Search results for: ion exchange membranes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1942

Search results for: ion exchange membranes

532 The Concept of Accounting in Islamic Transactions

Authors: Ahmad Abdulkadir Ibrahim

Abstract:

The Islamic law of transactions laid down the methods and instruments of accounting and analyzed its basic assumptions in the modern world. There is a need to examine the implications of accounting initiatives in the Muslim world and attempt to outline the important characteristics of Islamic accounting and how Islamic accounting resolves the problem of measuring the cost of Murabaha goods in case of exchange rate variation. The research tends to discuss an analytical approach to the Islamic accounting concept as well as elaborating the jurisprudential matter and practical aspects of accounting in Islamic financial transactions. It also aims to alert the practitioners of accounting in the Islamic world to be aware of the concept of accounting in Islamic jurisprudence and its historical development. The methodology adopted in this research is the qualitative method through the consultation of relevant literature, which focuses on the thematic study of the subject matter. This is followed by an analysis and discussion of the contents of the materials used. It is concluded that Islamic accounting is unique in its norms as it has been characterized by fairness, accuracy in measuring tools, truthfulness, mutual trust, moderation in making a profit, and tolerance. It was also qualified by capacity and flexibility in terms of the tools and terminology used and invented by Islamic jurisprudence in the accounting system, which indicates its validity and consistency anytime and anywhere. An important conclusion of the research also lies in the refutation of the popular idea that an Italian writer known as Luca Pacilio was the first writer who developed the basis of double-entry due to the presented proofs by Muslim scholars of critical accounting developments, which cannot be ignored. It concludes further that Islamic jurisprudence draws the accounting system codified in the foundations of a market that is far from usury, fraud, cheating, and unfair competition in all areas.

Keywords: accounting, Islamic accounting, Islamic transactions, Islamic jurisprudence, double entry, murabaha, characteristics

Procedia PDF Downloads 62
531 Opto-Electronic Properties and Structural Phase Transition of Filled-Tetrahedral NaZnAs

Authors: R. Khenata, T. Djied, R. Ahmed, H. Baltache, S. Bin-Omran, A. Bouhemadou

Abstract:

We predict structural, phase transition as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound in this study. Calculations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme developed within the structure of density functional theory (DFT). Exchange-correlation energy/potential (EXC/VXC) functional is treated using Perdew-Burke and Ernzerhof (PBE) parameterization for generalized gradient approximation (GGA). In addition to Trans-Blaha (TB) modified Becke-Johnson (mBJ) potential is incorporated to get better precision for optoelectronic properties. Geometry optimization is carried out to obtain the reliable results of the total energy as well as other structural parameters for each phase of NaZnAs compound. Order of the structural transitions as a function of pressure is found as: Cu2Sb type → β → α phase in our study. Our calculated electronic energy band structures for all structural phases at the level of PBE-GGA as well as mBJ potential point out; NaZnAs compound is a direct (Γ–Γ) band gap semiconductor material. However, as compared to PBE-GGA, mBJ potential approximation reproduces higher values of fundamental band gap. Regarding the optical properties, calculations of real and imaginary parts of the dielectric function, refractive index, reflectivity coefficient, absorption coefficient and energy loss-function spectra are performed over a photon energy ranging from 0.0 to 30.0 eV by polarizing incident radiation in parallel to both [100] and [001] crystalline directions.

Keywords: NaZnAs, FP-LAPW+lo, structural properties, phase transition, electronic band-structure, optical properties

Procedia PDF Downloads 435
530 Empirical Examination of High Performance Work System, Organizational Commitment and Organizational Citizen Behavior: A Mediation of Model of Vietnam Organizations

Authors: Giang Vu, Duong Nguyen, Yuan-Ling Chen

Abstract:

Vietnam is a fast developing country with highly economic growth, and Vietnam organizations strive to utilize high performance work system (HPWS) in reinforcing employee in-role performance. HPWS, a bundle of human resource (HR) practices, are composed of eight sets of HR practices, namely selective staffing, extensive training, internal mobility, employment security, clear job description, result-oriented appraisal, incentive reward, and participation. However, whether HPWS stimulate employee extra-role behaviors remains understudied in a booming economic context. In this study, we aim to investigate organizational citizenship behavior (OCB) in a Vietnam context and, as a central issue, disentangle how HPWS elicits in employee OCB. On the other hand, recently, a deliberation of so-called 'black-box' HPWS issue has explored the role of employee commitment, suggesting that organizational commitment is a compelling source of employee OCB. We draw upon social exchange theory to predict that when employees perceive the organizational investment, like HPWS, in heightening their abilities, knowledge, and motivation, they are more likely to pay back with commitment; consequently, they will take initiatives in OCB. Hence, we hypothesize an individual level framework, in which organizational commitment mediates the positive relationship between HPWS and OCB. We collected data on HPWS, organizational commitment, OCB, and demographic variables, all at line managers of Vietnamese firms in Hanoi and Hochiminh. We conclude with research findings, implications, and future research suggestions.

