Search results for: medication error
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2300

Search results for: medication error

860 Performance of Coded Multi-Line Copper Wire for G.fast Communications in the Presence of Impulsive Noise

Authors: Israa Al-Neami, Ali J. Al-Askery, Martin Johnston, Charalampos Tsimenidis

Abstract:

In this paper, we focus on the design of a multi-line copper wire (MLCW) communication system. First, we construct our proposed MLCW channel and verify its characteristics based on the Kolmogorov-Smirnov test. In addition, we apply Middleton class A impulsive noise (IN) to the copper channel for further investigation. Second, the MIMO G.fast system is adopted utilizing the proposed MLCW channel model and is compared to a single line G-fast system. Second, the performance of the coded system is obtained utilizing concatenated interleaved Reed-Solomon (RS) code with four-dimensional trellis-coded modulation (4D TCM), and compared to the single line G-fast system. Simulations are obtained for high quadrature amplitude modulation (QAM) constellations that are commonly used with G-fast communications, the results demonstrate that the bit error rate (BER) performance of the coded MLCW system shows an improvement compared to the single line G-fast systems.

Keywords: G.fast, Middleton Class A impulsive noise, mitigation techniques, Copper channel model

Procedia PDF Downloads 132
859 Scale-Up Process for Phyllanthus niruri Enriched Extract by Supercritical Fluid Extraction

Authors: Norsyamimi Hassim, Masturah Markom

Abstract:

Supercritical fluid extraction (SFE) has been known as a sustainable and safe extraction technique for plant extraction due to the minimal usage of organic solvent. In this study, a scale-up process for the selected herbal plant (Phyllanthus niruri) was investigated by using supercritical carbon dioxide (SC-CO2) with food-grade (ethanol-water) cosolvent. The quantification of excess ethanol content in the final dry extracts was conducted to determine the safety of enriched extracts. The extraction yields obtained by scale-up SFE unit were not much different compared to the predicted extraction yields with an error of 2.92%. For component contents, the scale-up extracts showed comparable quality with laboratory-scale experiments. The final dry extract showed that the excess ethanol content was 1.56% g/g extract. The fish embryo toxicity test (FETT) on the zebrafish embryos showed no toxicity effects by the extract, where the LD50 value was found to be 505.71 µg/mL. Thus, it has been proven that SFE with food-grade cosolvent is a safe extraction technique for the production of bioactive compounds from P. niruri.

Keywords: scale-up, supercritical fluid extraction, enriched extract, toxicity, ethanol content

Procedia PDF Downloads 134
858 To Compare Norepinephrine and Norepinephrine with Methylene Blue for the Management of Septic Shock

Authors: K. Rajarajeswaran, Krishna Prasad

Abstract:

Introduction: Refractory shock is a typical consequence of sepsis that does not improve with standard vasopressor therapy. A possible adjuvant therapeutic option for treating refractory shock in sepsis is methylene blue. This study looked at the effects of intravenous methylene blue plus norepinephrine given as a single bolus infusion on mortality and hemodynamic improvement in patients suffering from refractory shock. Methodology: This six-month observational prospective study was carried out at an intensive care unit, teaching hospital, and medical college. It involved 112 patients who had been diagnosed with refractory septic shock and needed vasopressor medication. Group B received injection norepinephrine 0.01 µg/kg/min infusion alone, while Group A received injection methylene blue 2 mg/kg iv single bolus (fixed dose) in addition to injection norepinephrine 0.01 µg/kg/min infusion. Both groups' noradrenaline doses were titrated to reach the desired MAP of 60–75 mm Hg. The amount of norepinephrine needed to sustain a MAP of more than 60 mm Hg was the data gathered. Serum lactate, procalcitonin level, C-reactive protein, length of stay in the intensive care unit (ICU), sequential organ failure assessment (SOFA) score, and duration of mechanical ventilation, incidence of acute kidney injury (AKI), and mortality were compared. Results: A total of 112 patients with refractory shock were included in the study. With the use of IV methylene blue, 36 (59.3%) patients showed significant improvement in MAP within 2 hours (77.12 ± 8.90 vs 74.28 ± 21.84, p = 0.005). Responders were 4.009 times more likely to have vasopressor-free time within 24 hours (19.5% vs 6.1%, p = 0.022, odds ratio 5.017, 95% confidence interval, 1.110–14.283). The serum lactate was lower, and urine output was higher in group I than in group II (p <0.05). Group I had a significantly greater reduction in SOFA score in 12 hours than group II. However, there was no significant difference in terms of mortality, length of ICU stay, ventilator free days, and incidence of AKI. In the responder group, there was a significant increase in the MAP and decrease in vasopressor requirement pre- and post-infusion of methylene blue (p < 0.05). Responder had shorter vasopressor-free days as compared with non-responder (5.44 vs 6.99, p = 0.007). Conclusion: When administered as adjuvant therapy, a single-dose bolus infusion of Methylene Blue plus Norepinephrine may aid in meeting early resuscitation goals for the management of patients with septic shock. But the patients' death rate, ICU stay duration, ventilator-free days, or incidence of AKI were unchanged.

Keywords: norepinephrine, methylene blue, shock, vasopressor

Procedia PDF Downloads 21
857 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache

Abstract:

This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting

Procedia PDF Downloads 55
856 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation

Authors: Lawrence A. Farinola

Abstract:

Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.

Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error

Procedia PDF Downloads 122
855 Social Responsibility in the Theory of Organisation Management

Authors: Patricia Crentsil, Alvina Oriekhova

Abstract:

The aim of the study is to determine social responsibility in the theory of organisation management. The main objectives are to examine the link between accountability,transparency, and ethical onorganisation management. The study seeks to answer questions that have received inadequate attention in social responsibility literature. Specifically, how accountability, transparency of policy, and ethical aspect enhanced organisation management? The target population of the study comprises of Deans and Head of Departments of Public Universities and Technical Universities in Ghana. The study used purposive sampling technique to select the Public Universities and technical universities in Ghana and adopted simple random Technique to select 300 participants from all Technical Universities in Ghana and 500 participants from all Traditional Universities in Ghana. The sample size will be 260 using confidence level = 95%, Margin of Error = 5%. The study used both primary and secondary data. The study adopted exploratory design to address the research questions. Results indicated thataccountability, transparency, and ethical have a positive significant link with organisation management. The study suggested that management can motivate an organization to act in a socially responsible manner.

Keywords: corporate social responsibility, organisation management, organisation management theory, social responsibility

Procedia PDF Downloads 125
854 Evaluation of Cardiac Rhythm Patterns after Open Surgical Maze-Procedures from Three Years' Experiences in a Single Heart Center

Authors: J. Yan, B. Pieper, B. Bucsky, H. H. Sievers, B. Nasseri, S. A. Mohamed

Abstract:

In order to optimize the efficacy of medications, the regular follow-up with long-term continuous monitoring of heart rhythmic patterns has been facilitated since clinical introduction of cardiac implantable electronic monitoring devices (CIMD). Extensive analysis of rhythmic circadian properties is capable to disclose the distributions of arrhythmic events, which may support appropriate medication according rate-/rhythm-control strategy and minimize consequent afflictions. 348 patients (69 ± 0.5ys, male 61.8%) with predisposed atrial fibrillation (AF), undergoing primary ablating therapies combined to coronary or valve operations and secondary implantation of CIMDs, were involved and divided into 3 groups such as PAAF (paroxysmal AF) (n=99, male 68.7%), PEAF (persistent AF) (n=94, male 62.8%), and LSPEAF (long-standing persistent AF) (n=155, male 56.8%). All patients participated in three-year ambulant follow-up (3, 6, 9, 12, 18, 24, 30 and 36 months). Burdens of atrial fibrillation recurrence were assessed using cardiac monitor devices, whereby attacks frequencies and their circadian patterns were systemically analyzed. Anticoagulants and regular anti-arrhythmic medications were evaluated and the last were listed in terms of anti-rate and anti-rhythm regimens. Patients in the PEAF-group showed the least AF-burden after surgical ablating procedures compared to both of the other subtypes (p < 0.05). The AF-recurrences predominantly performed such attacks’ property as shorter than one hour, namely within 10 minutes (p < 0.05), regardless of AF-subtypes. Concerning circadian distribution of the recurrence attacks, frequent AF-attacks were mostly recorded in the morning in the PAAF-group (p < 0.05), while the patients with predisposed PEAF complained less attack-induced discomforts in the latter half of the night and the ones with LSPEAF only if they were not physically active after primary surgical ablations. Different AF-subtypes presented distinct therapeutic efficacies after appropriate surgical ablating procedures and recurrence properties in sense of circadian distribution. An optimization of medical regimen and drug dosages to maintain the therapeutic success needs more attention to detailed assessment of the long-term follow-up. Rate-control strategy plays a much more important role than rhythm-control in the ongoing follow-up examinations.

Keywords: atrial fibrillation, CIMD, MAZE, rate-control, rhythm-control, rhythm patterns

Procedia PDF Downloads 157
853 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures

Authors: Adriano Z. Zambom, Preethi Ravikumar

Abstract:

One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.

Keywords: additive model, nonparametric regression, variable selection, Akaike Information Criteria

Procedia PDF Downloads 266
852 Approach to Formulate Intuitionistic Fuzzy Regression Models

Authors: Liang-Hsuan Chen, Sheng-Shing Nien

Abstract:

This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches.

Keywords: fuzzy sets, intuitionistic fuzzy number, intuitionistic fuzzy regression, mathematical programming method

Procedia PDF Downloads 140
851 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development

Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar

Abstract:

The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).

Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV

Procedia PDF Downloads 66
850 Modeling Studies on the Elevated Temperatures Formability of Tube Ends Using RSM

Authors: M. J. Davidson, N. Selvaraj, L. Venugopal

Abstract:

The elevated temperature forming studies on the expansion of thin walled tubes have been studied in the present work. The influence of process parameters namely the die angle, the die ratio and the operating temperatures on the expansion of tube ends at elevated temperatures is carried out. The range of operating parameters have been identified by perfoming extensive simulation studies. The hot forming parameters have been evaluated for AA2014 alloy for performing the simulation studies. Experimental matrix has been developed from the feasible range got from the simulation results. The design of experiments is used for the optimization of process parameters. Response Surface Method’s (RSM) and Box-Behenken design (BBD) is used for developing the mathematical model for expansion. Analysis of variance (ANOVA) is used to analyze the influence of process parameters on the expansion of tube ends. The effect of various process combinations of expansion are analyzed through graphical representations. The developed model is found to be appropriate as the coefficient of determination value is very high and is equal to 0.9726. The predicted values are found to coincide well with the experimental results, within acceptable error limits.

Keywords: expansion, optimization, Response Surface Method (RSM), ANOVA, bbd, residuals, regression, tube

Procedia PDF Downloads 509
849 Artificial Intelligence in the Design of High-Strength Recycled Concrete

Authors: Hadi Rouhi Belvirdi, Davoud Beheshtizadeh

Abstract:

The increasing demand for sustainable construction materials has led to a growing interest in high-strength recycled concrete (HSRC). Utilizing recycled materials not only reduces waste but also minimizes the depletion of natural resources. This study explores the application of artificial intelligence (AI) techniques to model and predict the properties of HSRC. In the past two decades, the production levels in various industries and, consequently, the amount of waste have increased significantly. Continuing this trend will undoubtedly cause irreparable damage to the environment. For this reason, engineers have been constantly seeking practical solutions for recycling industrial waste in recent years. This research utilized the results of the compressive strength of 90-day high-strength recycled concrete. The method for creating recycled concrete involved replacing sand with crushed glass and using glass powder instead of cement. Subsequently, a feedforward artificial neural network was employed to model the compressive strength results for 90 days. The regression and error values obtained indicate that this network is suitable for modeling the compressive strength data.

