Search results for: concrete corrosion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2441

Search results for: concrete corrosion

1001 Preparation of Bacterial Cellulose Membranes from Nata de Coco for CO2/CH4 Separation

Authors: Yanin Hosakun, Sujitra Wongkasemjit, Thanyalak Chaisuwan

Abstract:

Carbon dioxide removal from natural gas is an important process because the existence of carbon dioxide in natural gas contributes to pipeline corrosion, reduces the heating value, and takes up volume in the pipeline. In this study, bacterial cellulose was chosen for the CO2/CH4 gas separation membrane due to its unique structure and prominent properties. Additionally, it can simply be obtained by culturing the bacteria so called “Acetobacter xylinum” through fermentation of coconut juice. Bacterial cellulose membranes with and without silver ions were prepared and studied for the separation performance of CO2 and CH4.

Keywords: bacterial cellulose, CO2, CH4 separation, membrane, nata de coco

Procedia PDF Downloads 240
1000 Comparative Analysis of Three Types of Recycled Aggregates and its Use in Masonry Mortar Fabrication

Authors: Mariano Gonzalez Cortina, Pablo Saiz Martinez, Francisco Fernandez Martinez, Antonio Rodriguez Sanchez

Abstract:

Construction sector incessant activity of the last years preceding the crisis has originated a high waste generation and an increased use of raw materials. The main aim of this research is to compare three types of recycled aggregates and the feasibility to incorporate them into masonry mortar fabrication. The tests were developed using two types of binders: CEM II/B-L 32.5 N and CEM IV/B (V) 32.5 N. 50%, 75% and 100% of natural sand were replaced with three types of recycled aggregates. Cement-to-aggregate by dry weight proportions were 1:3 and 1:4. Physical and chemical characterization of recycled aggregates showed continues particle size distribution curve, lower density and higher absorption, which was the reason to use additive to obtain required mortar consistency. Main crystalline phases determined in the X-Ray diffraction test were calcite, quartz, and gypsum. Performed tests show that cement-based mortars fabricated with CEM IV/B (V) 32. 5 N can incorporate recycled aggregates coming from ceramic, concrete and mixed recycling processes, using 1:3 and 1:4 cement-to-aggregate proportions, complying with the limits established by the Spanish standards. It was concluded that recycled mortar coming from concrete recycling process is the one which presents better characteristics.

Keywords: construction and demolition waste, masonry mortar, mechanical properties, recycled aggregate, waste treatment

Procedia PDF Downloads 408
999 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads

Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad

Abstract:

Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.

Keywords: reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments

Procedia PDF Downloads 276
998 Resistance and Sub-Resistances of RC Beams Subjected to Multiple Failure Modes

Authors: F. Sangiorgio, J. Silfwerbrand, G. Mancini

Abstract:

Geometric and mechanical properties all influence the resistance of RC structures and may, in certain combination of property values, increase the risk of a brittle failure of the whole system. This paper presents a statistical and probabilistic investigation on the resistance of RC beams designed according to Eurocodes 2 and 8, and subjected to multiple failure modes, under both the natural variation of material properties and the uncertainty associated with cross-section and transverse reinforcement geometry. A full probabilistic model based on JCSS Probabilistic Model Code is derived. Different beams are studied through material nonlinear analysis via Monte Carlo simulations. The resistance model is consistent with Eurocode 2. Both a multivariate statistical evaluation and the data clustering analysis of outcomes are then performed. Results show that the ultimate load behaviour of RC beams subjected to flexural and shear failure modes seems to be mainly influenced by the combination of the mechanical properties of both longitudinal reinforcement and stirrups, and the tensile strength of concrete, of which the latter appears to affect the overall response of the system in a nonlinear way. The model uncertainty of the resistance model used in the analysis plays undoubtedly an important role in interpreting results.