Keywords: high performance work system, organizational citizenship behavior, organizational commitment, Vietnam

Procedia PDF Downloads 310
529 The role of Financial Development and Institutional Quality in Promoting Sustainable Development through Tourism Management

Authors: Hashim Zameer

Abstract:

Effective tourism management plays a vital role in promoting sustainability and supporting ecosystems. A common principle that has been in practice over the years is “first pollute and then clean,” indicating countries need financial resources to promote sustainability. Financial development and the tourism management both seems very important to promoting sustainable development. However, without institutional support, it is very difficult to succeed. In this context, it seems prominently significant to explore how institutional quality, tourism development, and financial development could promote sustainable development. In the past, no research explored the role of tourism development in sustainable development. Moreover, the role of financial development, natural resources, and institutional quality in sustainable development is also ignored. In this regard, this paper aims to investigate the role of tourism development, natural resources, financial development, and institutional quality in sustainable development in China. The study used time-series data from 2000–2021 and employed the Bayesian linear regression model because it is suitable for small data sets. The robustness of the findings was checked using a quantile regression approach. The results reveal that an increase in tourism expenditures stimulates the economy, creates jobs, encourages cultural exchange, and supports sustainability initiatives. Moreover, financial development and institution quality have a positive effect on sustainable development. However, reliance on natural resources can result in negative economic, social, and environmental outcomes, highlighting the need for resource diversification and management to reinforce sustainable development. These results highlight the significance of financial development, strong institutions, sustainable tourism, and careful utilization of natural resources for long-term sustainability. The study holds vital insights for policy formulation to promote sustainable tourism.

Keywords: sustainability, tourism development, financial development, institutional quality

Procedia PDF Downloads 79
528 Coupled Field Formulation – A Unified Method for Formulating Structural Mechanics Problems

Authors: Ramprasad Srinivasan

Abstract:

Engineers create inventions and put their ideas in concrete terms to design new products. Design drivers must be established, which requires, among other things, a complete understanding of the product design, load paths, etc. For Aerospace Vehicles, weight/strength ratio, strength, stiffness and stability are the important design drivers. A complex built-up structure is made up of an assemblage of primitive structural forms of arbitrary shape, which include 1D structures like beams and frames, 2D structures like membranes, plate and shell structures, and 3D solid structures. Justification through simulation involves a check for all the quantities of interest, namely stresses, deformation, frequencies, and buckling loads and is normally achieved through the finite element (FE) method. Over the past few decades, Fiber-reinforced composites are fast replacing the traditional metallic structures in the weight-sensitive aerospace and aircraft industries due to their high specific strength, high specific stiffness, anisotropic properties, design freedom for tailoring etc. Composite panel constructions are used in aircraft to design primary structure components like wings, empennage, ailerons, etc., while thin-walled composite beams (TWCB) are used to model slender structures like stiffened panels, helicopter, and wind turbine rotor blades, etc. The TWCB demonstrates many non-classical effects like torsional and constrained warping, transverse shear, coupling effects, heterogeneity, etc., which makes the analysis of composite structures far more complex. Conventional FE formulations to model 1D structures suffer from many limitations like shear locking, particularly in slender beams, lower convergence rates due to material coupling in composites, inability to satisfy, equilibrium in the domain and natural boundary conditions (NBC) etc. For 2D structures, the limitations of conventional displacement-based FE formulations include the inability to satisfy NBC explicitly and many pathological problems such as shear and membrane locking, spurious modes, stress oscillations, lower convergence due to mesh distortion etc. This mandates frequent re-meshing to even achieve an acceptable mesh (satisfy stringent quality metrics) for analysis leading to significant cycle time. Besides, currently, there is a need for separate formulations (u/p) to model incompressible materials, and a single unified formulation is missing in the literature. Hence coupled field formulation (CFF) is a unified formulation proposed by the author for the solution of complex 1D and 2D structures addressing the gaps in the literature mentioned above. The salient features of CFF and its many advantages over other conventional methods shall be presented in this paper.