Keywords: high-strength recycled concrete, feedforward artificial neural network, regression, construction materials

Procedia PDF Downloads 17
848 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison

Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran

Abstract:

This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.

Keywords: heat transfer, nanofluid, single-phase models, two-phase models

Procedia PDF Downloads 484
847 Adaptive Anchor Weighting for Improved Localization with Levenberg-Marquardt Optimization

Authors: Basak Can

Abstract:

This paper introduces an iterative and weighted localization method that utilizes a unique cost function formulation to significantly enhance the performance of positioning systems. The system employs locators, such as Gateways (GWs), to estimate and track the position of an End Node (EN). Performance is evaluated relative to the number of locators, with known locations determined through calibration. Performance evaluation is presented utilizing low cost single-antenna Bluetooth Low Energy (BLE) devices. The proposed approach can be applied to alternative Internet of Things (IoT) modulation schemes, as well as Ultra WideBand (UWB) or millimeter-wave (mmWave) based devices. In non-line-of-sight (NLOS) scenarios, using four or eight locators yields a 95th percentile localization performance of 2.2 meters and 1.5 meters, respectively, in a 4,305 square feet indoor area with BLE 5.1 devices. This method outperforms conventional RSSI-based techniques, achieving a 51% improvement with four locators and a 52 % improvement with eight locators. Future work involves modeling interference impact and implementing data curation across multiple channels to mitigate such effects.

Keywords: lateration, least squares, Levenberg-Marquardt algorithm, localization, path-loss, RMS error, RSSI, sensors, shadow fading, weighted localization

Procedia PDF Downloads 29
846 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus

Authors: Ehsan Mehryaar, Reza Bushehri

Abstract:

One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.

Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response

Procedia PDF Downloads 203
845 Multi-Objective Multi-Mode Resource-Constrained Project Scheduling Problem by Preemptive Fuzzy Goal Programming

Authors: Busaba Phurksaphanrat

Abstract:

This research proposes a pre-emptive fuzzy goal programming model for multi-objective multi-mode resource constrained project scheduling problem. The objectives of the problem are minimization of the total time and the total cost of the project. Objective in a multi-mode resource-constrained project scheduling problem is often a minimization of make-span. However, both time and cost should be considered at the same time with different level of important priorities. Moreover, all elements of cost functions in a project are not included in the conventional cost objective function. Incomplete total project cost causes an error in finding the project scheduling time. In this research, pre-emptive fuzzy goal programming is presented to solve the multi-objective multi-mode resource constrained project scheduling problem. It can find the compromise solution of the problem. Moreover, it is also flexible in adjusting to find a variety of alternative solutions.

Keywords: multi-mode resource constrained project scheduling problem, fuzzy set, goal programming, pre-emptive fuzzy goal programming

Procedia PDF Downloads 437
844 Maximum Deformation Estimation for Reinforced Concrete Buildings Using Equivalent Linearization Method

Authors: Chien-Kuo Chiu

Abstract:

In the displacement-based seismic design and evaluation, equivalent linearization method is one of the approximation methods to estimate the maximum inelastic displacement response of a system. In this study, the accuracy of two equivalent linearization methods are investigated. The investigation consists of three soil condition in Taiwan (Taipei Basin 1, 2, and 3) and five different heights of building (H_r= 10, 20, 30, 40, and 50 m). The first method is the Taiwan equivalent linearization method (TELM) which was proposed based on Japanese equivalent linear method considering the modification factor, α_T= 0.85. On the basis of Lin and Miranda study, the second method is proposed with some modification considering Taiwan soil conditions. From this study, it is shown that Taiwanese equivalent linearization method gives better estimation compared to the modified Lin and Miranda method (MLM). The error index for the Taiwanese equivalent linearization method are 16%, 13%, and 12% for Taipei Basin 1, 2, and 3, respectively. Furthermore, a ductility demand spectrum of single-degree-of-freedom (SDOF) system is presented in this study as a guide for engineers to estimate the ductility demand of a structure.

