Search results for: machine resistance training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9502

Search results for: machine resistance training

8062 Relative Importance of Different Mitochondrial Components in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-associated Retinal Diseases

Authors: Shaimaa Eltanani, Thangal Yumnamcha, Ahmed S. Ibrahim

Abstract:

Purpose: Mitochondria dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to dissect the role of different mitochondrial components, specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. Methods: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real-time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components; the capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I; Oligomycin for ATP synthase; and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). Results: Rotenone (1 µM) produced the greatest reduction in the Z, followed by FCCP (1 µM), whereas no reduction in the Z was observed after the treatment with Oligomycin (1 µM). Following this further, we deconvoluted the effect of these inhibitors on Rb, α, and Cm. Firstly, rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 hours and increased Cm without considerable effect on α. Lastly, Oligomycin had the lowest impact among these inhibitors on Rb, which became similar to the control group at the end of the experiment without noticeable effects on Cm or α. Conclusion: These results demonstrate differential roles for complex I, complex V, and coupling of OxPhos in maintaining the barrier functionality of HRECs, in which complex I being the most important component in regulating the barrier functionality and the spreading behavior of HRECs. Such differences can be used in investigating gene expression as well as for screening selective agents that improve the functionality of complex I to be used in the therapeutic approach for treating REC-related retinal diseases.

Keywords: human retinal endothelial cells (hrecs), rotenone, oligomycin, fccp, oxidative phosphorylation, oxphos, capacitance, impedance, ecis modeling, rb resistance, α resistance, and barrier integrity

Procedia PDF Downloads 99
8061 Resistance of African States Against the African Court on Human and People Rights (ACPHR)

Authors: Ayyoub Jamali

Abstract:

At the first glance, it seems that the African Court on Human and People’s Rights has achieved a tremendous development in the protection of human rights in Africa. Since its first judgement in 2009, the court has taken a robust approach/ assertive stance, showing its strength by finding states to be in violation of the Africana Charter and other human rights treaties. This paper seeks to discuss various challenges and resistance that the Court has faced since the adoption of the Founding Protocol to the Establishment of the African Court on Human and People’s Rights. The outcome of the paper casts shadow on the legitimacy and effectiveness of the African Court as the guarantor of human rights within the African continent.

Keywords: African Court on Human and People’s Rights, African Union, African regional human rights system, compliance

Procedia PDF Downloads 151
8060 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 31
8059 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing

Authors: Abdelrahman Elsehsah, 1 Abdelazim Negm2, Eid Ashour3, Mohamed Elsahabi4

Abstract:

Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.

Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management

Procedia PDF Downloads 0
8058 Machine Learning-Based Workflow for the Analysis of Project Portfolio

Authors: Jean Marie Tshimula, Atsushi Togashi

Abstract:

We develop a data-science approach for providing an interactive visualization and predictive models to find insights into the projects' historical data in order for stakeholders understand some unseen opportunities in the African market that might escape them behind the online project portfolio of the African Development Bank. This machine learning-based web application identifies the market trend of the fastest growing economies across the continent as well skyrocketing sectors which have a significant impact on the future of business in Africa. Owing to this, the approach is tailored to predict where the investment needs are the most required. Moreover, we create a corpus that includes the descriptions of over more than 1,200 projects that approximately cover 14 sectors designed for some of 53 African countries. Then, we sift out this large amount of semi-structured data for extracting tiny details susceptible to contain some directions to follow. In the light of the foregoing, we have applied the combination of Latent Dirichlet Allocation and Random Forests at the level of the analysis module of our methodology to highlight the most relevant topics that investors may focus on for investing in Africa.