Keywords: modelling, Monte Carlo simulations, probabilistic models, data clustering, reinforced concrete members, structural design

Procedia PDF Downloads 461
997 Instrumentation of Urban Pavements Built with Construction and Demolition Waste

Authors: Sofia Figueroa, Efrain Bernal, Silvia Del Pilar Forero, Humberto Ramirez

Abstract:

This work shows a detailed review of the scope of global research on the road infrastructure using materials from Construction and Demolition Waste (C&DW), also called RCD. In the first phase of this research, a segment of road was designed using recycled materials such as Reclaimed Asphalt Pavement (RAP) on the top, the natural coarse base including 30% of RAP and recycled concrete blocks. The second part of this segment was designed using regular materials for each layer of the pavement. Both structures were built next to each other in order to analyze and measure the material properties as well as performance and environmental factors in the pavement under real traffic and weather conditions. Different monitoring devices were installed among the structure, based on the literature revision, such as soil cells, linear potentiometer, moisture sensors, and strain gauges that help us to know the C&DW as a part of the pavement structure. This research includes not only the physical characterization but also the measured parameters in a field such as an asphalt mixture (RAP) strain (ετ), vertical strain (εᵥ) and moisture control in coarse layers (%w), and the applied loads and strain in the subgrade (εᵥ). The results will show us what is happening with these materials in order to obtain not only a sustainable solution but also to know its behavior and lifecycle.

Keywords: sustainable pavements, construction & demolition waste-C&DW, recycled rigid concrete, reclaimed asphalt pavement-rap

Procedia PDF Downloads 130
996 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.

Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite

Procedia PDF Downloads 236
995 Probabilistic Seismic Loss Assessment of Reinforced Concrete (RC) Frame Buildings Pre- and Post-Rehabilitation

Authors: A. Flora, A. Di Lascio, D. Cardone, G. Gesualdi, G. Perrone

Abstract:

This paper considers the seismic assessment and retrofit of a pilotis-type RC frame building, which was designed for gravity loads only, prior to the introduction of seismic design provisions. Pilotis-type RC frame buildings, featuring an uniform infill throughout the height and an open ground floor, were, and still are, quite popular all over the world, as they offer large open areas very suitable for retail space at the ground floor. These architectural advantages, however, are of detriment to the building seismic behavior, as they can determine a soft-storey collapse mechanism. Extensive numerical analyses are carried out to quantify and benchmark the performance of the selected building, both in terms of overall collapse capacity and expected losses. Alternative retrofit strategies are then examined, including: (i) steel jacketing of RC columns and beam-column joints, (ii) steel bracing and (iv) seismic isolation. The Expected Annual Loss (EAL) of the selected case-study building, pre- and post-rehabilitation, is evaluated, following a probabilistic approach. The breakeven time of each solution is computed, comparing the initial cost of the retrofit intervention with expected benefit in terms of EAL reduction.

Keywords: expected annual loss, reinforced concrete buildings, seismic loss assessment, seismic retrofit

Procedia PDF Downloads 234
994 Anticorrosive Properties of Poly(O-Phenylendiamine)/ZnO Nanocomposites Coated Stainless Steel

Authors: Aisha Ganash

Abstract:

Poly(o-phenylendiamine) and poly(ophenylendiamine)/ZnO(PoPd/ZnO) nanocomposites coating were prepared on type-304 austenitic stainless steel (SS) using H2SO4 acid as electrolyte by potentiostatic methods. Fourier transforms infrared spectroscopy and scanning electron microscopy techniques were used to characterize the composition and structure of PoPd/ZnO nanocomposites. The corrosion protection of polymer coatings ability was studied by Eocp-time measurement, anodic and cathodic potentiodynamic polarization and Impedance techniques in 3.5% NaCl as a corrosive solution. It was found that ZnO nanoparticles improve the barrier and electrochemical anticorrosive properties of poly(o-phenylendiamine).

Keywords: anticorrosion, conducting polymers, electrochemistry, nanocomposites

Procedia PDF Downloads 283
993 Life Cycle Analysis of Using Brick Waste in Road Technology

Authors: Mezhoud Samy, Toumi Youcef, Boukendekdji Otmane

Abstract:

Nowadays, industrial by-products and waste are increasing along with public needs increase. The engineering sector has turned to sustainable development by emphasizing the aspects of environmental and life cycle assessment as an important objective. Among this waste, the remains of the red bricks (DBR) may be an alternative worth checking out, given their availability and abundance at the construction sites. In this context, this work aims to valorize DBR in the concrete road (BR). The incorporation of DBR is carried out by the substitution of the granular fractions of mixtures from noble quarry materials. The experimental plan aims to determine the physico-mechanical performance and environmental performance of manufactured BRs from DBR with a cement content (6.5%) and compared with a control BR without DBR. The studied characteristics are proctor, resistance to compression, resistance to flexural tensile at 7 and 28 days, modulus of elasticity, and total shrinkage. The results of this experimental study showed that the characteristics of recycled aggregates (DBR) are lower than those of natural aggregates but remain acceptable with respect to regulations. Results demonstrate the mechanical performance of BR made from less DBR than the control BR without DBR but remains appreciable and encourage their jobs in the road sector. Recycled aggregates can constitute an interesting economic and ecological alternative but require elementary precautions before any use.

