Search results for: regression models drone
7961 A New Mathematical Model of Human Olfaction
Authors: H. Namazi, H. T. N. Kuan
Abstract:
It is known that in humans, the adaptation to a given odor occurs within a quite short span of time (typically one minute) after the odor is presented to the brain. Different models of human olfaction have been developed by scientists but none of these models consider the diffusion phenomenon in olfaction. A novel microscopic model of the human olfaction is presented in this paper. We develop this model by incorporating the transient diffusivity. In fact, the mathematical model is written based on diffusion of the odorant within the mucus layer. By the use of the model developed in this paper, it becomes possible to provide quantification of the objective strength of odor.Keywords: diffusion, microscopic model, mucus layer, olfaction
Procedia PDF Downloads 5057960 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 1347959 Liesegang Phenomena: Experimental and Simulation Studies
Authors: Vemula Amalakrishna, S. Pushpavanam
Abstract:
Change and motion characterize and persistently reshape the world around us, on scales from molecular to global. The subtle interplay between change (Reaction) and motion (Diffusion) gives rise to an astonishing intricate spatial or temporal pattern. These pattern formation in nature has been intellectually appealing for many scientists since antiquity. Periodic precipitation patterns, also known as Liesegang patterns (LP), are one of the stimulating examples of such self-assembling reaction-diffusion (RD) systems. LP formation has a great potential in micro and nanotechnology. So far, the research on LPs has been concentrated mostly on how these patterns are forming, retrieving information to build a universal mathematical model for them. Researchers have developed various theoretical models to comprehensively construct the geometrical diversity of LPs. To the best of our knowledge, simulation studies of LPs assume an arbitrary value of RD parameters to explain experimental observation qualitatively. In this work, existing models were studied to understand the mechanism behind this phenomenon and challenges pertaining to models were understood and explained. These models are not computationally effective due to the presence of discontinuous precipitation rate in RD equations. To overcome the computational challenges, smoothened Heaviside functions have been introduced, which downsizes the computational time as well. Experiments were performed using a conventional LP system (AgNO₃-K₂Cr₂O₇) to understand the effects of different gels and temperatures on formed LPs. The model is extended for real parameter values to compare the simulated results with experimental data for both 1-D (Cartesian test tubes) and 2-D(cylindrical and Petri dish).Keywords: reaction-diffusion, spatio-temporal patterns, nucleation and growth, supersaturation
Procedia PDF Downloads 1527958 Modeling Spatio-Temporal Variation in Rainfall Using a Hierarchical Bayesian Regression Model
Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Gundula Bartzke, Hans-Peter Piepho
Abstract:
Rainfall is a critical component of climate governing vegetation growth and production, forage availability and quality for herbivores. However, reliable rainfall measurements are not always available, making it necessary to predict rainfall values for particular locations through time. Predicting rainfall in space and time can be a complex and challenging task, especially where the rain gauge network is sparse and measurements are not recorded consistently for all rain gauges, leading to many missing values. Here, we develop a flexible Bayesian model for predicting rainfall in space and time and apply it to Narok County, situated in southwestern Kenya, using data collected at 23 rain gauges from 1965 to 2015. Narok County encompasses the Maasai Mara ecosystem, the northern-most section of the Mara-Serengeti ecosystem, famous for its diverse and abundant large mammal populations and spectacular migration of enormous herds of wildebeest, zebra and Thomson's gazelle. The model incorporates geographical and meteorological predictor variables, including elevation, distance to Lake Victoria and minimum temperature. We assess the efficiency of the model by comparing it empirically with the established Gaussian process, Kriging, simple linear and Bayesian linear models. We use the model to predict total monthly rainfall and its standard error for all 5 * 5 km grid cells in Narok County. Using the Monte Carlo integration method, we estimate seasonal and annual rainfall and their standard errors for 29 sub-regions in Narok. Finally, we use the predicted rainfall to predict large herbivore biomass in the Maasai Mara ecosystem on a 5 * 5 km grid for both the wet and dry seasons. We show that herbivore biomass increases with rainfall in both seasons. The model can handle data from a sparse network of observations with many missing values and performs at least as well as or better than four established and widely used models, on the Narok data set. The model produces rainfall predictions consistent with expectation and in good agreement with the blended station and satellite rainfall values. The predictions are precise enough for most practical purposes. The model is very general and applicable to other variables besides rainfall.Keywords: non-stationary covariance function, gaussian process, ungulate biomass, MCMC, maasai mara ecosystem