Keywords: machine learning, topic modeling, natural language processing, big data

Procedia PDF Downloads 167
8057 Prevalence of Pretreatment Drug HIV-1 Mutations in Moscow, Russia

Authors: Daria Zabolotnaya, Svetlana Degtyareva, Veronika Kanestri, Danila Konnov

Abstract:

An adequate choice of the initial antiretroviral treatment determines the treatment efficacy. In the clinical guidelines in Russia non-nucleoside reverse transcriptase inhibitors (NNRTIs) are still considered to be an option for first-line treatment while pretreatment drug resistance (PDR) testing is not routinely performed. We conducted a cohort retrospective study in HIV-positive treatment naïve patients of the H-clinic (Moscow, Russia) who performed PDR testing from July 2017 to November 2021. All the information was obtained from the medical records anonymously. We analyzed the mutations in reverse transcriptase and protease genes. RT-sequences were obtained by AmpliSens HIV-Resist-Seq kit. Drug resistance was defined using the HIVdb Program v. 8.9-1. PDR was estimated using the Stanford algorithm. Descriptive statistics were performed in Excel (Microsoft Office, 2019). A total of 261 HIV-1 infected patients were enrolled in the study including 197 (75.5%) male and 64 (24.5%) female. The mean age was 34.6±8.3 years. The median CD4 count – 521 cells/µl (IQR 367-687 cells/µl). Data on risk factors of HIV-infection were scarce. The total quantity of strains containing mutations in the reverse transcriptase gene was 75 (28.7%). From these 5 (1.9%) mutations were associated with PDR to nucleoside reverse transcriptase inhibitors (NRTIs) and 30 (11.5%) – with PDR to NNRTIs. The number of strains with mutations in protease gene was 43 (16.5%), from these only 3 (1.1%) mutations were associated with resistance to protease inhibitors. For NNRTIs the most prevalent PDR mutations were E138A, V106I. Most of the HIV variants exhibited a single PDR mutation, 2 were found in 3 samples. Most of HIV variants with PDR mutation displayed a single drug class resistance mutation. 2/37 (5.4%) strains had both NRTIs and NNRTIs mutations. There were no strains identified with PDR mutations to all three drug classes. Though earlier data demonstrated a lower level of PDR in HIV treatment naïve population in Russia and our cohort can be not fully representative as it is taken from the private clinic, it reflects the trend of increasing PDR especially to NNRTIs. Therefore, we consider either pretreatment testing or giving the priority to other drugs as first-line treatment necessary.

Keywords: HIV, resistance, mutations, treatment

Procedia PDF Downloads 91
8056 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning

Authors: Abdullah Bal

Abstract:

This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.

Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification

Procedia PDF Downloads 19
8055 Improved Performance in Content-Based Image Retrieval Using Machine Learning Approach

Authors: B. Ramesh Naik, T. Venugopal

Abstract:

This paper presents a novel approach which improves the high-level semantics of images based on machine learning approach. The contemporary approaches for image retrieval and object recognition includes Fourier transforms, Wavelets, SIFT and HoG. Though these descriptors helpful in a wide range of applications, they exploit zero order statistics, and this lacks high descriptiveness of image features. These descriptors usually take benefit of primitive visual features such as shape, color, texture and spatial locations to describe images. These features do not adequate to describe high-level semantics of the images. This leads to a gap in semantic content caused to unacceptable performance in image retrieval system. A novel method has been proposed referred as discriminative learning which is derived from machine learning approach that efficiently discriminates image features. The analysis and results of proposed approach were validated thoroughly on WANG and Caltech-101 Databases. The results proved that this approach is very competitive in content-based image retrieval.