Keywords: life cycle assessment, brick waste, road concrete, performance

Procedia PDF Downloads 84
992 Usage of Palm Oil Industrial Wastes as Construction Materials

Authors: Mohammad Momeenul Islam, U. Johnson Alengaram, Mohd Zamin Jumaat, Iftekhair Ibnul Bashar

Abstract:

Palm oil industry produces millions of tonnes of industrial wastes and these wastes create huge storage and environmental problems. In order to solve these problems various research works have been performed for past decades. The commonly available wastes are Oil palm shells (OPS) and Palm oil fuel ash (POFA). These materials have already acquired well recognition as alternate of conventional construction materials. OPS has been used as coarse aggregate and compressive strength was found up to 56 MPa for 56-day. It is said that 30 grade Oil Palm shell concrete (OPSC) is possible without adding any cementitious materials. The maximum modulus of elasticity for OPSC was found 18.6 GPa. The Oil palm shell concrete (OPSC) are used in country areas and nearby areas where the palm oil factories are located for houses, road-kerbs, drain blocks, etc. In case of superstructure like beams and slab are also produced by utilizing OPS. Many experimental works have been performed to establish POFA as a substituting binding material in replace of Ordinary Portland cement (OPC). Throughout the research it has been showed that up to 20% of cement by mass can be replaced by POFA. POFA is one of the most enriched pozzolanic materials. The main purpose of this review is to discuss the usage and opportunity of the palm oil industrial wastes as construction materials following the previous experimental research work.

Keywords: construction materials, oil palm shells (OPS), palm oil fuel ash (POFA), aggregates

Procedia PDF Downloads 336
991 Mortar Positioning Effects on Uniaxial Compression Behavior in Hollow Concrete Block Masonry

Authors: José Álvarez Pérez, Ramón García Cedeño, Gerardo Fajardo-San Miguel, Jorge H. Chávez Gómez, Franco A. Carpio Santamaría, Milena Mesa Lavista

Abstract:

The uniaxial compressive strength and modulus of elasticity in hollow concrete block masonry (HCBM) represent key mechanical properties for structural design considerations. These properties are obtained through experimental tests conducted on prisms or wallettes and depend on various factors, with the HCB contributing significantly to overall strength. One influential factor in the compressive behaviour of masonry is the thickness and method of mortar placement. Mexican regulations stipulate mortar placement over the entire net area (full-shell) for strength computation based on the gross area. However, in professional practice, there's a growing trend to place mortar solely on the lateral faces. Conversely, the United States of America standard dictates mortar placement and computation over the net area of HCB. The Canadian standard specifies mortar placement solely on the lateral face (Face-Shell-Bedding), where computation necessitates the use of the effective load area, corresponding to the mortar's placement area. This research aims to evaluate the influence of different mortar placement methods on the axial compression behaviour of HCBM. To achieve this, an experimental campaign was conducted, including: (1) 10 HCB specimens with mortar on the entire net area, (2) 10 HCB specimens with mortar placed on the lateral faces, (3) 10 prisms of 2-course HCB under axial compression with mortar in full-shell, (4) 10 prisms of 2-course HCB under axial compression with mortar in face-shell-bedding, (5) 10 prisms of 3-course HCB under axial compression with mortar in full-shell, (6) 10 prisms of 3-course HCB under axial compression with mortar in face-shell-bedding, (7) 10 prisms of 4-course HCB under axial compression with mortar in full-shell, and, (8) 10 prisms of 4-course HCB under axial compression with mortar in face-shell-bedding. A combination of sulphur and fly ash in a 2:1 ratio was used for the capping material, meeting the average compressive strength requirement of over 35 MPa as per NMX-C-036 standards. Additionally, a mortar with a strength of over 17 MPa was utilized for the prisms. The results indicate that prisms with mortar placed over the full-shell exhibit higher strength compared to those with mortar over the face-shell-bedding. However, the elastic modulus was lower for prisms with mortar placement over the full-shell compared to face-shell bedding.