Procedia PDF Downloads 2947957 Metacognitive Processing in Early Readers: The Role of Metacognition in Monitoring Linguistic and Non-Linguistic Performance and Regulating Students' Learning
Authors: Ioanna Taouki, Marie Lallier, David Soto
Abstract:
Metacognition refers to the capacity to reflect upon our own cognitive processes. Although there is an ongoing discussion in the literature on the role of metacognition in learning and academic achievement, little is known about its neurodevelopmental trajectories in early childhood, when children begin to receive formal education in reading. Here, we evaluate the metacognitive ability, estimated under a recently developed Signal Detection Theory model, of a cohort of children aged between 6 and 7 (N=60), who performed three two-alternative-forced-choice tasks (two linguistic: lexical decision task, visual attention span task, and one non-linguistic: emotion recognition task) including trial-by-trial confidence judgements. Our study has three aims. First, we investigated how metacognitive ability (i.e., how confidence ratings track accuracy in the task) relates to performance in general standardized tasks related to students' reading and general cognitive abilities using Spearman's and Bayesian correlation analysis. Second, we assessed whether or not young children recruit common mechanisms supporting metacognition across the different task domains or whether there is evidence for domain-specific metacognition at this early stage of development. This was done by examining correlations in metacognitive measures across different task domains and evaluating cross-task covariance by applying a hierarchical Bayesian model. Third, using robust linear regression and Bayesian regression models, we assessed whether metacognitive ability in this early stage is related to the longitudinal learning of children in a linguistic and a non-linguistic task. Notably, we did not observe any association between students’ reading skills and metacognitive processing in this early stage of reading acquisition. Some evidence consistent with domain-general metacognition was found, with significant positive correlations between metacognitive efficiency between lexical and emotion recognition tasks and substantial covariance indicated by the Bayesian model. However, no reliable correlations were found between metacognitive performance in the visual attention span and the remaining tasks. Remarkably, metacognitive ability significantly predicted children's learning in linguistic and non-linguistic domains a year later. These results suggest that metacognitive skill may be dissociated to some extent from general (i.e., language and attention) abilities and further stress the importance of creating educational programs that foster students’ metacognitive ability as a tool for long term learning. More research is crucial to understand whether these programs can enhance metacognitive ability as a transferable skill across distinct domains or whether unique domains should be targeted separately.Keywords: confidence ratings, development, metacognitive efficiency, reading acquisition
Procedia PDF Downloads 1507956 Assessing the Impact of Covid-19 Pandemic on Waste Management Workers in Ghana
Authors: Mensah-Akoto Julius, Kenichi Matsui
Abstract:
This paper examines the impact of COVID-19 on waste management workers in Ghana. A questionnaire survey was conducted among 60 waste management workers in Accra metropolis, the capital region of Ghana, to understand the impact of the COVID-19 pandemic on waste generation, workers’ safety in collecting solid waste, and service delivery. To find out correlations between the pandemic and safety of waste management workers, a regression analysis was used. Regarding waste generation, the results show the pandemic led to the highest annual per capita solid waste generation, or 3,390 tons, in 2020. Regarding the safety of workers, the regression analysis shows a significant and inverse association between COVID-19 and waste management services. This means that contaminated wastes may infect field workers with COVID-19 due to their direct exposure. A rise in new infection cases would have a negative impact on the safety and service delivery of the workers. The result also shows that an increase in economic activities negatively impacts waste management workers. The analysis, however, finds no statistical relationship between workers’ service deliveries and employees’ salaries. The study then discusses how municipal waste management authorities can ensure safe and effective waste collection during the pandemic.Keywords: Covid-19, waste management worker, waste collection, Ghana
Procedia PDF Downloads 2047955 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates
Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes
Abstract:
The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.Keywords: composites materials, laminated composite plate, finite-element analysis, free vibration
Procedia PDF Downloads 2907954 Image Captioning with Vision-Language Models
Authors: Promise Ekpo Osaine, Daniel Melesse
Abstract:
Image captioning is an active area of research in the multi-modal artificial intelligence (AI) community as it connects vision and language understanding, especially in settings where it is required that a model understands the content shown in an image and generates semantically and grammatically correct descriptions. In this project, we followed a standard approach to a deep learning-based image captioning model, injecting architecture for the encoder-decoder setup, where the encoder extracts image features, and the decoder generates a sequence of words that represents the image content. As such, we investigated image encoders, which are ResNet101, InceptionResNetV2, EfficientNetB7, EfficientNetV2M, and CLIP. As a caption generation structure, we explored long short-term memory (LSTM). The CLIP-LSTM model demonstrated superior performance compared to the encoder-decoder models, achieving a BLEU-1 score of 0.904 and a BLEU-4 score of 0.640. Additionally, among the CNN-LSTM models, EfficientNetV2M-LSTM exhibited the highest performance with a BLEU-1 score of 0.896 and a BLEU-4 score of 0.586 while using a single-layer LSTM.Keywords: multi-modal AI systems, image captioning, encoder, decoder, BLUE score
Procedia PDF Downloads 777953 An Investigation of the Relevant Factors of Unplanned Readmission within 14 Days of Discharge in a Regional Teaching Hospital in South Taiwan
Authors: Xuan Hua Huang, Shu Fen Wu, Yi Ting Huang, Pi Yueh Lee
Abstract:
Background: In Taiwan, the Taiwan healthcare care Indicator Series regards the rate of hospital readmission as an important indicator of healthcare quality. Unplanned readmission not only effects patient’s condition but also increase healthcare utilization rate and healthcare costs. Purpose: The purpose of this study was explored the effects of adult unplanned readmission within 14 days of discharge at a regional teaching hospital in South Taiwan. Methods: The retrospectively review design was used. A total 495 participants of unplanned readmissions and 878 of non-readmissions within 14 days recruited from a regional teaching hospital in Southern Taiwan. The instruments used included the Charlson Comorbidity Index, and demographic characteristics, and disease-related variables. Statistical analyses were performed with SPSS version 22.0. The descriptive statistics were used (means, standard deviations, and percentage) and the inferential statistics were used T-test, Chi-square test and Logistic regression. Results: The unplanned readmissions within 14 days rate was 36%. The majorities were 268 males (54.1%), aged >65 were 318 (64.2%), and mean age was 68.8±14.65 years (23-98years). The mean score for the comorbidities was 3.77±2.73. The top three diagnosed of the readmission were digestive diseases (32.7%), respiratory diseases (15.2%), and genitourinary diseases (10.5%). There were significant relationships among the gender, age, marriage, comorbidity status, and discharge planning services (χ2: 3.816-16.474, p: 0.051~0.000). Logistic regression analysis showed that old age (OR = 1.012, 95% CI: 1.003, 1.021), had the multi-morbidity (OR = 0.712~4.040, 95% CI: 0.559~8.522), had been consult with discharge planning services (OR = 1.696, 95% CI: 1.105, 2.061) have a higher risk of readmission. Conclusions: This study finds that multi-morbidity was independent risk factor for unplanned readmissions at 14 days, recommended that the interventional treatment of the medical team be provided to provide integrated care for multi-morbidity to improve the patient's self-care ability and reduce the 14-day unplanned readmission rate.Keywords: unplanned readmission, comorbidities, Charlson comorbidity index, logistic regression
Procedia PDF Downloads 1477952 Empirical Analyses of Students’ Self-Concepts and Their Mathematics Achievements
Authors: Adetunji Abiola Olaoye
Abstract:
The study examined the students’ self-concepts and mathematics achievement viz-a-viz the existing three theoretical models: Humanist self-concept (M1), Contemporary self-concept (M2) and Skills development self-concept (M3). As a qualitative research study, it comprised of one research question, which was transformed into hypothesis viz-a-viz the existing theoretical models. Sample to the study comprised of twelve public secondary schools from which twenty-five mathematics teachers, twelve counselling officers and one thousand students of Upper Basic II were selected based on intact class as school administrations and system did not allow for randomization. Two instruments namely 10 items ‘Achievement test in Mathematics’ (r1=0.81) and 10 items Student’s self-concept questionnaire (r2=0.75) were adapted, validated and used for the study. Data were analysed through descriptive, one way ANOVA, t-test and correlation statistics at 5% level of significance. Finding revealed mean and standard deviation of pre-achievement test scores of (51.322, 16.10), (54.461, 17.85) and (56.451, 18.22) for the Humanist Self-Concept, Contemporary Self-Concept and Skill Development Self-Concept respectively. Apart from that study showed that there was significant different in the academic performance of students along the existing models (F-cal>F-value, df = (2,997); P<0.05). Furthermore, study revealed students’ achievement in mathematics and self-concept questionnaire with the mean and standard deviation of (57.4, 11.35) and (81.6, 16.49) respectively. Result confirmed an affirmative relationship with the Contemporary Self-Concept model that expressed an individual subject and specific self-concept as the primary determinants of higher academic achievement in the subject as there is a statistical correlation between students’ self-concept and mathematics achievement viz-a-viz the existing three theoretical models of Contemporary (M2) with -Z_cal<-Z_val, df=998: P<0.05*. The implication of the study was discussed with recommendations and suggestion for further studies proffered.Keywords: contemporary, humanists, self-concepts, skill development