Keywords: CBIR, discriminative learning, region weight learning, scale invariant feature transforms

Procedia PDF Downloads 180
8054 Optimization of Tolerance Grades of a Bearing and Shaft Assembly in a Washing Machine with Regard to Fatigue Life

Authors: M. Cangi, T. Dolar, C. Ersoy, Y. E. Aydogdu, A. I. Aydeniz, A. Mugan

Abstract:

The drum is one of the critical parts in a washing machine in which the clothes are washed and spin by the rotational movement. It is activated by the drum shaft which is attached to an electric motor and subjected to dynamic loading. Being one of the critical components, failures of the drum require costly repairs of dynamic components. In this study, tolerance bands between the drum shaft and its two bearings were examined to develop a relationship between the fatigue life of the shaft and the interaction tolerances. Optimization of tolerance bands was completed in consideration of the fatigue life of the shaft as the cost function. The following methodology is followed: multibody dynamic model of a washing machine was constructed and used to calculate dynamic loading on the components. Then, these forces were used in finite element analyses to calculate the stress field in critical components which was used for fatigue life predictions. The factors affecting the fatigue life were examined to find optimum tolerance grade for a given test condition. Numerical results were verified by experimental observations.

Keywords: fatigue life, finite element analysis, tolerance analysis, optimization

Procedia PDF Downloads 156
8053 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 112
8052 Effects of Plyometric Exercises on Agility, Power and Speed Improvement of U-17 Female Sprinters in Case of Burayu Athletics Project, Oromia, Ethiopia

Authors: Abdeta Bayissa Mekessa

Abstract:

The purpose of this study was to examine the effects of plyometric exercises on agility, power, and speed and improvement of U-17 female sprinters in the case of the Burayu Athletics project. The true experimental research design was employed for conducting this study. The total populations of the study were 14 U-17 female sprinters from Burayu athletics project. The populations were small in numbers; therefore, the researcher took all as a sample by using comprehensive sampling techniques. These subjects were classified into the Experimental group (N=7) and the Control group (N=7) by using simple random sampling techniques. The Experimental group participated in plyometric training for 8 weeks, 3 days per week and 60 minutes duration per day in addition to their regular training. But, the control groups were following their only regular training program. The variables selected for the purpose of this study were agility, power and speed. The tests were the Illinois agility test, standing long jump test, and 30m sprint test, respectively. Both groups were tested before (pre-test) and after (post-test) 8 weeks of plyometric training. For data analysis, the researcher used SPSS version 26.0 software. The collected data was analyzed using a paired sample t-test to observe the difference between the pre-test and post-test results of the plyometric exercises of the study. The significant level of p<0.05 was considered. The result of the study shows that after 8 weeks of plyometric training, significant improvements were found in Agility (MD=0.45, p<0.05), power (MD=-1.157, P<0.05) and speed (MD=0.37, P<0.05) for experimental group subjects. On the other hand, there was no significant change (P>0.05) in those variables in the control groups. Finally, the findings of the study showed that eight (8) weeks of plyometric exercises had a positive effect on agility, power and speed improvement of female sprinters. Therefore, Athletics coaches and athletes are highly recommended to include plyometric exercise in their training program.

Keywords: ploymetric exercise, speed power, aglity, female sprinter

Procedia PDF Downloads 37
8051 High Temperature Behavior of a 75Cr3C2–25NiCr Coated T91 Boiler Steel in an Actual Industrial Environment of a Coal Fired Boiler

Authors: Buta Singh Sidhu, Sukhpal Singh Chatha, Hazoor Singh Sidhu

Abstract:

In the present investigation, 75Cr3C2-25NiCr coating was deposited on T91 boiler tube steel substrate by high velocity oxy-fuel (HVOF) process to enhance high-temperature corrosion resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under cyclic conditions in the platen superheater zone coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. The performance of the bare and coated specimens was assessed via metal thickness loss corresponding to the corrosion scale formation and the depth of internal corrosion attack. 75Cr3C2-25NiCr coating deposited on T91 steel imparted better hot corrosion resistance than the uncoated steel. Inferior resistance of bare T91 steel is attributed to the formation of pores and loosely bounded oxide scale rich in Fe2O3.