Keywords: masonry, hollow concrete blocks, mortar placement, prisms tests

Procedia PDF Downloads 48
990 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 216
989 Population Stereotype Production, User Factors, and Icon Design for Underserved Communities of Rural India

Authors: Avijit Sengupta, Klarissa Ting Ting Cheng, Maffee Peng-Hui Wan

Abstract:

This study investigates the influence of user factors and referent characteristics on representation types generated using the stereotype production method for designing icons. Sixty-eight participants of farming communities were asked to draw images based on sixteen feature referents. Significant statistical differences were found between the types of representations generated for contextual and context-independent referents. Strong correlations were observed between years of formal education and total number of abstract representations produced for both contextual and context-independent referents. However, representation characteristics were not influenced by other user factors such as participants’ experience with mobile phone and years of farming experience. A statistically significant tendency of making concrete representations was observed for both contextual and context-independent referents. These findings provide insights on community members’ involvement in icon design and suggest a consolidated icon design strategy based on population stereotype, particularly for under-served rural communities of India.

Keywords: abstract representation, concrete representation, participatory design, population stereotype

Procedia PDF Downloads 367
988 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures

Procedia PDF Downloads 366
987 Evaluating Environmental Impact of End-of-Life Cycle Cases for Brick Walls and Aerated Autoclave Concrete Walls

Authors: Ann Mariya Jose, Ashfina T.

Abstract:

Construction and demolition waste is one of the rising concerns globally due to the amount of waste generated annually, the area taken up by landfills, and the adverse environmental impacts that follow. One of the primary causes of the rise in construction and demolition waste is a lack of facilities and knowledge for incorporating recycled materials into new construction. Bricks are a conventional material that has been used for construction for centuries, and Autoclave Aerated Concrete (AAC) blocks are a new emergent material in the market. This study evaluates the impact brick walls, and AAC block walls have on the environment using the tool One Click LCA, considering three End of Life (EoL) scenarios: the materials are landfilled, recycled, and reused in a new building. The final objective of the study is to evaluate the environmental impact caused by these two different walls on the environmental factors such as Global Warming Potential (GWP), Acidification Potential (AP), Eutrophication Potential (EP), Ozone Depletion Potential (ODP), and Photochemical Ozone Creation Potential (POCP). The findings revealed that the GWP caused by landfilling is 16 times higher in bricks and 22 times higher in AAC blocks when compared to the reuse of materials. The study recommends the effective use of AAC blocks in construction and reuse of the same to reduce the overall emissions to the environment.

Keywords: construction and demolition waste, environmental impact, life cycle impact assessment, material recycling

Procedia PDF Downloads 91
986 Failure Probability Assessment of Concrete Spherical Domes Subjected to Ventilation Controlled Fires Using BIM Tools

Authors: A. T. Kassem

Abstract:

Fires areconsidered a common hazardous action that any building may face. Most buildings’ structural elements are designed, taking into consideration precautions for fire safety, using deterministic design approaches. Public and highly important buildings are commonly designed considering standard fire rating and, in many cases, contain large compartments with central domes. Real fire scenarios are not commonly brought into action in structural design of buildings because of complexities in both scenarios and analysis tools. This paper presents a modern approach towards analysis of spherical domes in real fire condition via implementation of building information modelling, and adopting a probabilistic approach. BIMhas been implemented to bridge the gap between various software packages enabling them to function interactively to model both real fire and corresponding structural response. Ventilation controlled fires scenarios have been modeled using both “Revit” and “Pyrosim”. Monte Carlo simulation has been adopted to engage the probabilistic analysis approach in dealing with various parameters. Conclusions regarding failure probability and fire endurance, in addition to the effects of various parameters, have been extracted.

Keywords: concrete, spherical domes, ventilation controlled fires, BIM, monte carlo simulation, pyrosim, revit

Procedia PDF Downloads 86
985 Strengthening by Assessment: A Case Study of Rail Bridges

Authors: Evangelos G. Ilias, Panagiotis G. Ilias, Vasileios T. Popotas

Abstract:

The United Kingdom has one of the oldest railway networks in the world dating back to 1825 when the world’s first passenger railway was opened. The network has some 40,000 bridges of various construction types using a wide range of materials including masonry, steel, cast iron, wrought iron, concrete and timber. It is commonly accepted that the successful operation of the network is vital for the economy of the United Kingdom, consequently the cost effective maintenance of the existing infrastructure is a high priority to maintain the operability of the network, prevent deterioration and to extend the life of the assets. Every bridge on the railway network is required to be assessed every eighteen years and a structured approach to assessments is adopted with three main types of progressively more detailed assessments used. These assessment types include Level 0 (standardized spreadsheet assessment tools), Level 1 (analytical hand calculations) and Level 2 (generally finite element analyses). There is a degree of conservatism in the first two types of assessment dictated to some extent by the relevant standards which can lead to some structures not achieving the required load rating. In these situations, a Level 2 Assessment is often carried out using finite element analysis to uncover ‘latent strength’ and improve the load rating. If successful, the more sophisticated analysis can save on costly strengthening or replacement works and avoid disruption to the operational railway. This paper presents the ‘strengthening by assessment’ achieved by Level 2 analyses. The use of more accurate analysis assumptions and the implementation of non-linear modelling and functions (material, geometric and support) to better understand buckling modes and the structural behaviour of historic construction details that are not specifically covered by assessment codes are outlined. Metallic bridges which are susceptible to loss of section size through corrosion have largest scope for improvement by the Level 2 Assessment methodology. Three case studies are presented, demonstrating the effectiveness of the sophisticated Level 2 Assessment methodology using finite element analysis against the conservative approaches employed for Level 0 and Level 1 Assessments. One rail overbridge and two rail underbridges that did not achieve the required load rating by means of a Level 1 Assessment due to the inadequate restraint provided by U-Frame action are examined and the increase in assessed capacity given by the Level 2 Assessment is outlined.

Keywords: assessment, bridges, buckling, finite element analysis, non-linear modelling, strengthening

Procedia PDF Downloads 298
984 Comparative Study on the Precipitation Behavior in Two Al-Mg Alloys (Al-12 wt. % Mg and Al-8 wt. % Mg)

Authors: C. Amrane, D. Haman

Abstract:

Aluminum-magnesium alloys are widely used in industry thanks to their mechanical properties and corrosion resistivity. These properties are related to the magnesium content and to the applied heat treatments. Although they are already well studied, questions concerning the microstructural stability and the effect of different heat treatments are still being asked. In this work we have presented a comparative study on the behavior of the precipitation reactions during different heat treatment in two different Al-Mg alloys (Al–8 wt. % Mg and Al–12 wt. % Mg). For this purpose, we have used various experimental techniques as dilatometry, calorimetry, optical microscopy, and microhardness measurements. The obtained results shown that, the precipitation kinetics and the mechanical responses to the applied heat treatments, of the two studied alloys, are different.

Keywords: Al-Mg alloys, precipitation, hardness, heat treatments

Procedia PDF Downloads 370
983 The Role and Impact of Cold Spray Technology on Surface Engineering

Authors: Ionel Botef

Abstract:

Studies show that, for viable product realisation and maintenance, a spectrum of novel processing technologies and materials to improve performance and reduce costs and environmental impact must constantly be addressed. One of these technologies, namely the cold spray process, has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace, electronics, or medical applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore the role and impact of cold spraying on surface engineering.

Keywords: surface engineering, cold spray, ageing aircrafts, corrosion, microchannels, maintenance

Procedia PDF Downloads 597
982 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec

Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed

Abstract:

Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.

Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation

Procedia PDF Downloads 196
981 Research of Strong-Column-Weak-Beam Criteria of Reinforced Concrete Frames Subjected to Biaxial Seismic Excitation

Authors: Chong Zhang, Mu-Xuan Tao

Abstract:

In several earthquakes, numerous reinforced concrete (RC) frames subjected to seismic excitation demonstrated a collapse pattern characterized by column hinges, though designed according to the Strong-Column-Weak-Beam (S-C-W-B) criteria. The effect of biaxial seismic excitation on the disparity between design and actual performance is carefully investigated in this article. First, a modified load contour method is proposed to derive a closed-form equation of biaxial bending moment strength, which is verified by numerical and experimental tests. Afterwards, a group of time history analyses of a simple frame modeled by fiber beam-column elements subjected to biaxial seismic excitation are conducted to verify that the current S-C-W-B criteria are not adequate to prevent the occurrence of column hinges. A biaxial over-strength factor is developed based on the proposed equation, and the reinforcement of columns is appropriately amplified with this factor to prevent the occurrence of column hinges under biaxial excitation, which is proved to be effective by another group of time history analyses.

Keywords: biaxial bending moment capacity, biaxial seismic excitation, fiber beam model, load contour method, strong-column-weak-beam

Procedia PDF Downloads 88
980 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants

Authors: Shengyi Huang, Chenju Liang

Abstract:

Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.

Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution

Procedia PDF Downloads 200
979 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate

Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar

Abstract:

Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).

