Search results for: data combining
24360 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 10024359 Using Monte Carlo Model for Simulation of Rented Housing in Mashhad, Iran
Authors: Mohammad Rahim Rahnama
Abstract:
The study employs Monte Carlo method for simulation of rented housing in Mashhad second largest city in Iran. A total number of 334 rental residential units in Mashhad, including both apartments and houses (villa), were randomly selected from advertisements placed in Khorasan Newspapers during the months of July and August of 2015. In order to simulate the monthly rent price, the rent index was calculated through combining the mortgage and the rent price. In the next step, the relation between the variables of the floor area and that of the number of bedrooms for each unit, in both apartments and houses(villa), was calculated through multivariate regression using SPSS and was coded in XML. The initial model was called using simulation button in SPSS and was simulated using triangular and binominal algorithms. The findings revealed that the average simulated rental index was 548.5$ per month. Calculating the sensitivity of rental index to a number of bedrooms we found that firstly, 97% of units have three bedrooms, and secondly as the number of bedrooms increases from one to three, for the rent price of less than 200$, the percentage of units having one bedroom decreases from 10% to 0. Contrariwise, for units with the rent price of more than 571.4$, the percentage of bedrooms increases from 37% to 48%. In the light of these findings, it becomes clear that planning to build rental residential units, overseeing the rent prices, and granting subsidies to rental residential units, for apartments with two bedrooms, present a felicitous policy for regulating residential units in Mashhad.Keywords: Mashhad, Monte Carlo, simulation, rent price, residential unit
Procedia PDF Downloads 27324358 A Bayesian Approach for Health Workforce Planning in Portugal
Authors: Diana F. Lopes, Jorge Simoes, José Martins, Eduardo Castro
Abstract:
Health professionals are the keystone of any health system, by delivering health services to the population. Given the time and cost involved in training new health professionals, the planning process of the health workforce is particularly important as it ensures a proper balance between the supply and demand of these professionals and it plays a central role on the Health 2020 policy. In the past 40 years, the planning of the health workforce in Portugal has been conducted in a reactive way lacking a prospective vision based on an integrated, comprehensive and valid analysis. This situation may compromise not only the productivity and the overall socio-economic development but the quality of the healthcare services delivered to patients. This is even more critical given the expected shortage of the health workforce in the future. Furthermore, Portugal is facing an aging context of some professional classes (physicians and nurses). In 2015, 54% of physicians in Portugal were over 50 years old, and 30% of all members were over 60 years old. This phenomenon associated to an increasing emigration of young health professionals and a change in the citizens’ illness profiles and expectations must be considered when planning resources in healthcare. The perspective of sudden retirement of large groups of professionals in a short time is also a major problem to address. Another challenge to embrace is the health workforce imbalances, in which Portugal has one of the lowest nurse to physician ratio, 1.5, below the European Region and the OECD averages (2.2 and 2.8, respectively). Within the scope of the HEALTH 2040 project – which aims to estimate the ‘Future needs of human health resources in Portugal till 2040’ – the present study intends to get a comprehensive dynamic approach of the problem, by (i) estimating the needs of physicians and nurses in Portugal, by specialties and by quinquenium till 2040; (ii) identifying the training needs of physicians and nurses, in medium and long term, till 2040, and (iii) estimating the number of students that must be admitted into medicine and nursing training systems, each year, considering the different categories of specialties. The development of such approach is significantly more critical in the context of limited budget resources and changing health care needs. In this context, this study presents the drivers of the healthcare needs’ evolution (such as the demographic and technological evolution, the future expectations of the users of the health systems) and it proposes a Bayesian methodology, combining the best available data with experts opinion, to model such evolution. Preliminary results considering different plausible scenarios are presented. The proposed methodology will be integrated in a user-friendly decision support system so it can be used by politicians, with the potential to measure the impact of health policies, both at the regional and the national level.Keywords: bayesian estimation, health economics, health workforce planning, human health resources planning