Procedia PDF Downloads 2377951 Optimized Text Summarization Model on Mobile Screens for Sight-Interpreters: An Empirical Study
Authors: Jianhua Wang
Abstract:
To obtain key information quickly from long texts on small screens of mobile devices, sight-interpreters need to establish optimized summarization model for fast information retrieval. Four summarization models based on previous studies were studied including title+key words (TKW), title+topic sentences (TTS), key words+topic sentences (KWTS) and title+key words+topic sentences (TKWTS). Psychological experiments were conducted on the four models for three different genres of interpreting texts to establish the optimized summarization model for sight-interpreters. This empirical study shows that the optimized summarization model for sight-interpreters to quickly grasp the key information of the texts they interpret is title+key words (TKW) for cultural texts, title+key words+topic sentences (TKWTS) for economic texts and topic sentences+key words (TSKW) for political texts.Keywords: different genres, mobile screens, optimized summarization models, sight-interpreters
Procedia PDF Downloads 3147950 Model Observability – A Monitoring Solution for Machine Learning Models
Authors: Amreth Chandrasehar
Abstract:
Machine Learning (ML) Models are developed and run in production to solve various use cases that help organizations to be more efficient and help drive the business. But this comes at a massive development cost and lost business opportunities. According to the Gartner report, 85% of data science projects fail, and one of the factors impacting this is not paying attention to Model Observability. Model Observability helps the developers and operators to pinpoint the model performance issues data drift and help identify root cause of issues. This paper focuses on providing insights into incorporating model observability in model development and operationalizing it in production.Keywords: model observability, monitoring, drift detection, ML observability platform
Procedia PDF Downloads 1127949 Exploring Factors Related to Unplanning Readmission of Elderly Patients in Taiwan
Authors: Hui-Yen Lee, Hsiu-Yun Wei, Guey-Jen Lin, Pi-Yueh Lee Lee
Abstract:
Background: Unplanned hospital readmissions increase healthcare costs and have been considered a marker of poor healthcare performance. The elderly face a higher risk of unplanned readmission due to elderly-specific characteristics such as deteriorating body functions and the relatively high incidence of complications after treatment of acute diseases. Purpose: The aim of this study was exploring the factors that relate to the unplanned readmission of elderly within 14 days of discharge at our hospital in southern Taiwan. Methods: We retrospectively reviewed the medical records of patients aged ≥65 years who had been re-admitted between January 2018 and December 2018.The Charlson Comorbidity score was calculated using previous used method. Related factors that affected the rate of unplanned readmission within 14 days of discharge were screened and analyzed using the chi-squared test and logistic regression analysis. Results: This study enrolled 829 subjects aged more than 65 years. The numbers of unplanned readmission patients within 14 days were 318 cases, while those did not belong to the unplanned readmission were 511 cases. In 2018, the rate of elderly patients in unplanned 14 days readmissions was 38.4%. The majority patients were females (166 cases, 52.2%), with an average age of 77.6 ± 7.90 years (65-98). The average value of Charlson Comorbidity score was 4.42±2.76. Using logistic regression analysis, we found that the gastric or peptic ulcer (OR=1.917 , P< 0.002), diabetes (OR= 0.722, P< 0.043), hemiplegia (OR= 2.292, P< 0.015), metastatic solid tumor (OR= 2.204, P< 0.025), hypertension (OR= 0.696, P< 0.044), and skin ulcer/cellulitis (OR= 2.747, P< 0.022) have significantly higher risk of 14-day readmissions. Conclusion: The results of the present study may assist the healthcare teams to understand the factors that may affect unplanned readmission in the elderly. We recommend that these teams give efficient approach in their medical practice, provide timely health education for elderly, and integrative healthcare for chronic diseases in order to reduce unplanned readmissions.Keywords: unplanning readmission, elderly, Charlson comorbidity score, logistic regression analysis
Procedia PDF Downloads 1307948 Quantification of Glucosinolates in Turnip Greens and Turnip Tops by Near-Infrared Spectroscopy
Authors: S. Obregon-Cano, R. Moreno-Rojas, E. Cartea-Gonzalez, A. De Haro-Bailon
Abstract:
The potential of near-infrared spectroscopy (NIRS) for screening the total glucosinolate (t-GSL) content, and also, the aliphatic glucosinolates gluconapin (GNA), progoitrin (PRO) and glucobrassicanapin (GBN) in turnip greens and turnip tops was assessed. This crop is grown for edible leaves and stems for human consumption. The reference values for glucosinolates, as they were obtained by high performance liquid chromatography on the vegetable samples, were regressed against different spectral transformations by modified partial least-squares (MPLS) regression (calibration set of samples n= 350). The resulting models were satisfactory, with calibration coefficient values from 0.72 (GBN) to 0.98 (tGSL). The predictive ability of the equations obtained was tested using a set of samples (n=70) independent of the calibration set. The determination coefficients and prediction errors (SEP) obtained in the external validation were: GNA=0.94 (SEP=3.49); PRO=0.41 (SEP=1.08); GBN=0.55 (SEP=0.60); tGSL=0.96 (SEP=3.28). These results show that the equations developed for total glucosinolates, as well as for gluconapin can be used for screening these compounds in the leaves and stems of this species. In addition, the progoitrin and glucobrassicanapin equations obtained can be used to identify those samples with high, medium and low contents. The calibration equations obtained were accurate enough for a fast, non-destructive and reliable analysis of the content in GNA and tGSL directly from NIR spectra. The equations for PRO and GBN can be employed to identify samples with high, medium and low contents.Keywords: brassica rapa, glucosinolates, gluconapin, NIRS, turnip greens