Keywords: displacement-based design, ductility demand spectrum, equivalent linearization method, RC buildings, single-degree-of-freedom

Procedia PDF Downloads 162
843 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm

Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park

Abstract:

For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.

Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure

Procedia PDF Downloads 533
842 A Multigrid Approach for Three-Dimensional Inverse Heat Conduction Problems

Authors: Jianhua Zhou, Yuwen Zhang

Abstract:

A two-step multigrid approach is proposed to solve the inverse heat conduction problem in a 3-D object under laser irradiation. In the first step, the location of the laser center is estimated using a coarse and uniform grid system. In the second step, the front-surface temperature is recovered in good accuracy using a multiple grid system in which fine mesh is used at laser spot center to capture the drastic temperature rise in this region but coarse mesh is employed in the peripheral region to reduce the total number of sensors required. The effectiveness of the two-step approach and the multiple grid system are demonstrated by the illustrative inverse solutions. If the measurement data for the temperature and heat flux on the back surface do not contain random error, the proposed multigrid approach can yield more accurate inverse solutions. When the back-surface measurement data contain random noise, accurate inverse solutions cannot be obtained if both temperature and heat flux are measured on the back surface.

Keywords: conduction, inverse problems, conjugated gradient method, laser

Procedia PDF Downloads 370
841 Implementation of Data Science in Field of Homologation

Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande

Abstract:

For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.

Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)

Procedia PDF Downloads 163
840 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.

Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model

Procedia PDF Downloads 68
839 Nimart-trained Nurses' Perspectives Regarding Virally Unsuppressed Children HIV-positive on Antiretroviral Therapy and Missing Scheduled Clinic Visits: Mopani District, Limpopo Province

Authors: Linneth Nkateko Mabila, Patrick Hulisani Demana, Tebogo Maria Mothiba

Abstract:

Background: Sustaining adherence to antiretroviral therapy (ART) over the long term by people, especially children living with Human-Immunodeficiency Virus (HIV), requires accurate and consistent monitoring, and this is a particular challenge for countries in sub-Saharan Africa. However, the regularity and punctuality in monthly antiretroviral treatment collections indicate medication adherence to a certain extent since it has been revealed to be a significant determinant of the outcome of ART. Aim: This study assessed and described the pattern of monthly antiretroviral treatment collections among a cohort of virally unsuppressed HIV-positive children initiated and managed on ART in the rural public clinics of Mopani District, Limpopo, and explored the nurses' perceptions and views of the findings. Methods: A facility-based mixed-methods study was conducted to assess the honoring of scheduled monthly treatment collection practices by a cohort of HIV-positive children under 15 years initiated and managed on ART by Nurse Initiated Management of Antiretroviral Treatment (NIMART)-trained professional nurses (PNs) from 01 January 2015 to 31 December 2015 in public PHC clinics of Mopani District Municipality. This was followed by the exploration of the nurses' perceptions and views regarding this issue to share their experiences and knowledge acquired through managing these children on ART. Results: From a total of 7105 analysable visits, only 44% (3134) were honored as scheduled, with 40% (2828) of children presenting to the clinics after the scheduled appointment date – they missed their appointments, and 11% (768) of treatment collections that took place before the scheduled appointment date. This finding was further confirmed by 90% (97) of the nurses, who reported that they have children who miss scheduled appointments in their public clinics. The primary reasons for children missing appointments were related to caregivers' forgetfulness and conflict between the school schedule and the dates of clinic visits. Conclusion: We confirmed a high prevalence of non-adherence to scheduled monthly ART collections and the existence of health system, social, and caregiver-related factors that threaten treatment adherence and proper clinical outcomes. These findings suggest an urgent need for intervention since non-adherence to ARV therapy can be life-threatening to the child and poses the danger of reduced life expectancy.

