Search results for: radiation hardness
737 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine
Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero
Abstract:
This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel
Procedia PDF Downloads 155736 Enhanced Mechanical Properties and Corrosion Resistance of Fe-Based Thin Film Metallic Glasses via Pulsed Laser Deposition
Authors: Ali Obeydavi, Majid Rahimi
Abstract:
This study explores the synthesis and characterization of Fe-Cr-Mo-Co-C-B-Si thin film metallic glasses fabricated using the pulsed laser deposition (PLD) technique on silicon wafer and 304 stainless steel substrates. it systematically varied the laser pulse numbers (20,000; 30,000; 40,000) and energies (130, 165, 190 mJ) to investigate their effects on the microstructural, mechanical, and corrosion properties of the deposited films. Comprehensive characterization techniques, including grazing incidence X-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and transmission electron microscopy with selected area electron diffraction, were utilized to assess the amorphous structure and surface morphology. Results indicated that increased pulse numbers and laser energies led to enhanced deposition rates and film thicknesses. Nanoindentation tests demonstrated that the hardness and elastic modulus of the amorphous thin films significantly surpassed those of the 304 stainless steel substrate. Additionally, electrochemical polarization and impedance spectroscopy revealed that the Fe-based metallic glass coatings exhibited superior corrosion resistance compared to the stainless steel substrate. The observed improvements in mechanical and corrosion properties are attributed to the unique amorphous structure achieved through the PLD process, highlighting the potential of these materials for protective coatings in aggressive environments.Keywords: thin film metallic glasses, pulsed laser deposition, mechanical properties, corrosion resistance
Procedia PDF Downloads 22735 Modeling and Design of Rectenna for Low Power Medical Implants
Authors: Madhav Pant, Khem N. Poudel
Abstract:
Wireless power transfer is continuously becoming more powerful and compact in medical implantable devices and the wide range of applications. A rectenna is designed for wireless power transfer technique that can be applied to medical implant devices. The experiment is performed using ANSYS HFSS, a full wave electromagnetic simulation. The dipole antenna combinations operating at 2.4 GHz are used for wireless power transfer and the maximum DC voltage reception by the implant considering International Commission on Non-Ionizing Radiation Protection (ICNIRP) regulation. The power receiving dipole antenna is placed inside the cylindrical geometry having the similar properties of the human body at the frequency of 2.4 GHz. Our design can provide the power at the depth of 5 mm skin and 5mm of bone for the implant. The voltage doubler/quadrupler rectifier in ANSYS Simplorer is used to calculate the exact DC current utilized by implant inside the human body. The qualitative design and analysis of this wireless power transfer method could also be used for other biomedical implants systems such as cardiac pacemaker, insulin pump, and retinal implants.Keywords: dipole antenna, medical implants, wireless power transfer, rectifier
Procedia PDF Downloads 172734 Relocation of the Air Quality Monitoring Stations Network for Aburrá Valley Based on Local Climatic Zones
Authors: Carmen E. Zapata, José F. Jiménez, Mauricio Ramiréz, Natalia A. Cano
Abstract:
The majority of the urban areas in Latin America face the challenges associated with city planning and development problems, attributed to human, technical, and economical factors; therefore, we cannot ignore the issues related to climate change because the city modifies the natural landscape in a significant way transforming the radiation balance and heat content in the urbanized areas. These modifications provoke changes in the temperature distribution known as “the heat island effect”. According to this phenomenon, we have the need to conceive the urban planning based on climatological patterns that will assure its sustainable functioning, including the particularities of the climate variability. In the present study, it is identified the Local Climate Zones (LCZ) in the Metropolitan Area of the Aburrá Valley (Colombia) with the objective of relocate the air quality monitoring stations as a partial solution to the problem of how to measure representative air quality levels in a city for a local scale, but with instruments that measure in the microscale.Keywords: air quality, monitoring, local climatic zones, valley, monitoring stations
Procedia PDF Downloads 272733 Dynamic Degradation Mechanism of SiC VDMOS under Proton Irradiation
Authors: Junhong Feng, Wenyu Lu, Xinhong Cheng, Li Zheng, Yuehui Yu
Abstract:
The effects of proton irradiation on the properties of gate oxide were evaluated by monitoring the static parameters (such as threshold voltage and on-resistance) and dynamic parameters (Miller plateau time) of 1700V SiC VDMOS before and after proton irradiation. The incident proton energy was 3MeV, and the doses were 5 × 10¹² P / cm², 1 × 10¹³ P / cm², respectively. The results show that the threshold voltage of MOS exhibits negative drift under proton irradiation, and the near-interface traps in the gate oxide layer are occupied by holes generated by the ionization effect of irradiation, thus forming more positive charges. The basis for selecting TMiller is that the change time of Vgs is the time when Vds just shows an upward trend until it rises to a stable value. The degradation of the turn-off time of the Miller platform verifies that the capacitance Cgd becomes larger, reflecting that the gate oxide layer is introduced into the trap by the displacement effect caused by proton irradiation, and the interface state deteriorates. As a more sensitive area in the irradiation process, the gate oxide layer will be optimized for its parameters (such as thickness, type, etc.) in subsequent studies.Keywords: SiC VDMOS, proton radiation, Miller time, gate oxide