Procedia PDF Downloads 1447947 An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models
Authors: Altaf H. Khan, Frank Stenger, Mohammed A. Hussein, Reaz A. Chaudhuri, Sameera Asif
Abstract:
This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas.Keywords: generalized linear mixed model, likelihood parameters, qudarature, Sinc function
Procedia PDF Downloads 3957946 Co-payment Strategies for Chronic Medications: A Qualitative and Comparative Analysis at European Level
Authors: Pedro M. Abreu, Bruno R. Mendes
Abstract:
The management of pharmacotherapy and the process of dispensing medicines is becoming critical in clinical pharmacy due to the increase of incidence and prevalence of chronic diseases, the complexity and customization of therapeutic regimens, the introduction of innovative and more expensive medicines, the unbalanced relation between expenditure and revenue as well as due to the lack of rationalization associated with medication use. For these reasons, co-payments emerged in Europe in the 70s and have been applied over the past few years in healthcare. Co-payments lead to a rationing and rationalization of user’s access under healthcare services and products, and simultaneously, to a qualification and improvement of the services and products for the end-user. This analysis, under hospital practices particularly and co-payment strategies in general, was carried out on all the European regions and identified four reference countries, that apply repeatedly this tool and with different approaches. The structure, content and adaptation of European co-payments were analyzed through 7 qualitative attributes and 19 performance indicators, and the results expressed in a scorecard, allowing to conclude that the German models (total score of 68,2% and 63,6% in both elected co-payments) can collect more compliance and effectiveness, the English models (total score of 50%) can be more accessible, and the French models (total score of 50%) can be more adequate to the socio-economic and legal framework. Other European models did not show the same quality and/or performance, so were not taken as a standard in the future design of co-payments strategies. In this sense, we can see in the co-payments a strategy not only to moderate the consumption of healthcare products and services, but especially to improve them, as well as a strategy to increment the value that the end-user assigns to these services and products, such as medicines.Keywords: clinical pharmacy, co-payments, healthcare, medicines
Procedia PDF Downloads 2517945 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 1827944 Impact of Artificial Intelligence Technologies on Information-Seeking Behaviors and the Need for a New Information Seeking Model
Authors: Mohammed Nasser Al-Suqri
Abstract:
Former information-seeking models are proposed more than two decades ago. These already existed models were given prior to the evolution of digital information era and Artificial Intelligence (AI) technologies. Lack of current information seeking models within Library and Information Studies resulted in fewer advancements for teaching students about information-seeking behaviors, design of library tools and services. In order to better facilitate the aforementioned concerns, this study aims to propose state-of-the-art model while focusing on the information seeking behavior of library users in the Sultanate of Oman. This study aims for the development, designing and contextualizing the real-time user-centric information seeking model capable of enhancing information needs and information usage along with incorporating critical insights for the digital library practices. Another aim is to establish far-sighted and state-of-the-art frame of reference covering Artificial Intelligence (AI) while synthesizing digital resources and information for optimizing information-seeking behavior. The proposed study is empirically designed based on a mix-method process flow, technical surveys, in-depth interviews, focus groups evaluations and stakeholder investigations. The study data pool is consist of users and specialist LIS staff at 4 public libraries and 26 academic libraries in Oman. The designed research model is expected to facilitate LIS by assisting multi-dimensional insights with AI integration for redefining the information-seeking process, and developing a technology rich model.Keywords: artificial intelligence, information seeking, information behavior, information seeking models, libraries, Sultanate of Oman
Procedia PDF Downloads 1157943 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications
Authors: H. Hruschka
Abstract:
This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models