Keywords: 75Cr3C2-25NiCr, HVOF process, boiler steel, coal fired boilers

Procedia PDF Downloads 606
8050 Strategic Cyber Sentinel: A Paradigm Shift in Enhancing Cybersecurity Resilience

Authors: Ayomide Oyedele

Abstract:

In the dynamic landscape of cybersecurity, "Strategic Cyber Sentinel" emerges as a revolutionary framework, transcending traditional approaches. This paper pioneers a holistic strategy, weaving together threat intelligence, machine learning, and adaptive defenses. Through meticulous real-world simulations, we demonstrate the unprecedented resilience of our framework against evolving cyber threats. "Strategic Cyber Sentinel" redefines proactive threat mitigation, offering a robust defense architecture poised for the challenges of tomorrow.

Keywords: cybersecurity, resilience, threat intelligence, machine learning, adaptive defenses

Procedia PDF Downloads 81
8049 Analysis of Resistance and Virulence Genes of Gram-Positive Bacteria Detected in Calf Colostrums

Authors: C. Miranda, S. Cunha, R. Soares, M. Maia, G. Igrejas, F. Silva, P. Poeta

Abstract:

The worldwide inappropriate use of antibiotics has increased the emergence of antimicrobial-resistant microorganisms isolated from animals, humans, food, and the environment. To combat this complex and multifaceted problem is essential to know the prevalence in livestock animals and possible ways of transmission among animals and between these and humans. Enterococci species, in particular E. faecalis and E. faecium, are the most common nosocomial bacteria, causing infections in animals and humans. Thus, the aim of this study was to characterize resistance and virulence factors genes among two enterococci species isolated from calf colostrums in Portuguese dairy farms. The 55 enterococci isolates (44 E. faecalis and 11 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB, and ermC), tetracycline (tetL, tetM, tetK, and tetO), quinupristin/dalfopristin (vatD and vatE) and vancomycin (vanB). Of which, 25 isolates (15 E. faecalis and 10 E. faecium) were tested until now for 8 virulence factors genes (esp, ace, gelE, agg, cpd, cylA, cylB, and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. All enterococci isolates showed resistance to erythromicyn and tetracycline through the presence of the genes: ermB (n=29, 53%), ermC (n=10, 18%), tetL (n=49, 89%), tetM (n=39, 71%) and tetK (n=33, 60%). Only two (4%) E. faecalis isolates showed the presence of tetO gene. No resistance genes for vancomycin were found. The virulence genes detected in both species were cpd (n=17, 68%), agg (n=16, 64%), ace (n=15, 60%), esp (n=13, 52%), gelE (n=13, 52%) and cylLL (n=8, 32%). In general, each isolate showed at least three virulence genes. In three E. faecalis isolates was not found virulence genes and only E. faecalis isolates showed virulence genes for cylA (n=4, 16%) and cylB (n=6, 24%). In conclusion, these colostrum samples that were consumed by calves demonstrated the presence of antibiotic-resistant enterococci harbored virulence genes. This genotypic characterization is crucial to control the antibiotic-resistant bacteria through the implementation of restricts measures safeguarding public health. Acknowledgements: This work was funded by the R&D Project CAREBIO2 (Comparative assessment of antimicrobial resistance in environmental biofilms through proteomics - towards innovative theragnostic biomarkers), with reference NORTE-01-0145-FEDER-030101 and PTDC/SAU-INF/30101/2017, financed by the European Regional Development Fund (ERDF) through the Northern Regional Operational Program (NORTE 2020) and the Foundation for Science and Technology (FCT). This work was supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).

Keywords: antimicrobial resistance, calf, colostrums, enterococci

Procedia PDF Downloads 196
8048 Ensemble-Based SVM Classification Approach for miRNA Prediction

Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam

Abstract:

In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.

Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data

Procedia PDF Downloads 347
8047 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 92
8046 Online or Offline: A Pilot Study of Blended Ear-Training Course

Authors: Monika Benedek

Abstract:

This paper intends to present a pilot study of blended ear-training course at a Finnish university. The course ran for ten weeks and included both traditional (offline) group lessons for 90 minutes each week and an online learning platform. Twelve students majored in musicology and music education participated in the course. The aims of pilot research were to develop a new blended ear-training course at university level, to determine the ideal amount of workload in each part of the blended instruction (offline and online) and to develop the course material. The course material was selected from the Classical period in order to develop students’ aural skills together with their stylistic knowledge. Students were asked to provide written feedback of the course content and learning approaches of face-to-face group lessons and online learning platform each week during the course. Therefore, the teaching material is continuously planned for each week. This qualitative data collection and weekly analysis of data are on progress. However, based on the teacher-researcher’s experiences and the students’ feedback already collected, it could be seen that the blended instruction would be an ideal teaching strategy for ear-trainging at the music programmes of universities to develop students’ aural skills and stylistic knowledge. It is also presumed that such blended instruction with less workload would already improve university students’ aural skills and related musicianship skills. The preliminary findings of research also indicated that students generally found those ear-training tasks the most useful to learn online that combined listening, singing, singing and playing an instrument. This paper intends to summarise the final results of the pilot study.

Keywords: blended-learning, ear-training, higher music education, online-learning, pilot study

Procedia PDF Downloads 154
8045 Model Observability – A Monitoring Solution for Machine Learning Models

Authors: Amreth Chandrasehar

Abstract:

Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.

Keywords: model observability, monitoring, drift detection, ML observability platform

Procedia PDF Downloads 110
8044 Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection

Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda

Abstract:

In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m.

Keywords: grounding improvements, large scale scientific instrument, lightning risk assessment, lightning standards

Procedia PDF Downloads 137
8043 Studies on Knockdown Resistance Mutations in Aedes aegypti and Aedes albopictus in India

Authors: Neera Kapoor

Abstract:

Background: Knockdown Resistance (KDR) is one of the mechanisms of insecticide resistance in insects caused by the reduced target site sensitivity i.e. voltage gated sodium channel (VGSC) rendering it less sensitive to the toxic effects of DDT and pyrethroids. In this study, we evaluated insecticide susceptibility and its underlying KDR mechanism in eight Ae. aegypti and five Ae. albopictus field populations. Methodology: Field population was collected from four different geographical regions of India covering 18 districts of ten states. For genotyping of twelve KDR alleles in Ae. aegypti field populations, three PCR based assays were used; with DNA sequencing; ASPCR; PCR-RFLP. Genomic DNA was isolated, and three partial domains (II, III, and IV) of VGSC were amplified and sequenced. Results: Molecular screening for common KDR mutations, revealed the presence of five mutations viz. S989P, V1016G, T1520I, F1534C/L. Two novel mutations were observed, first at T1520 (ACC) residue where a C > T substitution at the second position of codon results in amino acid change to Isoleucine (ATC). Second mutation was an alternative point mutation at F1534 (TTC) residue where a substitution of T > C at the first position of codon results in an amino acid change to Leucine (CTC). ASPCRs were not accurate, so three PCR-RFLP assays were developed for genotyping of five KDR alleles in Ae. aegypti; viz. T1520I, F1534C/L. Representative samples of all genotypes (n=200) were sequenced to validate the newly developed PCR based assays for Ae. aegypti. Genotyping results showed that 989P is linked to 1016G and novel mutation 1520I was always found with 1534C allele. Conclusion: Present study confirmed the presence of DDT and pyrethroid resistance among Ae. aegypti populations in India and for the first time reported KDR mutations in this species from India including two novel mutations. Results of present study lead us to infer that, at least five KDR mutations (S989P, V1016G, T1530I, F1534C, and F1534L) can be seen as a potential marker for DDT/pyrethroid resistance.