Procedia PDF Downloads 90732 Rare Earth Doped Alkali Halide Crystals for Thermoluminescence Dosimetry Application
Authors: Pooja Seth, Shruti Aggarwal
Abstract:
The Europium (Eu) doped (0.02-0.1 wt %) lithium fluoride (LiF) crystal in the form of multicrystalline sheet was gown by the edge defined film fed growth (EFG) technique. Crystals were grown in argon gas atmosphere using graphite crucible and stainless steel die. The systematic incorporation of Eu inside the host LiF lattice was confirmed by X-ray diffractometry. Thermoluminescence (TL) glow curve was recorded on annealed (AN) crystals after irradiation with a gamma dose of 15 Gy. The effect of different concentration of Eu in enhancing the thermoluminescence (TL) intensity of LiF was studied. The normalized peak height of the Eu-doped LiF crystal was nearly 12 times that of the LiF crystals. The optimized concentration of Eu in LiF was found to be 0.05wt% at which maximum TL intensity was observed with main TL peak positioned at 185 °C. At higher concentration TL intensity decreases due to the formation of precipitates in the form of clusters or aggregates. The nature of the energy traps in Eu doped LiF was analysed through glow curve deconvolution. The trap depth was found to be in the range of 0.2 – 0.5 eV. These results showed that doping with Eu enhances the TL intensity by creating more defect sites for capturing of electron and holes during irradiation which might be useful for dosimetry application.Keywords: thermoluminescence, defects, gamma radiation, crystals
Procedia PDF Downloads 330731 Effect of Whey Based Film Coatings on Various Properties of Kashar Cheese
Authors: Hawbash Jalil
Abstract:
In this study, the effects of whey protein based films on various properties of kashar cheese were examined. In the study, edible film solutions based on whey protein isolate, whey protein isolate + transglutaminase enzyme and whey protein isolate + chitosan were produced and Kashar cheese samples were coated with these films by dipping method and stored at +4 ºC for 60 days. Chemical, microbiological and textural analyzes were carried out on samples at 0, 30 and 60 days of storage. As a result of the study, the highest dry matter and total nitrogen values were obtained from uncoated control samples This is an indication that the coatings limit water vapor permeability. The highest acidity and pH values obtained from the samples as storage results were 3.33% and 5.86%, respectively, in the control group samples. Both acidity and pH rise in these groups, is a consequence of the buffering of pH changes of hydrolsis products which are as a result of proteolysis occurring in the sample. Nitrogen changes and lipolysis values, which are indicative of the degree of hydrolysis of proteins and triglycerides in kashar cheese, were generally higher in the control group This result is due to limiting the micro organism reproduction by limiting the gas passage of the coatings. Hardness and chewiness values of the textural properties of the samples were significantly reduced in uncoated control samples compared to the coated samples due to maturation. The chitosan film coatings used in the study limited the development of mold yeast until the 30th day but after that did not yield successful results in this respect.Keywords: chitosan, edible film, transglutaminase, whey protein
Procedia PDF Downloads 187730 Assessing Image Quality in Mobile Radiography: A Phantom-Based Evaluation of a New Lightweight Mobile X-Ray Equipment
Authors: May Bazzi, Shafik Tokmaj, Younes Saberi, Mats Geijer, Tony Jurkiewicz, Patrik Sund, Anna Bjällmark
Abstract:
Mobile radiography, employing portable X-ray equipment, has become a routine procedure within hospital settings, with chest X-rays in intensive care units standing out as the most prevalent mobile X-ray examinations. This approach is not limited to hospitals alone, as it extends its benefits to imaging patients in various settings, particularly those too frail to be transported, such as elderly care residents in nursing homes. Moreover, the utility of mobile X-ray isn't confined solely to traditional healthcare recipients; it has proven to be a valuable resource for vulnerable populations, including the homeless, drug users, asylum seekers, and patients with multiple co-morbidities. Mobile X-rays reduce patient stress, minimize costly hospitalizations, and offer cost-effective imaging. While studies confirm its reliability, further research is needed, especially regarding image quality. Recent advancements in lightweight equipment with enhanced battery and detector technology provide the potential for nearly handheld radiography. The main aim of this study was to evaluate a new lightweight mobile X-ray system with two different detectors and compare the image quality with a modern stationary system. Methods: A total of 74 images of the chest (chest anterior-posterior (AP) views and chest lateral views) and pelvic/hip region (AP pelvis views, hip AP views, and hip cross-table lateral views) were acquired on a whole-body phantom (Kyotokagaku, Japan), utilizing varying image parameters. These images were obtained using a stationary