Procedia PDF Downloads 25124357 Impact of Foreign Trade on Economic Growth: A Panel Data Analysis for OECD Countries
Authors: Burcu Guvenek, Duygu Baysal Kurt
Abstract:
The impact of foreign trade on economic growth has been discussed since the Classical Economists. Today, foreign trade has become more important for the country's economy with the increasing globalization. When it comes to foreign trade, policies which may vary from country to country and from time to time as protectionism or free trade are implemented. In general, the positive effect of foreign trade on economic growth is alleged. However, as studies supporting this general acceptance take place in the economics literature, there are also studies in the opposite direction. In this paper, the impact of foreign trade on economic growth will be investigated with the help of panel data analysis. For this research, 24 OECD countries’ GDP and foreign trade data, including the period of 1990 and 2010, will be used.Keywords: foreign trade, economic growth, OECD countries, panel data analysis
Procedia PDF Downloads 38424356 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 17024355 Data about Loggerhead Sea Turtle (Caretta caretta) and Green Turtle (Chelonia mydas) in Vlora Bay, Albania
Authors: Enerit Sacdanaku, Idriz Haxhiu
Abstract:
This study was conducted in the area of Vlora Bay, Albania. Data about Sea Turtles Caretta caretta and Chelonia mydas, belonging to two periods of time (1984–1991; 2008–2014) are given. All data gathered were analyzed using recent methodologies. For all turtles captured (as by catch), the Curve Carapace Length (CCL) and Curved Carapace Width (CCW) were measured. These data were statistically analyzed, where the mean was 67.11 cm for CCL and 57.57 cm for CCW of all individuals studied (n=13). All untagged individuals of marine turtles were tagged using metallic tags (Stockbrand’s titanium tag) with an Albanian address. Sex was determined and resulted that 45.4% of individuals were females, 27.3% males and 27.3% juveniles. All turtles were studied for the presence of the epibionts. The area of Vlora Bay is used from marine turtles (Caretta caretta) as a migratory corridor to pass from the Mediterranean to the northern part of the Adriatic Sea.Keywords: Caretta caretta, Chelonia mydas, CCL, CCW, tagging, Vlora Bay
Procedia PDF Downloads 17824354 Computational Modeling of Load Limits of Carbon Fibre Composite Laminates Subjected to Low-Velocity Impact Utilizing Convolution-Based Fast Fourier Data Filtering Algorithms
Authors: Farhat Imtiaz, Umar Farooq
Abstract:
In this work, we developed a computational model to predict ply level failure in impacted composite laminates. Data obtained from physical testing from flat and round nose impacts of 8-, 16-, 24-ply laminates were considered. Routine inspections of the tested laminates were carried out to approximate ply by ply inflicted damage incurred. Plots consisting of load–time, load–deflection, and energy–time history were drawn to approximate the inflicted damages. Impact test generated unwanted data logged due to restrictions on testing and logging systems were also filtered. Conventional filters (built-in, statistical, and numerical) reliably predicted load thresholds for relatively thin laminates such as eight and sixteen ply panels. However, for relatively thick laminates such as twenty-four ply laminates impacted by flat nose impact generated clipped data which can just be de-noised using oscillatory algorithms. The literature search reveals that modern oscillatory data filtering and extrapolation algorithms have scarcely been utilized. This investigation reports applications of filtering and extrapolation of the clipped data utilising fast Fourier Convolution algorithm to predict load thresholds. Some of the results were related to the impact-induced damage areas identified with Ultrasonic C-scans and found to be in acceptable agreement. Based on consistent findings, utilizing of modern data filtering and extrapolation algorithms to data logged by the existing machines has efficiently enhanced data interpretations without resorting to extra resources. The algorithms could be useful for impact-induced damage approximations of similar cases.Keywords: fibre reinforced laminates, fast Fourier algorithms, mechanical testing, data filtering and extrapolation
Procedia PDF Downloads 13424353 Socially Sustainable Urban Rehabilitation Projects: Case Study of Ortahisar, Trabzon
Authors: Elif Berna Var
Abstract:
Cultural, physical, socio-economic, or politic changes occurred in urban areas might be resulted in the decaying period which may cause social problems. As a solution to that, urban renewal projects have been used in European countries since World War II whereas they have gained importance in Turkey after the 1980s. The first attempts were mostly related to physical or economic aspects which caused negative effects on social pattern later. Thus, social concerns have also started to include in renewal processes in developed countries. This integrative approach combining social, physical, and economic aspects promotes creating more sustainable neighbourhoods for both current and future generations. However, it is still a new subject for developing countries like Turkey. Concentrating on Trabzon-Turkey, this study highlights the importance of socially sustainable urban renewal processes especially in historical neighbourhoods where protecting the urban identity of the area is vital, as well as social structure, to create sustainable environments. Being in the historic city centre and having remarkable traditional houses, Ortahisar is an important image for Trabzon. Because of the fact that architectural and historical pattern of the area is still visible but need rehabilitations, it is preferred to use 'urban rehabilitation' as a way of urban renewal method for this study. A project is developed by the local government to create a secondary city centre and a new landmark for the city. But it is still ambiguous if this project can provide social sustainability of area which is one of the concerns of the research. In the study, it is suggested that social sustainability of an area can be achieved by several factors. In order to determine the factors affecting the social sustainability of an urban rehabilitation project, previous studies have been analysed and some common features are attempted to define. To achieve this, firstly, several analyses are conducted to find out social structure of Ortahisar. Secondly, structured interviews are implemented to 150 local people which aims to measure satisfaction level, awareness, the expectation of them, and to learn their demographical background in detail. Those data are used to define the critical factors for a more socially sustainable neighbourhood in Ortahisar. Later, the priority of those factors is asked to 50 experts and 150 local people to compare their attitudes and to find common criterias. According to the results, it can be said that social sustainability of Ortahisar neighbourhood can be improved by considering various factors like quality of urban areas, demographical factors, public participation, social cohesion and harmony, proprietorial factors, facilities of education and employment. In the end, several suggestions are made for Ortahisar case to promote more socially sustainable urban neighbourhood. As a pilot study highlighting the importance of social sustainability, it is hoped that this attempt might be the contributory effect on achieving more socially sustainable urban rehabilitation projects in Turkey.Keywords: urban rehabilitation, social sustainability, Trabzon, Turkey
Procedia PDF Downloads 37424352 Design of Incident Information System in IoT Virtualization Platform
Authors: Amon Olimov, Umarov Jamshid, Dae-Ho Kim, Chol-U Lee, Ryum-Duck Oh
Abstract:
This paper proposes IoT virtualization platform based incident information system. IoT information based environment is the platform that was developed for the purpose of collecting a variety of data by managing regionally scattered IoT devices easily and conveniently in addition to analyzing data collected from roads. Moreover, this paper configured the platform for the purpose of providing incident information based on sensed data. It also provides the same input/output interface as UNIX and Linux by means of matching IoT devices with the directory of file system and also the files. In addition, it has a variety of approaches as to the devices. Thus, it can be applied to not only incident information but also other platforms. This paper proposes the incident information system that identifies and provides various data in real time as to urgent matters on roads based on the existing USN/M2M and IoT visualization platform.Keywords: incident information system, IoT, virtualization platform, USN, M2M
Procedia PDF Downloads 34924351 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure
Authors: Y. L. Hor, H. S. Chu, V. P. Bui
Abstract:
Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization
Procedia PDF Downloads 17124350 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses
Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson
Abstract:
This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies
Procedia PDF Downloads 14724349 Mobile Learning: Toward Better Understanding of Compression Techniques
Authors: Farouk Lawan Gambo
Abstract:
Data compression shrinks files into fewer bits then their original presentation. It has more advantage on internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature therefore making them difficult to digest by some students (Engineers in particular). To determine the best approach toward learning data compression technique, this paper first study the learning preference of engineering students who tend to have strong active, sensing, visual and sequential learning preferences, the paper also study the advantage that mobility of learning have experienced; Learning at the point of interest, efficiency, connection, and many more. A survey is carried out with some reasonable number of students, through random sampling to see whether considering the learning preference and advantages in mobility of learning will give a promising improvement over the traditional way of learning. Evidence from data analysis using Ms-Excel as a point of concern for error-free findings shows that there is significance different in the students after using learning content provided on smart phone, also the result of the findings presented in, bar charts and pie charts interpret that mobile learning has to be promising feature of learning.Keywords: data analysis, compression techniques, learning content, traditional learning approach
Procedia PDF Downloads 34524348 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011
Authors: S. Abera, T. Gidey, W. Terefe
Abstract:
Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.Keywords: data mining, HIV, testing, ethiopia
Procedia PDF Downloads 49524347 Assessing Flood Risk and Mapping Inundation Zones in the Kelantan River Basin: A Hydrodynamic Modeling Approach
Authors: Fatemehsadat Mortazavizadeh, Amin Dehghani, Majid Mirzaei, Nurulhuda Binti Mohammad Ramli, Adnan Dehghani
Abstract:
Flood is Malaysia's most common and serious natural disaster. Kelantan River Basin is a tropical basin that experiences a rainy season during North-East Monsoon from November to March. It is also one of the hardest hit areas in Peninsular Malaysia during the heavy monsoon rainfall. Considering the consequences of the flood events, it is essential to develop the flood inundation map as part of the mitigation approach. In this study, the delineation of flood inundation zone in the area of Kelantan River basin using a hydrodynamic model is done by HEC-RAS, QGIS and ArcMap. The streamflow data has been generated with the weather generator based on the observation data. Then, the data is statistically analyzed with the Extreme Value (EV1) method for 2-, 5-, 25-, 50- and 100-year return periods. The minimum depth, maximum depth, mean depth, and the standard deviation of all the scenarios, including the OBS, are observed and analyzed. Based on the results, generally, the value of the data increases with the return period for all the scenarios. However, there are certain scenarios that have different results, which not all the data obtained are increasing with the return period. Besides, OBS data resulted in the middle range within Scenario 1 to Scenario 40.Keywords: flood inundation, kelantan river basin, hydrodynamic model, extreme value analysis
Procedia PDF Downloads 6824346 The Use of Network Tool for Brain Signal Data Analysis: A Case Study with Blind and Sighted Individuals
Authors: Cleiton Pons Ferreira, Diana Francisca Adamatti
Abstract:
Advancements in computers technology have allowed to obtain information for research in biology and neuroscience. In order to transform the data from these surveys, networks have long been used to represent important biological processes, changing the use of this tools from purely illustrative and didactic to more analytic, even including interaction analysis and hypothesis formulation. Many studies have involved this application, but not directly for interpretation of data obtained from brain functions, asking for new perspectives of development in neuroinformatics using existent models of tools already disseminated by the bioinformatics. This study includes an analysis of neurological data through electroencephalogram (EEG) signals, using the Cytoscape, an open source software tool for visualizing complex networks in biological databases. The data were obtained from a comparative case study developed in a research from the University of Rio Grande (FURG), using the EEG signals from a Brain Computer Interface (BCI) with 32 eletrodes prepared in the brain of a blind and a sighted individuals during the execution of an activity that stimulated the spatial ability. This study intends to present results that lead to better ways for use and adapt techniques that support the data treatment of brain signals for elevate the understanding and learning in neuroscience.Keywords: neuroinformatics, bioinformatics, network tools, brain mapping
Procedia PDF Downloads 18124345 The Neutrophil-to-Lymphocyte Ratio after Surgery for Hip Fracture in a New, Simple, and Objective Score to Predict Postoperative Mortality
Authors: Philippe Dillien, Patrice Forget, Harald Engel, Olivier Cornu, Marc De Kock, Jean Cyr Yombi
Abstract:
Introduction: Hip fracture precedes commonly death in elderly people. Identification of high-risk patients may contribute to target patients in whom optimal management, resource allocation and trials efficiency is needed. The aim of this study is to construct a predictive score of mortality after hip fracture on the basis of the objective prognostic factors available: Neutrophil-to-lymphocyte ratio (NLR), age, and sex. C-Reactive Protein (CRP), is also considered as an alternative to the NLR. Patients and methods: After the IRB approval, we analyzed our prospective database including 286 consecutive patients with hip fracture. A score was constructed combining age (1 point per decade above 74 years), sex (1 point for males), and NLR at postoperative day+5 (1 point if >5). A receiver-operating curve (ROC) curve analysis was performed. Results: From the 286 patients included, 235 were analyzed (72 males and 163 females, 30.6%/69.4%), with a median age of 84 (range: 65 to 102) years, mean NLR values of 6.47+/-6.07. At one year, 82/280 patients died (29.3%). Graphical analysis and log-rank test confirm a highly statistically significant difference (P<0.001). Performance analysis shows an AUC of 0.72 [95%CI 0.65-0.79]. CRP shows no advantage on NLR. Conclusion: We have developed a score based on age, sex and the NLR to predict the risk of mortality at one year in elderly patients after surgery for a hip fracture. After external validation, it may be included in clinical practice as in clinical research to stratify the risk of postoperative mortality.Keywords: neutrophil-to-lymphocyte ratio, hip fracture, postoperative mortality, medical and health sciences
Procedia PDF Downloads 41124344 Analysis of the Impact of Climate Change on Maize (Zea Mays) Yield in Central Ethiopia
Authors: Takele Nemomsa, Girma Mamo, Tesfaye Balemi
Abstract:
Climate change refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or variance of its properties and that persists for an extended period, typically decades or longer. In Ethiopia; Maize production in relation to climate change at regional and sub- regional scales have not been studied in detail. Thus, this study was aimed to analyse the impact of climate change on maize yield in Ambo Districts, Central Ethiopia. To this effect, weather data, soil data and maize experimental data for Arganne hybrid were used. APSIM software was used to investigate the response of maize (Zea mays) yield to different agronomic management practices using current and future (2020s–2080s) climate data. The climate change projections data which were downscaled using SDSM were used as input of climate data for the impact analysis. Compared to agronomic practices the impact of climate change on Arganne in Central Ethiopia is minute. However, within 2020s-2080s in Ambo area; the yield of Arganne hybrid is projected to reduce by 1.06% to 2.02%, and in 2050s it is projected to reduce by 1.56 While in 2080s; it is projected to increase by 1.03% to 2.07%. Thus, to adapt to the changing climate; farmers should consider increasing plant density and fertilizer rate per hectare.Keywords: APSIM, downscaling, response, SDSM
Procedia PDF Downloads 38024343 Aerodynamic Modeling Using Flight Data at High Angle of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling
Procedia PDF Downloads 44324342 Big Data’s Mechanistic View of Human Behavior May Displace Traditional Library Missions That Empower Users
Authors: Gabriel Gomez
Abstract:
The very concept of information seeking behavior, and the means by which librarians teach users to gain information, that is information literacy, are at the heart of how libraries deliver information, but big data will forever change human interaction with information and the way such behavior is both studied and taught. Just as importantly, big data will orient the study of behavior towards commercial ends because of a tendency towards instrumentalist views of human behavior, something one might also call a trend towards behaviorism. This oral presentation seeks to explore how the impact of big data on understandings of human behavior might impact a library information science (LIS) view of human behavior and information literacy, and what this might mean for social justice aims and concomitant community action normally at the center of librarianship. The methodology employed here is a non-empirical examination of current understandings of LIS in regards to social justice alongside an examination of the benefits and dangers foreseen with the growth of big data analysis. The rise of big data within the ever-changing information environment encapsulates a shift to a more mechanistic view of human behavior, one that can easily encompass information seeking behavior and information use. As commercial aims displace the important political and ethical aims that are often central to the missions espoused by libraries and the social sciences, the very altruism and power relations found in LIS are at