Keywords: hardness, RSM, sputtering, TiN XRD

Procedia PDF Downloads 304
978 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems

Authors: Daniele Losanno, Giorgio Serino

Abstract:

This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.

Keywords: brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete frames

Procedia PDF Downloads 283
977 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.

Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames

Procedia PDF Downloads 82
976 Seismic Response of Large-Scale Rectangular Steel-Plate Concrete Composite Shear Walls

Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma

Abstract:

An experimental program on steel-plate concrete (SC) composite shear walls was executed in the NEES laboratory at the University at Buffalo. Four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and faceplate slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure-critical. This paper presents the damage to SC walls at different drift ratios, the cyclic force-displacement relationships, energy dissipation and equivalent viscous damping ratios, the strain and stress fields in the steel faceplates and the contribution of the steel faceplates to the total shear load, the variation of vertical strain in the steel faceplates along the length of the wall, near the base, at different drift ratios, the contributions of shear, flexure, and base rotation to the total lateral displacement, the displacement ductility of the SC walls, and the cyclic secant stiffness of the four SC walls.

Keywords: steel-plate composite shear wall, safety-related nuclear structure, flexure-critical wall, cyclic loading

Procedia PDF Downloads 342
975 Structural Performance of Composite Steel and Concrete Beams

Authors: Jakub Bartus

Abstract:

In general, composite steel and concrete structures present an effective structural solution utilizing full potential of both materials. As they have a numerous advantages on the construction side, they can reduce greatly the overall cost of construction, which is the main objective of the last decade, highlighted by the current economic and social crisis. The study represents not only an analysis of composite beams’ behaviour having web openings but emphasizes the influence of these openings on the total strain distribution at the level of steel bottom flange as well. The major investigation was focused on a change of structural performance with respect to various layouts of openings. Examining this structural modification, an improvement of load carrying capacity of composite beams was a prime object. The study is devided into analytical and numerical part. The analytical part served as an initial step into the design process of composite beam samples, in which optimal dimensions and specific levels of utilization in individual stress states were taken into account. The numerical part covered description of imposed structural issue in a form of a finite element model (FEM) using strut and shell elements accounting for material non-linearities. As an outcome, a number of conclusions were drawn describing and explaining an effect of web opening presence on the structural performance of composite beams.

Keywords: composite beam, web opening, steel flange, totalstrain, finite element analysis

Procedia PDF Downloads 55
974 Structural and Leaching Properties of Irradiated Lead Commercial Glass by Using XRD, Ultrasonic, UV-VIS and AAS Technique

Authors: N. H. Alias, S. A. Aziz, Y. Abdullah, H. M. Kamari, S. Sani, M. P. Ismail, N. U. Saidin, N. A. A. Salim, N. E. E. Abdullah

Abstract:

Gamma (γ) irradiation study has been investigated on the 6 rectangular shape of the standard X-Ray lead glass with 5/16” thick, providing 2.00 mm lead shielding value; at selected Sievert doses (C1; 0, C2; 0.07, C3; 0.035, C4; 0.07, C5; 0.105 and C6; 0.14) by using (XRD) X-ray Diffraction techniques, ultrasonic and (UV-VIS) Ultraviolet-Visible Spectroscopy. Concentration of lead in 0.5 N acid nitric (HNO3) environments is then studied by means of Atomic Absorption Spectroscopy (AAS) as to observe the glass corrosion behavior after irradiation at room temperature. This type of commercial glass is commonly used as radiation shielding glass in medical application.

Keywords: gamma irradiation, lead glass, leaching, structural

Procedia PDF Downloads 420
973 Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos

Authors: Hatthaphone Silimanotham, Michael Henry

Abstract:

The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets.

Keywords: deterioration model, bridge condition, bridge management, probabilistic modeling

Procedia PDF Downloads 150
972 Critical Investigation on Performance of Polymeric Materials in Rehabilitation of Metallic Components

Authors: Parastou Kharazmi

Abstract:

Failure and leakage of metallic components because of corrosion in infrastructure structures is a considerably problematic and expensive issue and the traditional solution of replacing the component is costly and time-consuming. Rehabilitation techniques by using advanced polymeric materials are an alternative solution towards this problem. This paper provides a summary of analyses on relined rehabilitated metallic samples after exposure in practice and real condition to study the composite material performance when it is exposed to water, heat and chemicals in real condition. The study was carried out by using different test methods such as microscopy, thermal and chemical as well as mechanical analyses.

Keywords: composite, material, rehabilitation, structure

Procedia PDF Downloads 225