Keywords: antiretroviral therapy (art), nimart, virally unsuppressed children, missed appointments

Procedia PDF Downloads 105
838 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading

Authors: Peter Shi

Abstract:

Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.

Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market

Procedia PDF Downloads 72
837 New Derivatives 7-(diethylamino)quinolin-2-(1H)-one Based Chalcone Colorimetric Probes for Detection of Bisulfite Anion in Cationic Micellar Media

Authors: Guillermo E. Quintero, Edwin G. Perez, Oriel Sanchez, Christian Espinosa-Bustos, Denis Fuentealba, Margarita E. Aliaga

Abstract:

Bisulfite ion (HSO3-) has been used as a preservative in food, drinks, and medication. However, it is well-known that HSO3- can cause health problems like asthma and allergic reactions in people. Due to the above, the development of analytical methods for detecting this ion has gained great interest. In line with the above, the current use of colorimetric and/or fluorescent probes as a detection technique has acquired great relevance due to their high sensitivity and accuracy. In this context, 2-quinolinone derivatives have been found to possess promising activity as antiviral agents, sensitizers in solar cells, antifungals, antioxidants, and sensors. In particular, 7-(diethylamino)-2-quinolinone derivatives have attracted attention in recent years since their suitable photophysical properties become promising fluorescent probes. In Addition, there is evidence that photophysical properties and reactivity can be affected by the study medium, such as micellar media. Based on the above background, 7-(diethylamino)-2-quinolinone derivatives based chalcone will be able to be incorporated into a cationic micellar environment (Cetyltrimethylammonium bromide, CTAB). Furthermore, the supramolecular control induced by the micellar environment will increase the reactivity of these derivatives towards nucleophilic analytes such as HSO3- (Michael-type addition reaction), leading to the generation of new colorimetric and/or fluorescent probes. In the present study, two derivatives of 7-(diethylamino)-2-quinolinone based chalcone DQD1-2 were synthesized according to the method reported by the literature. These derivatives were structurally characterized by 1H, 13C NMR, and HRMS-ESI. In addition, UV-VIS and fluorescence studies determined absorption bands near 450 nm, emission bands near 600 nm, fluorescence quantum yields near 0.01, and fluorescence lifetimes of 5 ps. In line with the foregoing, these photophysical properties aforementioned were improved in the presence of a cationic micellar medium using CTAB thanks to the formation of adducts presenting association constants of the order of 2,5x105 M-1, increasing the quantum yields to 0.12 and the fluorescence lifetimes corresponding to two lifetimes near to 120 and 400 ps for DQD1 and DQD2. Besides, thanks to the presence of the micellar medium, the reactivity of these derivatives with nucleophilic analytes, such as HSO3-, was increased. This was achieved through kinetic studies, which demonstrated an increase in the bimolecular rate constants in the presence of a micellar medium. Finally, probe DQD1 was chosen as the best sensor since it was assessed to detect HSO3- with excellent results.

Keywords: bisulfite detection, cationic micelle, colorimetric probes, quinolinone derivatives

Procedia PDF Downloads 94
836 Access of Refugees in Rural Areas to Regular Medication during COVID-19 Era: International Organization for Migration, Jordan Experience

Authors: Rasha Shoumar

Abstract:

Background: Since the onset of the Syria crisis in 2011, Jordan has hosted many Syrian refugees, many of which are residing in urban and rural areas. Vulnerability of refugees has increased due to the COVID-19 pandemic, adding to their already existing challenge in access to medical services, rendering them vulnerable to the complications of untreated medical conditions and amplifying their risk for severe COVID-19 disease. To improve health outcomes and access to health care services in a COVID-19 context, IOM (The International Organization for Migration) provided health services including awareness raising, direct primary health care through mobile teams and referrals to secondary services were extended to the vulnerable populations of refugees. Method: 6 community health volunteers were trained and deployed to different governorates to provide COVID-19 and non-communicable disease awareness and collect data rated to non-communicable disease and access to medical health services. Primary health care services were extended to 7 governorates through a mobile medical team, providing medical management. The collected Data was reviewed and analyzed. Results: 2150 refugees in rural areas were reached out by community health volunteers, out of which 78 received their medications through the Ministry of Health, 121 received their medications through different non-governmental organizations, 665 patients couldn’t afford buying any medications, 1286 patients were occasionally buying their medications when they were able to afford it. 853 patients received medications and follow up through IOM mobile clinics, the most common conditions were hypertension, diabetes, hyperlipidemia, anemia, heart disease, thyroid disease, asthma, seizures, and psychiatric conditions. 709 of these patients had more than 3 of the comorbidities. Multiple cases were referred for secondary and tertiary lifesaving interventions. Conclusion: Non communicable diseases are highly prevalent among refugee population in Jordan, access to medical services have proven to be a challenge in rural areas especially during the COVID-19 era, many of the patients have multiple uncontrolled medical conditions placing them at risk for complications and risk for severe COVID-19 disease. Deployment of mobile clinics to rural areas plays an essential role in managing such medical conditions, thus improving the continuum of health care approach, physical and mental wellbeing of refugees and reducing the risk for severe COVID-19 disease among this group, taking us one step forward toward universal health access.

Keywords: COVID-19, refugees, mobile clinics, primary health care

Procedia PDF Downloads 142
835 Investigating Unplanned Applications and Admissions to Hospitals of Children with Cancer

Authors: Hacer Kobya Bulut, Ilknur Kahriman, Birsel C. Demirbag

Abstract:

Introduction and Purpose: The lives of children with cancer are affected by long term hospitalizations in a negative way due to complications arising from diagnosis or treatment. However, the children's parents are known to have difficulties in meeting their children’s needs and providing home care after cancer treatment or during remission process. Supporting these children and their parents by giving a planned discharge training starting from the hospital and home care leads to reducing hospital applications, hospitalizations, hospital costs, shortening the length of hospital stay and increasing the satisfaction of the children with cancer and their families. This study was conducted to investigate the status of children and their parents' unplanned application to hospital and re-hospitalization. Methods: The study was carried out with 65 children with hematological malignancy in 0-17 age group and their families in a hematology clinic and polyclinic of a university hospital in Trabzon. Data were collected with survey methodology between August-November, 2015 through face to face interview using numbers, percentage and chi-square test in the evaluation. Findings: Most of the children were leukemia (90.8%) and 49.2% had been ill over 13 months. Few of the parents (32.3%) stated that they had received discharge and home care training (24.6%) but most of them (69.2%) found themselves enough in providing home care. Very few parents (6.2%) received home care training after their children being discharged and the majority of parents (61.5%) faced difficulties in home care and had no one to call around them. The parents expressed that in providing care to their children with hematological malignance, they faced difficulty in feeding them (74.6%), explaining their disease (50.0%), giving their oral medication (47.5%), providing hygiene (43.5%) and providing oral care (39.3%). The question ‘What are the emergency situations in which you have to bring your children to a doctor immediately?' was replied as fever (89.2%), severe nausea and vomiting (87.7%), hemorrhage (86.2%) and pain (81.5%). The study showed that 50.8% of the children had unplanned applications to hospitals and 33.8% of them identified as unplanned hospitalization and the first causes of this were fever and pain. The study showed that the frequency of applications (%78.8) and hospitalizations (%81.8) was higher for boys and a statistically significant difference was found between gender and unplanned applications (X=4.779; p=0.02). Applications (48.5%) and hospitalizations (40.9%) were found lower for the parents who had received hospital discharge training, and a significant difference was determined between receiving training and unplanned hospitalizations (X=8.021; p=0.00). Similarly, applications (30.3%) and hospitalizations (40.9%) was found lower for the ones who had received home care training, and a significant difference was determined between receiving home care training and unplanned hospitalizations (X=4.758; p=0.02). Conclusion: It was found out that caregivers of children with cancer did not receive training related to home care and complications about treatment after discharging from hospital, so they faced difficulties in providing home care and this led to an increase in unplanned hospital applications and hospitalizations.