Keywords: F1534C, F1534L, S989P, T1530I, V1016G

Procedia PDF Downloads 191
8042 Enhancing Knowledge and Teaching Skills of Grade Two Teachers who Work with Children at Risk of Dyslexia

Authors: Rangika Perera, Shyamani Hettiarachchi, Fran Hagstrom

Abstract:

Dyslexia is the most common reading reading-related difficulty among the school school-aged population and currently, 5-10% are showing the features of dyslexia in Sri Lanka. As there is an insufficient number of speech and language pathologists in the country and few speech and language pathologists working in government mainstream school settings, these children who are at risk of dyslexia are not receiving enough quality early intervention services to develop their reading skills. As teachers are the key professionals who are directly working with these children, using them as the primary facilitators to improve their reading skills will be the most effective approach. This study aimed to identify the efficacy of a two and half a day of intensive training provided to fifteen mainstream government school teachers of grade two classes. The goal of the training was to enhance their knowledge of dyslexia and provide full classroom skills training that could be used to support the development of the students’ reading competencies. A closed closed-ended multiple choice questionnaire was given to these teachers pre and -post-training to measure teachers’ knowledge of dyslexia, the areas in which these children needed additional support, and the best strategies to facilitate reading competencies. The data revealed that the teachers’ knowledge in all areas was significantly poorer prior to the training and that there was a clear improvement in all areas after the training. The gain in target areas of teaching skills selected to improve the reading skills of children was evaluated through peer feedback. Teachers were assigned to three groups and expected to model how they were going to introduce the skills in recommended areas using researcher developed, validated and reliability reliability-tested materials and the strategies which were introduced during the training within the given tasks. Peers and the primary investigator rated teachers’ performances and gave feedback on organizational skills, presentation skills of materials, clarity of instruction, and appropriateness of vocabulary. After modifying their skills according to the feedback the teachers received, they were expected to modify and represent the same tasks to the group the following day. Their skills were re-evaluated by the peers and primary investigator using the same rubrics to measure the improvement. The findings revealed a significant improvement in their teaching skills development. The data analysis of both knowledge and skills gains of the teachers was carried out using quantitative descriptive data analysis. The overall findings of the study yielded promising results that support intensive training as a method for improving teachers’ knowledge and teaching skill development for use with children in a whole class intervention setting who are at risk of dyslexia.

Keywords: Dyslexia, knowledge, teaching skills, training program

Procedia PDF Downloads 72
8041 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach

Authors: Kanika Gupta, Ashok Kumar

Abstract:

Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.

Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database

Procedia PDF Downloads 169
8040 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Seawater

Authors: N. Hammouda, K. Belmokre

Abstract:

The paints are used extensively today in the industry to protect the metallic structures of the aggressive environments. This work is devoted to the study of corrosion resistance and aging behavior of a paint coating providing external protection for oil tankers. To avoid problems related to corrosion of these vessels, two protection modes are provided: An electro chemical active protection (cathodic protection of the hull). A passive protection by external painting. Investigations are conducted using stationary and non-stationary electro chemical tools such as electro chemical impedance spectroscopy has allowed us to characterize the protective qualities of these films. The application of the EIS on our damaged in-situ painting shows the existence of several capacitive loops which is an indicator of the failure of our tested paint. Microscopic analysis (micrograph) helped bring essential elements in understanding the degradation of our paint condition and immersion training corrosion products.

Keywords: epoxy paints, electrochemical impedance spectroscopy, corrosion mechanisms, seawater

Procedia PDF Downloads 389
8039 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R

Procedia PDF Downloads 376
8038 A Proposed Training Program for the Development of the Kindergarten Teacher According To Her Contemporary Professionàĺ Needs

Authors: Abdulhakim Ali Mosleh Alzubidy

Abstract:

The study's aim was to establish a proposed training program for kindergarten teachers according to their modern professional demands so that they could effectively teach children through movement education and play. The sample, which consisted of (46) teachers and administrators selected at random from the Ibb governorate, represented the study population of kindergarten teachers and administrators. The researcher developed three survey forms as a tool for data collection, and the forms were used with the research sample. The researcher used the descriptive method due to its applicability and the nature of the study, and he also used the appropriate statistical treatment of the data, which is to extract the percentage and the percentage of agreement. The study came to the following conclusions: ● The proposed program is of great importance in preparing the kindergarten teacher in an appropriate manner that keeps pace with modern developments in this field. ● The field of movement education is a necessity for the kindergarten teacher, through which she will be able to prepare the child physically and kinetically and teach him effectively the principles of reading, writing, and numerical and arithmetic concepts.