system - 18 images (Mediel, Sweden), a mobile X-ray system with a second-generation detector - 28 images (FDR D-EVO II; Fujifilm, Japan) and a mobile X-ray system with a third-generation detector - 28 images (FDR D-EVO III; Fujifilm, Japan). Image quality was assessed by visual grading analysis (VGA), which is a method to measure image quality by assessing the visibility and accurate reproduction of anatomical structures within the images. A total of 33 image criteria were used in the analysis. A panel of two experienced radiologists, two experienced radiographers, and two final-term radiographer students evaluated the image quality on a 5-grade ordinal scale using the software Viewdex 3.0 (Viewer for Digital Evaluation of X-ray images, Sweden). Data were analyzed using visual grading characteristics analysis. The dose was measured by the dose-area product (DAP) reported by the respective systems. Results: The mobile X-ray equipment (both detectors) showed significantly better image quality than the stationary equipment for the pelvis, hip AP and hip cross-table lateral images with AUCVGA-values ranging from 0.64-0.92, while chest images showed mixed results. The number of images rated as having sufficient quality for diagnostic use was significantly higher for mobile X-ray generation 2 and 3 compared with the stationary X-ray system. The DAP values were higher for the stationary compared to the mobile system. Conclusions: The new lightweight radiographic equipment had an image quality at least as good as a fixed system at a lower radiation dose. Future studies should focus on clinical images and consider radiographers' viewpoints for a comprehensive assessment.Keywords: mobile x-ray, visual grading analysis, radiographer, radiation dose
Procedia PDF Downloads 65729 Estimation of Human Absorbed Dose Using Compartmental Model
Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri
Abstract:
Dosimetry is an indispensable and precious factor in patient treatment planning to minimize the absorbed dose in vital tissues. In this study, compartmental model was used in order to estimate the human absorbed dose of 177Lu-DOTATOC from the biodistribution data in wild type rats. For this purpose, 177Lu-DOTATOC was prepared under optimized conditions and its biodistribution was studied in male Syrian rats up to 168 h. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. Dosimetric estimation of the complex was performed using radiation absorbed dose assessment resource (RADAR). The biodistribution data showed high accumulation in the adrenal and pancreas as the major expression sites for somatostatin receptor (SSTR). While kidneys as the major route of excretion receive 0.037 mSv/MBq, pancreas and adrenal also obtain 0.039 and 0.028 mSv/MBq. Due to the usage of this method, the points of accumulated activity data were enhanced, and further information of tissues uptake was collected that it will be followed by high (or improved) precision in dosimetric calculations.Keywords: compartmental modeling, human absorbed dose, ¹⁷⁷Lu-DOTATOC, Syrian rats
Procedia PDF Downloads 195728 The Relationship between Lithological and Geomechanical Properties of Carbonate Rocks. Case study: Arab-D Reservoir Outcrop Carbonate, Central Saudi Arabia
Authors: Ammar Juma Abdlmutalib, Osman Abdullatif
Abstract:
Upper Jurrasic Arab-D Reservoir is considered as the largest oil reservoir in Saudi Arabia. The equivalent outcrop is exposed near Riyadh. The study investigates the relationships between lithofacies properties changes and geomechanical properties of Arab-D Reservoir in the outcrop scale. The methods used included integrated field observations and laboratory measurements. Schmidt Hammer Rebound Hardness, Point Load Index tests were carried out to estimate the strength of the samples, ultrasonic wave velocity test also was applied to measure P-wave, S-wave, and dynamic Poisson's ratio. Thin sections have been analyzed and described. The results show that there is a variation in geomechanical properties between the Arab-D member and Upper Jubaila Formation at outcrop scale, the change in texture or grain size has no or little effect on these properties. This is because of the clear effect of diagenesis which changes the strength of the samples. The result also shows the negative or inverse correlation between porosity and geomechanical properties. As for the strength, dolomitic mudstone and wackestone within Upper Jubaila Formation has higher Schmidt hammer values, wavy rippled sandy grainstone which is rich in quarts has the greater point load index values. While laminated mudstone and breccias, facies has lower strength. This emphasizes the role of mineral content in the geomechanical properties of Arab-D reservoir lithofacies.Keywords: geomechanical properties, Arab-D reservoir, lithofacies changes, Poisson's ratio, diageneis
Procedia PDF Downloads 397727 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province
Authors: Leila Rashidian
Abstract:
Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.Keywords: climate change, Semnan province, Lars.WG model, climate parameters, HADCM₃ model
Procedia PDF Downloads 252726 Rapid Method for Low Level 90Sr Determination in Seawater by Liquid Extraction Technique
Authors: S. Visetpotjanakit, N. Nakkaew
Abstract:
Determination of low level 90Sr in seawater has been widely developed for the purpose of environmental monitoring and radiological research because 90Sr is one of the most hazardous radionuclides released from atmospheric during the testing of nuclear weapons, waste discharge from the generation nuclear energy and nuclear accident occurring at power plants. A liquid extraction technique using bis-2-etylhexyl-phosphoric acid to separate and purify yttrium followed by Cherenkov counting using a liquid scintillation counter to determine 90Y in secular equilibrium to 90Sr was developed to monitor 90Sr in the Asia Pacific Ocean. The analytical performance was validated for the accuracy, precision, and trueness criteria. Sr-90 determination in seawater using various low concentrations in a range of 0.01 – 1 Bq/L of 30 liters spiked seawater samples and 0.5 liters of IAEA-RML-2015-01 proficiency test sample was performed for statistical evaluation. The results had a relative bias in the range from 3.41% to 12.28%, which is below accepted relative bias of ± 25% and passed the criteria confirming that our analytical approach for determination of low levels of 90Sr in seawater was acceptable. Moreover, the approach is economical, non-laborious and fast.Keywords: proficiency test, radiation monitoring, seawater, strontium determination
Procedia PDF Downloads 169725 Experimental Investigation on Effect of the Zirconium + Magnesium Coating of the Piston and Valve of the Single-Cylinder Diesel Engine to the Engine Performance and Emission
Authors: Erdinç Vural, Bülent Özdalyan, Serkan Özel
Abstract:
The four-stroke single cylinder diesel engine has been used in this study, the pistons and valves of the engine have been stabilized, the aluminum oxide (Al2O3) in different ratios has been added in the power of zirconium (ZrO2) magnesium oxide (MgO), and has been coated with the plasma spray method. The pistons and valves of the combustion chamber of the engine are coated with 5 different (ZrO2 + MgO), (ZrO2 + MgO + 25% Al2O3), (ZrO2 + MgO + 50% Al2O3), (ZrO2 + MgO + 75% Al2O3), (Al2O3) sample. The material tests have been made for each of the coated engine parts with the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) using Cu Kα radiation surface analysis methods. The engine tests have been repeated for each sample in any electric dynamometer in full power 1600 rpm, 2000 rpm, 2400 rpm and 2800 rpm engine speeds. The material analysis and engine tests have shown that the best performance has been performed with (ZrO2 + MgO + 50% Al2O3). Thus, there is no significant change in HC and Smoke emissions, but NOx emission is increased, as the engine improves power, torque, specific fuel consumption and CO emissions in the tests made with sample A3.Keywords: ceramic coating, material characterization, engine performance, exhaust emissions
Procedia PDF Downloads 371724 Environment Saving and Efficiency of Diesel Heat-Insulated Combustion Chamber Using Semitransparent Ceramic Coatings
Authors: Victoria Yu. Garnova, Vladimir G. Merzlikin, Sergey V. Khudyakov, Valeriy A. Tovstonog, Svyatoslav V. Cheranev
Abstract:
Long-term scientific forecasts confirm that diesel engines still will be the basis of the transport and stationary power in the near future. This is explained by their high efficiency and profitability compared to other types of heat engines. In the automotive industry carried basic researches are aimed at creating a new generation of diesel engines with reduced exhaust emissions (with stable performance) determining the minimum impact on the environment. The application of thermal barrier coatings (TBCs) and especially their modifications based on semitransparent ceramic materials allows solving this problem. For such researches, the preliminary stage of testing of physical characteristics materials and coatings especially with semitransparent properties the authors proposed experimental operating innovative radiative-and-convective cycling simulator. This setup contains original radiation sources (imitator) with tunable spectrum for modeling integral flux up to several MW/m2.Keywords: environment saving, radiative and convective cycling simulator, semitransparent ceramic coatings, imitator radiant energy
Procedia PDF Downloads 267723 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels
Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery
Abstract:
The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel Industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.Keywords: rapid alloy prototyping, plastic anisotropy, interstitial free, miniaturised tensile testing, formability
Procedia PDF Downloads 114722 Association between Neurofibromatosis Type 1 and Breast Sarcoma: A Case Report
Authors: Ines Zemni, Maher Slimane, Jamel Ben Hassouna, Khaled Rahal
Abstract:
Background: Neurofibromatosis type 1 (NF1) is a genetic disease, which is associated with an increased risk of developing different malignancies including breast cancer. The association between NF1 band breast sarcoma is a rare entity. Herein we present a 25-year-old woman with NF1 who had fibrosarcoma of the left breast. Case presentation: The patient has multiple thoraco-abdominal 'café au lait' spots. Clinical examination showed a lump of the left breast measuring 9 cm of diameter, which was noticed for 6 months. There was a left inguinal mass of 6 cm of diameter. The patient underwent first a left lumpectomy. Histopathological exam revealed a high-grade fibrosarcoma of the left breast measuring 7.5 cm. Three months later, the patient underwent a left mastectomy and excision of the inguinal mass, which was a neurofibroma. An adjuvant chemotherapy and radiation therapy were indicated, but not applied because of the timeout. The patient is now alive after a follow up of 6 years, with no loco-regional recurrence or metastasis. Conclusion: The relationship between NF1 and breast cancer need to be more clarified by further studies. Establishing a specific screening program of these patients may help to make an earlier diagnosis of breast cancer.Keywords: neurofibromatosis, breast, sarcoma, cancer