risk. In this oral presentation, an examination of the social justice impulses of librarians regarding power and information demonstrates how such impulses can be challenged by big data, particularly as librarians understand user behavior and promote information literacy. The creeping behaviorist impulse inherent in the emphasis big data places on specific solutions, that is answers to question that ask how, as opposed to larger questions that hint at an understanding of why people learn or use information threaten library information science ideals. Together with the commercial nature of most big data, this existential threat can harm the social justice nature of librarianship.Keywords: big data, library information science, behaviorism, librarianship
Procedia PDF Downloads 38124341 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 22124340 Creative Application of Cognitive Linguistics and Communicative Methods to Eliminate Common Learners' Mistakes in Academic Essay Writing
Authors: Ekaterina Lukianchenko
Abstract:
This article sums up a six-year experience of teaching English as a foreign language to over 900 university students at MGIMO (Moscow University of International Relations, Russia), all of them native speakers of Russian aged 16 to 23. By combining modern communicative approach to teaching with cognitive linguistics theories, one can deal more effectively with deeply rooted mistakes which particular students have of which conventional methods have failed to eliminate. If language items are understood as concepts and frames, and classroom activities as meaningful parts of language competence development, this might help to solve such problems as incorrect use of words, unsuitable register, and confused tenses - as well as logical or structural mistakes, and even certain psychological issues concerning essay writing. Along with classic teaching methods, such classroom practice includes plenty of interaction between students - playing special classroom games aimed at eliminating particular mistakes, working in pairs and groups, integrating all skills in one class. The main conclusions that the author of the experiment makes consist in an assumption that academic essay writing classes demand a balanced plan. This should not only include writing as such, but additionally feature elements of listening, reading, speaking activities specifically chosen according to the skills and language students will need to write the particular type of essay.Keywords: academic essay writing, creative teaching, cognitive linguistics, competency-based approach, communicative language teaching, frame, concept
Procedia PDF Downloads 29624339 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 14524338 Understanding Cyber Terrorism from Motivational Perspectives: A Qualitative Data Analysis
Authors: Yunos Zahri, Ariffin Aswami
Abstract:
Cyber terrorism represents the convergence of two worlds: virtual and physical. The virtual world is a place in which computer programs function and data move, whereas the physical world is where people live and function. The merging of these two domains is the interface being targeted in the incidence of cyber terrorism. To better understand why cyber terrorism acts are committed, this study presents the context of cyber terrorism from motivational perspectives. Motivational forces behind cyber terrorism can be social, political, ideological and economic. In this research, data are analyzed using a qualitative method. A semi-structured interview with purposive sampling was used for data collection. With the growing interconnectedness between critical infrastructures and Information & Communication Technology (ICT), selecting targets that facilitate maximum disruption can significantly influence terrorists. This work provides a baseline for defining the concept of cyber terrorism from motivational perspectives.Keywords: cyber terrorism, terrorism, motivation, qualitative analysis
Procedia PDF Downloads 41924337 Research Analysis of Urban Area Expansion Based on Remote Sensing
Authors: Sheheryar Khan, Weidong Li, Fanqian Meng
Abstract:
The Urban Heat Island (UHI) effect is one of the foremost problems out of other ecological and socioeconomic issues in urbanization. Due to this phenomenon that human-made urban areas have replaced the rural landscape with the surface that increases thermal conductivity and urban warmth; as a result, the temperature in the city is higher than in the surrounding rural areas. To affect the evidence of this phenomenon in the Zhengzhou city area, an observation of the temperature variations in the urban area is done through a scientific method that has been followed. Landsat 8 satellite images were taken from 2013 to 2015 to calculate the effect of Urban Heat Island (UHI) along with the NPP-VRRIS night-time remote sensing data to analyze the result for a better understanding of the center of the built-up area. To