PSNR). Further, a comparative analysis between proposed method and existing approaches was also performed. The results clearly demonstrated the superiority of proposed method.

Keywords: chaotic maps, ECG steganography, data embedding, electrocardiogram

Procedia PDF Downloads 196
25154 Mobile Technology as a Catalyst for Creative Teaching: A Developmental Based Research Study in a Large Public School in Mozambique

Authors: L. O'Sullivan, C. Murphy

Abstract:

This study examined the impact, if any, of mobile technology on the achievement of United Nations Sustainable Development Goal 4: Quality Education for All. It focused specifically on teachers and their practice, in a school with large class sizes and limited teaching resources. Teachers in third grade in a large public school in Mozambique were provided with an iPad connected to a projector, powered by a mobile solar-panel. Teachers also participated in ten days of professional development workshops over thirteen months. Teacher discussions, micro-teaching sessions and classes in the school were video-recorded, and data was triangulated using surveys and additional documents including class plans, digital artifacts created by teachers, workshop notes and researcher field notes. The catalyst for teachers’ creativity development was to use the photographic capabilities of the iPad to capture the local context and make lessons relevant to the lived experience of the students. In the transition stage, teachers worked with lesson plans and support from the professional development workshops to make small incremental changes to their practice, which scaffolded their growing competence in the creative use of the technology as a tool for teaching and developing new teaching resources. Over the full period of the study, these small changes in practice resulted in a cultural shift in how teachers approached all lessons, even those in which they were not using the technology. They developed into working as a community of practice. The digital lessons created were re-used and further developed by other teachers, providing a relevant and valuable bank of content in a context lacking in books and other teaching resources. This study demonstrated that mobile technology proved to be a successful catalyst for impacting creative teaching practice in this context, and supports the Quality Education for All Sustainable Development Goal.

Keywords: mobile technology, creative teaching, sub-Saharan Africa, quality education for all

Procedia PDF Downloads 128
25153 Detection Efficient Enterprises via Data Envelopment Analysis

Authors: S. Turkan

Abstract:

In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.

Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios

Procedia PDF Downloads 324