Keywords: cancer, children, unplanned application, unplanned hospitalization

Procedia PDF Downloads 268
834 Image Features Comparison-Based Position Estimation Method Using a Camera Sensor

Authors: Jinseon Song, Yongwan Park

Abstract:

In this paper, propose method that can user’s position that based on database is built from single camera. Previous positioning calculate distance by arrival-time of signal like GPS (Global Positioning System), RF(Radio Frequency). However, these previous method have weakness because these have large error range according to signal interference. Method for solution estimate position by camera sensor. But, signal camera is difficult to obtain relative position data and stereo camera is difficult to provide real-time position data because of a lot of image data, too. First of all, in this research we build image database at space that able to provide positioning service with single camera. Next, we judge similarity through image matching of database image and transmission image from user. Finally, we decide position of user through position of most similar database image. For verification of propose method, we experiment at real-environment like indoor and outdoor. Propose method is wide positioning range and this method can verify not only position of user but also direction.

Keywords: positioning, distance, camera, features, SURF(Speed-Up Robust Features), database, estimation

Procedia PDF Downloads 350
833 Design of a Low Cost Programmable LED Lighting System

Authors: S. Abeysekera, M. Bazghaleh, M. P. L. Ooi, Y. C. Kuang, V. Kalavally

Abstract:

Smart LED-based lighting systems have significant advantages over traditional lighting systems due to their capability of producing tunable light spectrums on demand. The main challenge in the design of smart lighting systems is to produce sufficient luminous flux and uniformly accurate output spectrum for sufficiently broad area. This paper outlines the programmable LED lighting system design principles of design to achieve the two aims. In this paper, a seven-channel design using low-cost discrete LEDs is presented. Optimization algorithms are used to calculate the number of required LEDs, LEDs arrangements and optimum LED separation distance. The results show the illumination uniformity for each channel. The results also show that the maximum color error is below 0.0808 on the CIE1976 chromaticity scale. In conclusion, this paper considered the simulation and design of a seven-channel programmable lighting system using low-cost discrete LEDs to produce sufficient luminous flux and uniformly accurate output spectrum for sufficiently broad area.

Keywords: light spectrum control, LEDs, smart lighting, programmable LED lighting system

Procedia PDF Downloads 187
832 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 127
831 Modelling the Long Rune of Aggregate Import Demand in Libya

Authors: Said Yousif Khairi

Abstract:

Being a developing economy, imports of capital, raw materials and manufactories goods are vital for sustainable economic growth. In 2006, Libya imported LD 8 billion (US$ 6.25 billion) which composed of mainly machinery and transport equipment (49.3%), raw material (18%), and food products and live animals (13%). This represented about 10% of GDP. Thus, it is pertinent to investigate factors affecting the amount of Libyan imports. An econometric model representing the aggregate import demand for Libya was developed and estimated using the bounds test procedure, which based on an unrestricted error correction model (UECM). The data employed for the estimation was from 1970–2010. The results of the bounds test revealed that the volume of imports and its determinants namely real income, consumer price index and exchange rate are co-integrated. The findings indicate that the demand for imports is inelastic with respect to income, index price level and The exchange rate variable in the short run is statistically significant. In the long run, the income elasticity is elastic while the price elasticity and the exchange rate remains inelastic. This indicates that imports are important elements for Libyan economic growth in the long run.

Keywords: import demand, UECM, bounds test, Libya

Procedia PDF Downloads 362