further support the evidence, the correlation between land surface temperatures and the normalized difference vegetation index (NDVI) was calculated using the Red band 4 and Near-infrared band 5 of the Landsat 8 data. Mono-window algorithm was applied to retrieve the land surface temperature (LST) distribution from the Landsat 8 data using Band 10 and 11 accordingly to convert the top-of-atmosphere radiance (TOA) and to convert the satellite brightness temperature. Along with Landsat 8 data, NPP-VIIRS night-light data is preprocessed to get the research area data. The analysis between Landsat 8 data and NPP night-light data was taken to compare the output center of the Built-up area of Zhengzhou city.Keywords: built-up area, land surface temperature, mono-window algorithm, NDVI, remote sensing, threshold method, Zhengzhou
Procedia PDF Downloads 13724336 A Comparative Study of the Athlete Health Records' Minimum Data Set in Selected Countries and Presenting a Model for Iran
Authors: Robab Abdolkhani, Farzin Halabchi, Reza Safdari, Goli Arji
Abstract:
Background and purpose: The quality of health record depends on the quality of its content and proper documentation. Minimum data set makes a standard method for collecting key data elements that make them easy to understand and enable comparison. The aim of this study was to determine the minimum data set for Iranian athletes’ health records. Methods: This study is an applied research of a descriptive comparative type which was carried out in 2013. By using internal and external forms of documentation, a checklist was created that included data elements of athletes health record and was subjected to debate in Delphi method by experts in the field of sports medicine and health information management. Results: From 97 elements which were subjected to discussion, 85 elements by more than 75 percent of the participants (as the main elements) and 12 elements by 50 to 75 percent of the participants (as the proposed elements) were agreed upon. In about 97 elements of the case, there was no significant difference between responses of alumni groups of sport pathology and sports medicine specialists with medical record, medical informatics and information management professionals. Conclusion: Minimum data set of Iranian athletes’ health record with four information categories including demographic information, health history, assessment and treatment plan was presented. The proposed model is available for manual and electronic medical records.Keywords: Documentation, Health record, Minimum data set, Sports medicine
Procedia PDF Downloads 47824335 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela
Authors: Maria Antonieta Erna Castillo Holly
Abstract:
During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela
Procedia PDF Downloads 13024334 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data
Authors: S. H. Lee, M. J. Park, O. M. Kwon
Abstract:
In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of this systems are obtained by solving a set of Linear Matrix Inequalities(LMIs). One numerical example is included to show the effectiveness of the proposed criteria.Keywords: multi-agent, linear matrix inequalities (LMIs), kronecker product, sampled-data, Lyapunov method
Procedia PDF Downloads 52624333 Materialized View Effect on Query Performance
Authors: Yusuf Ziya Ayık, Ferhat Kahveci
Abstract:
Currently, database management systems have various tools such as backup and maintenance, and also provide statistical information such as resource usage and security. In terms of query performance, this paper covers query optimization, views, indexed tables, pre-computation materialized view, query performance analysis in which query plan alternatives can be created and the least costly one selected to optimize a query. Indexes and views can be created for related table columns. The literature review of this study showed that, in the course of time, despite the growing capabilities of the database management system, only database administrators are aware of the need for dealing with archival and transactional data types differently. These data may be constantly changing data used in everyday life, and also may be from the completed questionnaire whose data input was completed. For both types of data, the database uses its capabilities; but as shown in the findings section, instead of repeating similar heavy calculations which are carrying out same results with the same query over a survey results, using materialized view results can be in a more simple way. In this study, this performance difference was observed quantitatively considering the cost of the query.Keywords: cost of query, database management systems, materialized view, query performance
Procedia PDF Downloads 27724332 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 42124331 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP
Procedia PDF Downloads 96