Procedia PDF Downloads 121721 Visco - Plastic Transition and Transfer of Plastic Material with SGF in case of Linear Dry Friction Contact on Steel Surfaces
Authors: Lucian Capitanu, Virgil Florescu
Abstract:
Often for the laboratory studies, modeling of specific tribological processes raises special problems. One such problem is the modeling of some temperatures and extremely high contact pressures, allowing modeling of temperatures and pressures at which the injection or extrusion processing of thermoplastic materials takes place. Tribological problems occur mainly in thermoplastics materials reinforced with glass fibers. They produce an advanced wear to the barrels and screws of processing machines, in short time. Obtaining temperatures around 210 °C and higher, as well as pressures around 100 MPa is very difficult in the laboratory. This paper reports a simple and convenient solution to get these conditions, using friction sliding couples with linear contact, cylindrical liner plastic filled with glass fibers on plate steel samples, polished and super-finished. C120 steel, which is a steel for moulds and Rp3 steel, high speed steel for tools, were used. Obtaining the pressure was achieved by continuous request of the liner in rotational movement up to its elasticity limits, when the dry friction coefficient reaches or exceeds the hardness value of 0.5 HB. By dissipation of the power lost by friction on flat steel sample, are reached contact temperatures at the metal surface that reach and exceed 230 °C, being placed in the range temperature values of the injection. Contact pressures (in load and materials conditions used) ranging from 16.3-36.4 MPa were obtained depending on the plastic material used and the glass fibers content.Keywords: plastics with glass fibers, dry friction, linear contact, contact temperature, contact pressure, experimental simulation
Procedia PDF Downloads 302720 Benchmarking Electric Light versus Sunshine
Authors: Courret Gilles, Pidoux Damien
Abstract:
Considering that sunshine is the ultimate reference in lighting, we have examined the spectral correlation between a series of electric light sources and sunlight. As the latter is marked by fluctuations, we have taken two spectra of reference: on the one hand, the CIE daylight standard illuminant, and on the other hand, the global illumination by the clear sky with the sun at 30° above the horizon. We determined the coefficients of correlation between the spectra filtered by the sensitivity of the CIE standard observer for photopic vision. We also calculated the luminous efficiency of the radiation in order to compare the ideal energy performances as well as the CIE color indexes Ra, Ra14, and Rf, since the choice of a light source requires a trade-off between color rendering and luminous efficiency. The benchmarking includes the most commonly used bulbs, various white LED (Lighting Emitting Diode) of warm white or cold white types, incandescent halogen as well as two HID lamps (High-Intensity Discharge) and two plasma lamps of different types, a solar simulator and a new version of the sulfur lamp. The latter obtains the best correlation, whether in comparison with the solar spectrum or that of the standard illuminant.Keywords: electric light sources, plasma lamp, daylighting, sunlight, spectral correlation
Procedia PDF Downloads 185719 The Impact of Enzymatic Treatments on the Pasting Behavior and Its Reflection on Stalling and Quality of Bread
Authors: Sayed Mostafa, Mohamed Shebl
Abstract:
The problem of bread stalling is still one of the most troubling problems for those interested in manufacturing bakery products, as increasing the freshness period of bread is considered one of the most important factors that help encourage this industry due to its important role in reducing expected losses. Therefore, this study aims to improve the quality of pan bread and increase its freshness period by enzymatic treatments, including maltogenic α-amylase (MAA), amyloglucosidase (AGS), glucoseoxidase (GOX) and phospholipase (PhL). Rheological and pasting behavior of wheat flour were estimated in addition to the physical, texture, and sensory parameters of the final product. The addition of MAA resulted in a decrease in peak viscosity, breakdown, setback, and pasting temperature. The addition of MAA also led to a reduction in falling number values. Enzymatic treatments (MAA and PhL) exhibited higher alkaline water retention capacity of pan bread compared to untreated pan bread (control) throughout different storage periods. Furthermore, other enzymes displayed varying effects on bread quality; for instance, AGS enhanced the crust color, while a high concentration of GOX improved the specific volume of the bread. Conclusion: The research findings demonstrate that the enzymatic treatments can significantly improve its quality attributes, such as specific volume, increase the alkaline water retention capacity with lower hardness value, which reflects bread freshness during storage periods, and improve sensory characteristics.Keywords: anti-stalling agents, enzymatic treatments, maltogenic α-amylase, amyloglucosidase, glucoseoxidase, phospholipase, pasting behavior, wheat flour
Procedia PDF Downloads 5718 Methods Employed to Mitigate Wind Damage on Ancient Egyptian Architecture
Authors: Hossam Mohamed Abdelfattah Helal Hegazi
Abstract:
Winds and storms are considered crucial weathering factors, representing primary causes of destruction and erosion for all materials on the Earth's surface. This naturally includes historical structures, with the impact of winds and storms intensifying their deterioration, particularly when carrying high-hardness sand particles during their passage across the ground. Ancient Egyptians utilized various methods to prevent wind damage to their ancient architecture throughout the ancient Egyptian periods . One of the techniques employed by ancient Egyptians was the use of clay or compacted earth as a filling material between opposing walls made of stone, bricks, or mud bricks. The walls made of reeds or woven tree branches were covered with clay to prevent the infiltration of winds and rain, enhancing structural integrity, this method was commonly used in hollow layers . Additionally, Egyptian engineers innovated a type of adobe brick with uniformly leveled sides, manufactured from dried clay. They utilized stone barriers, constructed wind traps, and planted trees in rows parallel to the prevailing wind direction. Moreover, they employed receptacles to drain rainwater resulting from wind-loaded rain and used mortar to fill gaps in roofs and structures. Furthermore, proactive measures such as the removal of sand from around historical and archaeological buildings were taken to prevent adverse effectsKeywords: winds, storms, weathering, destruction, erosion, materials, Earth's surface, historical structures, impact
Procedia PDF Downloads 62717 Material Properties Evolution Affecting Demisability for Space Debris Mitigation
Authors: Chetan Mahawar, Sarath Chandran, Sridhar Panigrahi, V. P. Shaji
Abstract:
The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence numerous studies have come up with technologies for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. Since the demisability of spacecraft depends on evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. Therefore, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability.Keywords: demisability, emissivity, lightweight, re-entry, survivability
Procedia PDF Downloads 115716 Vernacular Façade for Energy Conservation: Mashrabiya, A Reminiscent of Arab-Islamic Architecture
Authors: Balpreet Singh Madan
Abstract:
The Middle Eastern countries have preserved their heritage, tradition, and culture in their buildings by incorporating vernacular features of Arab-Islamic Architecture. The harsh sun and arid climate in the Gulf region make their buildings and infrastructure extremely hot and challenging to live in. One such iconic feature of Arab architecture is the Mashrabiya, which has been refined and updated for both functional and aesthetic purposes. This feature helps reduce the impact of solar radiation in buildings and lowers the energy requirements for creating livable conditions. The incorporation of Mashrabiya in modern buildings in the region symbolizes the amalgamation of tradition with innovation and modern technology. These buildings depict Mashrabiya with refinements for its better functional performance and aesthetic appeal to make superior built forms. This paper emphasizes the study of Mashrabiya as a vernacular feature with its adaptability for Energy Conservation and Sustainability, as seen in some of the recent iconic buildings of the Middle East, through a literature review and case studies of renowned buildings.Keywords: energy efficiency, climate responsive, sustainability, innovation, heritage, vernacular
Procedia PDF Downloads 102715 Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails
Authors: Taposh Roy, Anna Paradowska, Ralph Abrahams, Quan Lai, Michael Law, Peter Mutton, Mehdi Soodi, Wenyi Yan
Abstract:
In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.Keywords: laser cladding, residual stress, neutron diffraction, HAZ
Procedia PDF Downloads 273714 The Impact and Performances of Controlled Ventilation Strategy on Thermal Comfort and Indoor Atmosphere in Building
Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum
Abstract:
Ventilation in buildings is a key element to provide high indoor air quality. Its efficiency appears as one of the most important factors in maintaining thermal comfort for occupants of buildings. Personal displacement ventilation is a new ventilation concept that combines the positive features of displacement ventilation with those of task conditioning or personalized ventilation. This work aims to study numerically the supply air flow in a room to optimize a comfortable microclimate for an occupant. The room is heated, and a dummy is designed to simulate the occupant. Two types of configurations were studied. The first consist of a room without windows; and the second one is a local equipped with a window. The influence of the blowing speed and the solar radiation coming from the window on the thermal comfort of the occupant is studied. To conduct this study we used the turbulence models, namely the high Reynolds k-e, the RNG and the SST models. The numerical tool used is based on the finite volume method. The numerical simulation of the supply air flow in a room can predict and provide a significant information about indoor comfort.Keywords: local, comfort, thermique, ventilation, internal environment
Procedia PDF Downloads 412713 The Design of a Phase I/II Trial of Neoadjuvant RT with Interdigitated Multiple Fractions of Lattice RT for Large High-grade Soft-Tissue Sarcoma
Authors: Georges F. Hatoum, Thomas H. Temple, Silvio Garcia, Xiaodong Wu
Abstract:
Soft Tissue Sarcomas (STS) represent a diverse group of malignancies with heterogeneous clinical and pathological features. The treatment of extremity STS aims to achieve optimal local tumor control, improved survival, and preservation of limb function. The National Comprehensive Cancer Network guidelines, based on the cumulated clinical data, recommend radiation therapy (RT) in conjunction with limb-sparing surgery for large, high-grade STS measuring greater than 5 cm in size. Such treatment strategy can offer a cure for patients. However, when recurrence occurs (in nearly half of patients), the prognosis is poor, with a median survival of 12 to 15 months and with only palliative treatment options available. The spatially-fractionated-radiotherapy (SFRT), with a long history of treating bulky tumors as a non-mainstream technique, has gained new attention in recent years due to its unconventional therapeutic effects, such as bystander/abscopal effects. Combining single fraction of GRID, the original form of SFRT, with conventional RT was shown to have marginally increased the rate of pathological necrosis, which has been recognized to have a positive correlation to overall survival. In an effort to consistently increase the pathological necrosis rate over 90%, multiple fractions of Lattice RT (LRT), a newer form of 3D SFRT, interdigitated with the standard RT as neoadjuvant therapy was conducted in a preliminary clinical setting. With favorable results of over 95% of necrosis rate in a small cohort of patients, a Phase I/II clinical study was proposed to exam the safety and feasibility of this new strategy. Herein the design of the clinical study is presented. In this single-arm, two-stage phase I/II clinical trial, the primary objectives are >80% of the patients achieving >90% tumor necrosis and to evaluation the toxicity; the secondary objectives are to evaluate the local control, disease free survival and overall survival (OS), as well as the correlation between clinical response and the relevant biomarkers. The study plans to accrue patients over a span of two years. All patient will be treated with the new neoadjuvant RT regimen, in which one of every five fractions of conventional RT is replaced by a LRT fraction with vertices receiving dose ≥10Gy while keeping the tumor periphery at or close to 2 Gy per fraction. Surgical removal of the tumor is planned to occur 6 to 8 weeks following the completion of radiation therapy. The study will employ a Pocock-style early stopping boundary to ensure patient safety. The patients will be followed and monitored for a period of five years. Despite much effort, the rarity of the disease has resulted in limited novel therapeutic breakthroughs. Although a higher rate of treatment-induced tumor necrosis has been associated with improved OS, with the current techniques, only 20% of patients with large, high-grade tumors achieve a tumor necrosis rate exceeding 50%. If this new neoadjuvant strategy is proven effective, an appreciable improvement in clinical outcome without added toxicity can be anticipated. Due to the rarity of the disease, it is hoped that such study could be orchestrated in a multi-institutional setting.Keywords: lattice RT, necrosis, SFRT, soft tissue sarcoma
Procedia PDF Downloads 60712 Effect of Chilling on Soundness, Micro Hardness, Ultimate Tensile Strength, and Corrosion Behavior of Nickel Alloy-Fused Silica Metal Matrix Composite
Authors: G. Purushotham, Joel Hemanth
Abstract:
An investigation has been carried out to fabricate and evaluate the strength and soundness of chilled composites consisting of nickel matrix and fused silica particles (size 40–150 μm) in the matrix. The dispersoid added ranged from 3 to 12 wt. % in steps of 3%. The resulting composites cast in moulds containing metallic and non-metallic chill blocks (MS, SiC, and Cu) were tested for their microstructure and mechanical properties. The main objective of the present research is to obtain fine grain Ni/SiO2 chilled sound composite having very good mechanical properties. Results of the investigation reveal the following: (1) Strength of the composite developed is highly dependent on the location of the casting from where the test specimens are taken and also on the dispersoid content of the composite. (2) Chill thickness and chill material, however, does significantly affect the strength and soundness of the composite. (3) Soundness of the composite developed is highly dependent on the chilling rate as well as the dispersoid content. An introduction of chilling and increase in the dispersoid content of the material both result in an increase in the ultimate tensile strength (UTS) of the material. The temperature gradient developed during solidification and volumetric heat capacity (VHC) of the chill used is the important parameters controlling the soundness of the composite. (4) Thermal properties of the end chills are used to determine the magnitude of the temperature gradient developed along the length of the casting solidifying under the influence of chills.Keywords: metal matrix composite, mechanical properties, corrosion behavior, nickel alloy, fused silica, chills
Procedia PDF Downloads 398711 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer
Authors: Nirav J. Patel, Kalpesh K. Dudani
Abstract:
Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.Keywords: acoustic, partial discharge, perfectly matched layer, sensor
Procedia PDF Downloads 527710 Investigation of Chemical Effects on the Lγ2,3 and Lγ4 X-ray Production Cross Sections for Some Compounds of 66dy at Photon Energies Close to L1 Absorption-edge Energy
Authors: Anil Kumar, Rajnish Kaur, Mateusz Czyzycki, Alessandro Migilori, Andreas Germanos Karydas, Sanjiv Puri
Abstract:
The radiative decay of Li(i=1-3) sub-shell vacancies produced through photoionization results in production of the characteristic emission spectrum comprising several X-ray lines, whereas non-radiative vacancy decay results in Auger electron spectrum. Accurate reliable data on the Li(i=1-3) sub-shell X-ray production (XRP) cross sections is of considerable importance for investigation of atomic inner-shell ionization processes as well as for quantitative elemental analysis of different types of samples employing the energy dispersive X-ray fluorescence (EDXRF) analysis technique. At incident photon energies in vicinity of the absorption edge energies of an element, the many body effects including the electron correlation, core relaxation, inter-channel coupling and post-collision interactions become significant in the photoionization of atomic inner-shells. Further, in case of compounds, the characteristic emission spectrum of the specific element is expected to get influenced by the chemical environment (coordination number, oxidation state, nature of ligand/functional groups attached to central atom, etc.). These chemical effects on L X-ray fluorescence parameters have been investigated by performing the measurements at incident photon energies much higher than the Li(i=1-3) sub-shell absorption edge energies using EDXRF spectrometers. In the present work, the cross sections for production of the Lk(k= γ2,3, γ4) X-rays have been measured for some compounds of 66Dy, namely, Dy2O3, Dy2(CO3)3, Dy2(SO4)3.8H2O, DyI2 and Dy metal by tuning the incident photon energies few eV above the L1 absorption-edge energy in order to investigate the influence of chemical effects on these cross sections in presence of the many body effects which become significant at photon energies close to the absorption-edge energies. The present measurements have been performed under vacuum at the IAEA end-station of the X-ray fluorescence beam line (10.1L) of ELETTRA synchrotron radiation facility (Trieste, Italy) using self-supporting pressed pellet targets (1.3 cm diameter, nominal thicknesses ~ 176 mg/cm2) of 66Dy compounds (procured from Sigma Aldrich) and a metallic foil of 66Dy (nominal thickness ~ 3.9 mg/cm2, procured from Good Fellow, UK). The present measured cross sections have been compared with theoretical values calculated using the Dirac-Hartree-Slater(DHS) model based fluorescence and Coster-Kronig yields, Dirac-Fock(DF) model based X-ray emission rates and two sets of L1 sub-shell photoionization cross sections based on the non-relativistic Hartree-Fock-Slater(HFS) model and those deduced from the self-consistent Dirac-Hartree-Fock(DHF) model based total photoionization cross sections. The present measured XRP cross sections for 66Dy as well as for its compounds for the L2,3 and L4 X-rays, are found to be higher by ~14-36% than the two calculated set values. It is worth to be mentioned that L2,3 and L4 X-ray lines are originated by filling up of the L1 sub-shell vacancies by the outer sub-shell (N2,3 and O2,3) electrons which are much more sensitive to the chemical environment around the central atom. The present observed differences between measured and theoretical values are expected due to combined influence of the many-body effects and the chemical effects.Keywords: chemical effects, L X-ray production cross sections, Many body effects, Synchrotron radiation
Procedia PDF Downloads 132709 Field-Programmable Gate Array-Based Baseband Signals Generator of X-Band Transmitter for Micro Satellite/CubeSat
Authors: Shih-Ming Wang, Chun-Kai Yeh, Ming-Hwang Shie, Tai-Wei Lin, Chieh-Fu Chang
Abstract:
This paper introduces a FPGA-based baseband signals generator (BSG) of X-band transmitter developed by National Space Organization (NSPO), Taiwan, for earth observation. In order to gain more flexibility for various applications, a number of modulation schemes, QPSK, DeQPSK and 8PSK 4D-TCM are included. For micro satellite scenario, the maximum symbol rate is up to 150Mbsps, and the EVM is as low as 1.9%. For CubeSat scenario, the maximum symbol rate is up to 60Mbsps, and the EVM is less than 1.7%. The maximum data rates are 412.5Mbps and 165Mbps, respectively. Besides, triple modular redundancy (TMR) scheme is implemented in order to reduce single event effect (SEE) induced by radiation. Finally, the theoretical error performance is provided based on comprehensive analysis, especially when BER is lower and much lower than 10⁻⁶ due to low error bit requirement of modern high-resolution earth remote-sensing instruments.Keywords: X-band transmitter, FPGA (Field-Programmable Gate Array), CubeSat, micro satellite
Procedia PDF Downloads 295708 Thermal Resistance of Special Garments Exposed to a Radiant Heat
Authors: Jana Pichova, Lubos Hes, Vladimir Bajzik
Abstract:
Protective clothing is designed to keep a wearer save in hazardous conditions or enable perform short time working operation without being injured or feeling discomfort. Firefighters or other related workers are exposed to abnormal heat which can be conductive, convective or radiant type. Their garment is proposed to resist this conditions and prevent burn injuries or dead of human. However thermal comfort of firefighter exposed to high heat source have not been studied yet. Thermal resistance is the best representative parameter of thermal comfort. In this study a new method of testing of thermal resistance of special clothing exposed to high radiation heat source was designed. This method simulates human body wearing single or multi-layered garment which is exposed to radiative heat. Setup of this method enables measuring of radiative heat flow in time without effect of convection. The new testing method is verified on chosen group of textiles for firefighters.Keywords: protective clothing, radiative heat, thermal comfort of firefighters, thermal resistance of special garments
Procedia PDF Downloads 379