Procedia PDF Downloads 1997942 Elastoplastic and Ductile Damage Model Calibration of Steels for Bolt-Sphere Joints Used in China’s Space Structure Construction
Authors: Huijuan Liu, Fukun Li, Hao Yuan
Abstract:
The bolted spherical node is a common type of joint in space steel structures. The bolt-sphere joint portion almost always controls the bearing capacity of the bolted spherical node. The investigation of the bearing performance and progressive failure in service often requires high-fidelity numerical models. This paper focuses on the constitutive models of bolt steel and sphere steel used in China’s space structure construction. The elastoplastic model is determined by a standard tensile test and calibrated Voce saturated hardening rule. The ductile damage is found dominant based on the fractography analysis. Then Rice-Tracey ductile fracture rule is selected and the model parameters are calibrated based on tensile tests of notched specimens. These calibrated material models can benefit research or engineering work in similar fields.Keywords: bolt-sphere joint, steel, constitutive model, ductile damage, model calibration
Procedia PDF Downloads 1367941 The Relations between Spatial Structure and Land Price
Authors: Jung-Hun Cho, Tae-Heon Moon, Jin-Hak Lee
Abstract:
Land price contains the comprehensive characteristics of urban space, representing the social and economic features of the city. Accordingly, land price can be utilized as an indicator, which can identify the changes of spatial structure and socioeconomic variations caused by urban development. This study attempted to explore the changes in land price by a new road construction. Methodologically, it adopted Space Syntax, which can interpret urban spatial structure comprehensively, to identify the relationship between the forms of road networks and land price. The result of the regression analysis showed the ‘integration index’ of Space Syntax is statistically significant and has a strong correlation with land price. If the integration value is high, land price increases proportionally. Subsequently, using regression equation, it tried to predict the land price changes of each of the lots surrounding the roads that are newly opened. The research methods or study results have the advantage of predicting the changes in land price in an easy way. In addition, it will contribute to planners and project managers to establish relevant polices and smoothing urban regeneration projects through enhancing residents’ understanding by providing possible results and advantages in their land price before the execution of urban regeneration and development projects.Keywords: space syntax, urban regeneration, spatial structure, official land price
Procedia PDF Downloads 3287940 Modeling Core Flooding Experiments for Co₂ Geological Storage Applications
Authors: Avinoam Rabinovich
Abstract:
CO₂ geological storage is a proven technology for reducing anthropogenic carbon emissions, which is paramount for achieving the ambitious net zero emissions goal. Core flooding experiments are an important step in any CO₂ storage project, allowing us to gain information on the flow of CO₂ and brine in the porous rock extracted from the reservoir. This information is important for understanding basic mechanisms related to CO₂ geological storage as well as for reservoir modeling, which is an integral part of a field project. In this work, a different method for constructing accurate models of CO₂-brine core flooding will be presented. Results for synthetic cases and real experiments will be shown and compared with numerical models to exhibit their predictive capabilities. Furthermore, the various mechanisms which impact the CO₂ distribution and trapping in the rock samples will be discussed, and examples from models and experiments will be provided. The new method entails solving an inverse problem to obtain a three-dimensional permeability distribution which, along with the relative permeability and capillary pressure functions, constitutes a model of the flow experiments. The model is more accurate when data from a number of experiments are combined to solve the inverse problem. This model can then be used to test various other injection flow rates and fluid fractions which have not been tested in experiments. The models can also be used to bridge the gap between small-scale capillary heterogeneity effects (sub-core and core scale) and large-scale (reservoir scale) effects, known as the upscaling problem.Keywords: CO₂ geological storage, residual trapping, capillary heterogeneity, core flooding, CO₂-brine flow
Procedia PDF Downloads 707939 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales
Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle
Abstract:
Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics
Procedia PDF Downloads 1557938 Relationship of Religious Coping with Occupational Stress and the Quality of Working Life of Midwives in Maternity Hospitals in Zahedan
Authors: Fatemeh Roostaee, Zahra Nikmanesh
Abstract:
This study was done to investigate the role of religious coping components on occupational stress and the quality of working life of midwives. The method of study was descriptive-correlation. The sample was comprised of all midwives in maternity hospitals in Zahedan during 1393. Participants were selected through applying census method. The instruments of data collection were three questionnaires: the quality of working life, occupational stress, and religious opposition. For statistical analysis, Pearson correlation and step by step regression analysis methods were used. The results showed that there is a significant negative relationship between the component of religious activities (r=-0/454) and occupational stress, and regression analysis was also shown that the variable of religious activities has been explained 45% of occupational stress variable changes. The Pearson correlation test showed that there isn't any significant relationship between religious opposition components and the quality of life. Therefore, it is necessary to present essential trainings on (the field of) strengthening compatibility strategies and religious activities to reduce occupational stress.Keywords: the quality of working life, occupational stress, religious, midwife
Procedia PDF Downloads 5817937 Understanding the Role of Gas Hydrate Morphology on the Producibility of a Hydrate-Bearing Reservoir
Authors: David Lall, Vikram Vishal, P. G. Ranjith
Abstract:
Numerical modeling of gas production from hydrate-bearing reservoirs requires the solution of various thermal, hydrological, chemical, and mechanical phenomena in a coupled manner. Among the various reservoir properties that influence gas production estimates, the distribution of permeability across the domain is one of the most crucial parameters since it determines both heat transfer and mass transfer. The aspect of permeability in hydrate-bearing reservoirs is particularly complex compared to conventional reservoirs since it depends on the saturation of gas hydrates and hence, is dynamic during production. The dependence of permeability on hydrate saturation is mathematically represented using permeability-reduction models, which are specific to the expected morphology of hydrate accumulations (such as grain-coating or pore-filling hydrates). In this study, we demonstrate the impact of various permeability-reduction models, and consequently, different morphologies of hydrate deposits on the estimates of gas production using depressurization at the reservoir scale. We observe significant differences in produced water volumes and cumulative mass of produced gas between the models, thereby highlighting the uncertainty in production behavior arising from the ambiguity in the prevalent gas hydrate morphology.Keywords: gas hydrate morphology, multi-scale modeling, THMC, fluid flow in porous media
Procedia PDF Downloads 2207936 Hybrid Direct Numerical Simulation and Large Eddy Simulating Wall Models Approach for the Analysis of Turbulence Entropy
Authors: Samuel Ahamefula
Abstract:
Turbulent motion is a highly nonlinear and complex phenomenon, and its modelling is still very challenging. In this study, we developed a hybrid computational approach to accurately simulate fluid turbulence phenomenon. The focus is coupling and transitioning between Direct Numerical Simulation (DNS) and Large Eddy Simulating Wall Models (LES-WM) regions. In the framework, high-order fidelity fluid dynamical methods are utilized to simulate the unsteady compressible Navier-Stokes equations in the Eulerian format on the unstructured moving grids. The coupling and transitioning of DNS and LES-WM are conducted through the linearly staggered Dirichlet-Neumann coupling scheme. The high-fidelity framework is verified and validated based on namely, DNS ability for capture full range of turbulent scales, giving accurate results and LES-WM efficiency in simulating near-wall turbulent boundary layer by using wall models.Keywords: computational methods, turbulence modelling, turbulence entropy, navier-stokes equations
Procedia PDF Downloads 1007935 Determinants of Quality of Life in Patients with Atypical Prarkinsonian Syndromes: 1-Year Follow-Up Study
Authors: Tatjana Pekmezovic, Milica Jecmenica-Lukic, Igor Petrovic, Vladimir Kostic
Abstract:
Background: A group of atypical parkinsonian syndromes (APS) includes a variety of rare neurodegenerative disorders characterized by reduced life expectancy, increasing disability, and considerable impact on health-related quality of life (HRQoL). Aim: In this study we wanted to answer two questions: a) which demographic and clinical factors are main contributors of HRQoL in our cohort of patients with APS, and b) how does quality of life of these patients change over 1-year follow-up period. Patients and Methods: We conducted a prospective cohort study in hospital settings. The initial study comprised all consecutive patients who were referred to the Department of Movement Disorders, Clinic of Neurology, Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade (Serbia), from January 31, 2000 to July 31, 2013, with the initial diagnoses of ‘Parkinson’s disease’, ‘parkinsonism’, ‘atypical parkinsonism’ and ‘parkinsonism plus’ during the first 8 months from the appearance of first symptom(s). The patients were afterwards regularly followed in 4-6 month intervals and eventually the diagnoses were established for 46 patients fulfilling the criteria for clinically probable progressive supranuclear palsy (PSP) and 36 patients for probable multiple system atrophy (MSA). The health-related quality of life was assessed by using the SF-36 questionnaire (Serbian translation). Hierarchical multiple regression analysis was conducted to identify predictors of composite scores of SF-36. The importance of changes in quality of life scores of patients with APS between baseline and follow-up time-point were quantified using Wilcoxon Signed Ranks Test. The magnitude of any differences for the quality of life changes was calculated as an effect size (ES). Results: The final models of hierarchical regression