Keywords: training program, professional needs, kindergarten, kindergarten teacher

Procedia PDF Downloads 82
8037 A Review on Concrete Structures in Fire

Authors: S. Iffat, B. Bose

Abstract:

Concrete as a construction material is versatile because it displays high degree of fire-resistance. Concrete’s inherent ability to combat one of the most devastating disaster that a structure can endure in its lifetime, can be attributed to its constituent materials which make it inert and have relatively poor thermal conductivity. However, concrete structures must be designed for fire effects. Structural components should be able to withstand dead and live loads without undergoing collapse. The properties of high-strength concrete must be weighed against concerns about its fire resistance and susceptibility to spalling at elevated temperatures. In this paper, the causes, effects and some remedy of deterioration in concrete due to fire hazard will be discussed. Some cost effective solutions to produce a fire resistant concrete will be conversed through this paper.

Keywords: concrete, fire, spalling, temperature, compressive strength, density

Procedia PDF Downloads 441
8036 Fairness in Recommendations Ranking: From Pairwise Approach to Listwise Approach

Authors: Patik Joslin Kenfack, Polyakov Vladimir Mikhailovich

Abstract:

Machine Learning (ML) systems are trained using human generated data that could be biased by implicitly containing racist, sexist, or discriminating data. ML models learn those biases or even amplify them. Recent research in work on has begun to consider issues of fairness. The concept of fairness is extended to recommendation. A recommender system will be considered fair if it doesn’t under rank items of protected group (gender, race, demographic...). Several metrics for evaluating fairness concerns in recommendation systems have been proposed, which take pairs of items as ‘instances’ in fairness evaluation. It doesn’t take in account the fact that the fairness should be evaluated across a list of items. The paper explores a probabilistic approach that generalize pairwise metric by using a list k (listwise) of items as ‘instances’ in fairness evaluation, parametrized by k. We also explore new regularization method based on this metric to improve fairness ranking during model training.

Keywords: Fairness, Recommender System, Ranking, Listwise Approach

Procedia PDF Downloads 147
8035 Exploiting SLMail Server with a Developed Buffer Overflow with Kali Linux

Authors: Senesh Wijayarathne

Abstract:

This study focuses on how someone could develop a Buffer Overflow and could use that to exploit the SLMail Server. This study uses a Kali Linux V2018.4 Virtual Machine and Windows 7 - Internet Explorer V8 Virtual Machine (IPv4 Address - 192.168.56.107). This study starts by sending continued bytes to the SLMail Server to find the crashing point range and creating a unique pattern of the length of the crashing point range to control the Extended Instruction Pointer (EIP). Then by sending all characters to SLMail Server, we could observe and find which characters are not rendered properly by the software, also known as Bad Characters. By finding the ‘Jump to the ESP register (JMP ESP) and with the help of ‘Mona Modules’, we could use msfvenom to create a non-stage windows reverse shell payload. By including all the details gathered previously on one script, we could get a system-level reverse shell of the Windows 7 PC. The end of this paper will discuss how to mitigate this vulnerability.

Keywords: slmail server, extended instruction pointer, jump to the esp register, bad characters, virtual machine, windows 7, kali Linux, buffer overflow, Seattle lab, vulnerability

Procedia PDF Downloads 164
8034 Computerized Cognitive Training and Psychological Resiliency among Adolescents with Learning Disabilities

Authors: Verd Shomrom, Gilat Trabelsi

Abstract:

The goal of the study was to examine the effects of Computerized Cognitive Training (CCT) with and without cognitive mediation on Executive Function (EF) (planning and self- regulation) and on psychological resiliency among adolescents with Attention Deficits Hyperactive Disorder (ADHD) with or without Learning Disabilities (LD). Adolescents diagnosed with Attention Deficit Disorder and / or Learning Disabilities have multidimensional impairments that result from neurological damage. This work explored the possibility of influencing cognitive aspects in the field of Executive Functions (specifically: patterns of planning and self-regulation) among adolescents with a diagnosis of Attention Deficit Disorder and / or Learning Disabilities who study for a 10-12 grades. 46 adolescents with ADHD and/or with LD were randomly applied to experimental and control groups. All the participants were tested (BRC- research version, Resiliency quaternaries) before and after the intervention: mediated/ non-mediated Computerized Cognitive Training (MINDRI). The results indicated significant effects of cognitive modification in the experimental group, between pre and post Phases, in comparison to control group, especially in self- regulation (BRC- research version, Resiliency quaternaries), and on process analysis of Computerized Cognitive Training (MINDRI). The main conclusion was that even short- term mediation synchronized with CCT could greatly enhance the performance of executive functions demands. Theoretical implications for the positive effects of MLE in combination with CCT indicate the ability for cognitive change. The practical implication is the awareness and understanding of efficient intervention processes to enhance EF, learning awareness, resiliency and self-esteem of adolescents in their academic and daily routine.

Keywords: attention deficits hyperactive disorder, computerized cognitive training, executive function, mediated learning experience, learning disabilities

Procedia PDF Downloads 150
8033 Smart Services for Easy and Retrofittable Machine Data Collection

Authors: Till Gramberg, Erwin Gross, Christoph Birenbaum

Abstract:

This paper presents the approach of the Easy2IoT research project. Easy2IoT aims to enable companies in the prefabrication sheet metal and sheet metal processing industry to enter the Industrial Internet of Things (IIoT) with a low-threshold and cost-effective approach. It focuses on the development of physical hardware and software to easily capture machine activities from on a sawing machine, benefiting various stakeholders in the SME value chain, including machine operators, tool manufacturers and service providers. The methodological approach of Easy2IoT includes an in-depth requirements analysis and customer interviews with stakeholders along the value chain. Based on these insights, actions, requirements and potential solutions for smart services are derived. The focus is on providing actionable recommendations, competencies and easy integration through no-/low-code applications to facilitate implementation and connectivity within production networks. At the core of the project is a novel, non-invasive measurement and analysis system that can be easily deployed and made IIoT-ready. This system collects machine data without interfering with the machines themselves. It does this by non-invasively measuring the tension on a sawing machine. The collected data is then connected and analyzed using artificial intelligence (AI) to provide smart services through a platform-based application. Three Smart Services are being developed within Easy2IoT to provide immediate benefits to users: Wear part and product material condition monitoring and predictive maintenance for sawing processes. The non-invasive measurement system enables the monitoring of tool wear, such as saw blades, and the quality of consumables and materials. Service providers and machine operators can use this data to optimize maintenance and reduce downtime and material waste. Optimize Overall Equipment Effectiveness (OEE) by monitoring machine activity. The non-invasive system tracks machining times, setup times and downtime to identify opportunities for OEE improvement and reduce unplanned machine downtime. Estimate CO2 emissions for connected machines. CO2 emissions are calculated for the entire life of the machine and for individual production steps based on captured power consumption data. This information supports energy management and product development decisions. The key to Easy2IoT is its modular and easy-to-use design. The non-invasive measurement system is universally applicable and does not require specialized knowledge to install. The platform application allows easy integration of various smart services and provides a self-service portal for activation and management. Innovative business models will also be developed to promote the sustainable use of the collected machine activity data. The project addresses the digitalization gap between large enterprises and SME. Easy2IoT provides SME with a concrete toolkit for IIoT adoption, facilitating the digital transformation of smaller companies, e.g. through retrofitting of existing machines.

Keywords: smart services, IIoT, IIoT-platform, industrie 4.0, big data

Procedia PDF Downloads 73