analysis showed that apathy measured by the Apathy evaluation scale (AES) score accounted for 59% of the variance in the Physical Health Composite Score of SF-36 and 14% of the variance in the Mental Health Composite Score of SF-36 (p<0.01). The changes in HRQoL were assessed in 52 patients with APS who completed 1-year follow-up period. The analysis of magnitude for changes in HRQoL during one-year follow-up period have shown sustained medium ES (0.50-0.79) for both Physical and Mental health composite scores, total quality of life as well as for the Physical Health, Vitality, Role Emotional and Social Functioning. Conclusion: This study provides insight into new potential predictors of HRQoL and its changes over time in patients with APS. Additionally, identification of both prognostic markers of a poor HRQoL and magnitude of its changes should be considered when developing comprehensive treatment-related strategies and health care programs aimed at improving HRQoL and well-being in patients with APS.Keywords: atypical parkinsonian syndromes, follow-up study, quality of life, APS
Procedia PDF Downloads 3057934 Comparison of Spiking Neuron Models in Terms of Biological Neuron Behaviours
Authors: Fikret Yalcinkaya, Hamza Unsal
Abstract:
To understand how neurons work, it is required to combine experimental studies on neural science with numerical simulations of neuron models in a computer environment. In this regard, the simplicity and applicability of spiking neuron modeling functions have been of great interest in computational neuron science and numerical neuroscience in recent years. Spiking neuron models can be classified by exhibiting various neuronal behaviors, such as spiking and bursting. These classifications are important for researchers working on theoretical neuroscience. In this paper, three different spiking neuron models; Izhikevich, Adaptive Exponential Integrate Fire (AEIF) and Hindmarsh Rose (HR), which are based on first order differential equations, are discussed and compared. First, the physical meanings, derivatives, and differential equations of each model are provided and simulated in the Matlab environment. Then, by selecting appropriate parameters, the models were visually examined in the Matlab environment and it was aimed to demonstrate which model can simulate well-known biological neuron behaviours such as Tonic Spiking, Tonic Bursting, Mixed Mode Firing, Spike Frequency Adaptation, Resonator and Integrator. As a result, the Izhikevich model has been shown to perform Regular Spiking, Continuous Explosion, Intrinsically Bursting, Thalmo Cortical, Low-Threshold Spiking and Resonator. The Adaptive Exponential Integrate Fire model has been able to produce firing patterns such as Regular Ignition, Adaptive Ignition, Initially Explosive Ignition, Regular Explosive Ignition, Delayed Ignition, Delayed Regular Explosive Ignition, Temporary Ignition and Irregular Ignition. The Hindmarsh Rose model showed three different dynamic neuron behaviours; Spike, Burst and Chaotic. From these results, the Izhikevich cell model may be preferred due to its ability to reflect the true behavior of the nerve cell, the ability to produce different types of spikes, and the suitability for use in larger scale brain models. The most important reason for choosing the Adaptive Exponential Integrate Fire model is that it can create rich ignition patterns with fewer parameters. The chaotic behaviours of the Hindmarsh Rose neuron model, like some chaotic systems, is thought to be used in many scientific and engineering applications such as physics, secure communication and signal processing.Keywords: Izhikevich, adaptive exponential integrate fire, Hindmarsh Rose, biological neuron behaviours, spiking neuron models
Procedia PDF Downloads 1807933 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites
Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui
Abstract:
This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities
Procedia PDF Downloads 107932 Exploring Syntactic and Semantic Features for Text-Based Authorship Attribution
Authors: Haiyan Wu, Ying Liu, Shaoyun Shi
Abstract:
Authorship attribution is to extract features to identify authors of anonymous documents. Many previous works on authorship attribution focus on statistical style features (e.g., sentence/word length), content features (e.g., frequent words, n-grams). Modeling these features by regression or some transparent machine learning methods gives a portrait of the authors' writing style. But these methods do not capture the syntactic (e.g., dependency relationship) or semantic (e.g., topics) information. In recent years, some researchers model syntactic trees or latent semantic information by neural networks. However, few works take them together. Besides, predictions by neural networks are difficult to explain, which is vital in authorship attribution tasks. In this paper, we not only utilize the statistical style and content features but also take advantage of both syntactic and semantic features. Different from an end-to-end neural model, feature selection and prediction are two steps in our method. An attentive n-gram network is utilized to select useful features, and logistic regression is applied to give prediction and understandable representation of writing style. Experiments show that our extracted features can improve the state-of-the-art methods on three benchmark datasets.Keywords: authorship attribution, attention mechanism, syntactic feature, feature extraction
Procedia PDF Downloads 136