Keywords: coupled field formulation, kinematic and material coupling, natural boundary condition, locking free formulation

Procedia PDF Downloads 65
527 Cultural Works Interacting with the Generational Aesthetic Gap between Gen X and Gen Z in China: A Qualitative Study

Authors: Qianyu Zhang

Abstract:

The spread of digital technology in China has worsened the generation gap and intergenerational competition for cultural and aesthetic discourse. Meanwhile, the increased accessibility of cultural works has encouraged the sharing and inheritance of collective cultural memories between generations. However, not each cultural work can engage positively with efforts to bridge intergenerational aesthetic differences. This study argues that in contemporary China, where new media and the Internet are widely available, featured cultural works have more potential to help enhance the cultural aesthetic consensus among different generations, thus becoming an effective countermeasure to narrow the intergenerational aesthetic rift and cultural discontinuity. Specifically, the generational aesthetic gap is expected to be bridged or improved through the shared appreciation or consumption of cultural works that meet certain conditions by several generations. In-depth interviews of Gen X and Gen Z (N=15, respectively) in China uncovered their preferences and commonalities for cultural works and shared experiences in appreciating them. Results demonstrate that both generations’ shared appreciation of cultural work is a necessary but insufficient condition for its effective response to the generational aesthetic gap. Coding analysis rendered six dimensions that cultural works with the potential to bridge the intergenerational aesthetic divide should satisfy simultaneously: genre, theme, content, elements, quality, and accessibility. Cultural works that engage multiple senses/ compound realistic, domestic and contemporary cultural memories/ contain the narrative of family life and nationalism/ include more elements familiar to the previous generation/ are superb-produced and unaffected/ are more accessible better promote intergenerational aesthetic exchange and value recognition. Moreover, compared to the dilemma of the previous generation facing the aesthetic gap, the later generation plays a crucial role in bridging the generational aesthetic divide.

Keywords: cultural works, generation gap, generation X, generation Z, cultural memory

Procedia PDF Downloads 152
526 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications

Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita

Abstract:

Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.

Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution

Procedia PDF Downloads 382
525 Oral Sex Practice among Men Who Have Sex with Men: A Cross-Sectional Study in Indonesian Urban Settings

Authors: I Putu Yuda Hananta, Inke Kusumastuti

Abstract:

The latest Indonesian Biology and Behavior Surveillance (IBBS) conducted by Indonesian Ministry of Health reported a large proportion of men who have sex with men (MSM) engaging in oral sex in their recent sexual history. While it is considered as a pleasuring and safe, oral sex might facilitate the transmission of various sexually transmitted infection (STI) pathogens. This study was aimed to investigate the oral sex practice among MSM in Indonesian urban settings to help delineate demographic and behavior determinants of such practice. In 2014, 501 MSM in 8 clinic-based and outreach STI services were recruited in Jakarta, Yogyakarta and Denpasar, Indonesia. Respondents completed a self-administered questionnaire inquiring about their demographics and sexual history. Median age (interquartile range) of the respondents was 27 (24-30) years; most completed senior high school (54.3%), worked in informal jobs (57.9%), and single (60.9%); and 32.3% reported receiving money in exchange for sex. Oral sex was practiced by most respondents: insertive only (10.0%), receptive only (6.0%), and both (82.4%). A separate multivariable analysis was performed using logistic regression to identify the determinants for receptive and insertive oral sex. Factors associated with receptive oral sex were having more than 10 sex partner(s) in the preceding 6 months vs 1 partner, adjusted odds ratio (aOR) [95% CI]=3.40 [1.22-9.42], p=0.03; and history of receptive-insertive anal sex vs no history, aOR=4.37 [1.76-10.82], p=0.01. Factors associated with insertive oral sex were receiving money for sex vs. not receiving, aOR=2.98 [1.10-8.04], p=0.02; and history of receptive-insertive anal sex vs. no history, aOR=2.10 [0.51-8.74], p<0.001. Only a few respondents reported consistent condom use (11.6% and 12.0% for receptive and insertive oral sex, respectively). Our findings demonstrated that while oral sex is a common practice among MSM, the consistency of condom use in oral sex is very low. In addition, certain sex behavior (number of sex partners, sex work and history of anal sex) were associated with oral sex, and this might need to be addressed during health promotion efforts on STI prevention through oral-genital contact.

Keywords: behavior, Indonesia, men who have sex with men, oral sex

Procedia PDF Downloads 240
524 The Mainspring of Controlling of Low Pressure Steam Drum at Lower Pressure than Its Design for Adjusting the Urea Synthesis Pressure

Authors: Reza Behtash, Enayat Enayati

Abstract:

The pool condenser is in principal a horizontal reactor, containing a bundle of U-tubes for heat exchange, coupling to low pressure steam drum. Condensation of gas takes place in a condensed pool around the tubes of the condenser. The heat of condensation is removed by the generation of low pressure steam on the inner tube side of the bundle. A circulation pump transfers ample boiler feed water to these tubes. The pressure of the steam generated influenced the heat flux. Changing the steam pressure means changing the steam condensate temperature and therefore the temperature difference between the tube side and the shell side. 2NH3 + CO2 ↔ NH2COONH4 + Heat. This reaction is exothermic and according to Le Chatelier's Principle if the heat is not removed enough, it will come back to left side and generate of the gas and so the Urea synthesis pressure will rise. The most principal reasons for high Urea synthesis pressure are non proportional of Ammonia/Dioxide Carbon ratio and too high a pressure in low pressure steam drum. Proportional of Ammonia/Dioxide Carbon ratio is 3.0 and normal pressure for low pressure steam drum is 4.5 bar. As regards these conditions were proportional but we could not control the synthesis pressure the plant endangered, therefore we had to control the steam drum pressure at about 3.5 bar. While we opened the pool condenser, we found the partition plate used to divide inlet and outlet boiler feed water to tubes, was broken partially and so amount of boiler feed water bypass the tubes and the heat was not removed totally and it resulted in the generation of gases and high pressure in synthesis.

Keywords: boiler, pressure, pool condenser, partition plate

Procedia PDF Downloads 382
523 Networks in the Tourism Sector in Brazil: Proposal of a Management Model Applied to Tourism Clusters

Authors: Gysele Lima Ricci, Jose Miguel Rodriguez Anton

Abstract:

Companies in the tourism sector need to achieve competitive advantages for their survival in the market. In this way, the models based on association, cooperation, complementarity, distribution, exchange and mutual assistance arise as a possibility of organizational development, taking as reference the concept of networks. Many companies seek to partner in local networks as clusters to act together and associate. The main objective of the present research is to identify the specificities of management and the practices of cooperation in the tourist destination of São Paulo - Brazil, and to propose a new management model with possible cluster of tourism. The empirical analysis was carried out in three phases. As a first phase, a research was made by the companies, associations and tourism organizations existing in São Paulo, analyzing the characteristics of their business. In the second phase, the management specificities and cooperation practice used in the tourist destination. And in the third phase, identifying the possible strengths and weaknesses that potential or potential tourist cluster could have, proposing the development of the management model of the same adapted to the needs of the companies, associations and organizations. As a main result, it has been identified that companies, associations and organizations could be looking for synergies with each other and collaborate through a Hiperred organizational structure, in which they share their knowledge, try to make the most of the collaboration and to benefit from three concepts: flexibility, learning and collaboration. Finally, it is concluded that, the proposed tourism cluster management model is viable for the development of tourism destinations because it makes it possible to strategically address agents which are responsible for public policies, as well as public and private companies and organizations in their strategies competitiveness and cooperation.

Keywords: cluster, management model, networks, tourism sector

Procedia PDF Downloads 284
522 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok

Authors: Noriyuki Suyama

Abstract:

The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.

Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior

Procedia PDF Downloads 88
521 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment

Procedia PDF Downloads 364
520 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia

Authors: Mohammed Abaoli, Omer Kara

Abstract:

The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam.  Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area. 

Keywords: commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem

Procedia PDF Downloads 194
519 Balancing Justice: A Critical Analysis of Plea Bargaining's Impact on Uganda's Criminal Justice System

Authors: Mukisa Daphine Letisha

Abstract:

Plea bargaining, a practice often associated with more developed legal systems, has emerged as a significant tool within Uganda's criminal justice system despite its absence in formal legal structures inherited from its colonial past. Initiated in 2013 with the aim of reducing case backlogs, expediting trials, and addressing prison congestion, plea bargaining reflects a pragmatic response to systemic challenges. While rooted in international statutes and domestic constitutional provisions, its implementation relies heavily on the Judicature (Plea Bargain) Rules of 2016, which outline procedural requirements and safeguards. Advocates argue that plea bargaining has yielded tangible benefits, including a reduction in case backlog and efficient allocation of resources, with notable support from judicial and prosecutorial authorities. Case examples demonstrate successful outcomes, with accused individuals benefitting from reduced sentences in exchange for guilty pleas. However, challenges persist, including procedural irregularities, inadequate statutory provisions, and concerns about coercion and imbalance of power between prosecutors and accused individuals. To enhance efficacy, recommendations focus on establishing monitoring mechanisms, stakeholder training, and public sensitization campaigns. In conclusion, while plea bargaining offers potential advantages in streamlining Uganda's criminal justice system, addressing its challenges requires careful consideration of procedural safeguards and stakeholder engagement to ensure fairness and integrity in the administration of justice.

Keywords: plea-bargaining, criminal-justice system, uganda, efficacy

Procedia PDF Downloads 52
518 The Impact of Political Leadership on Cameroon’s Economic Development From 2000 to 2023

Authors: Okpu Enoh Ndip Nkongho

Abstract:

The type of political leadership in place impacts a state's economic development or underdevelopment directly and indirectly. One of the main challenges to Cameroon's economic development may be ineffective or misguided political leadership. The economy of the Cameroon state has declined significantly due to a number of factors, including a lack of effective and feasible economic policies, a reliance on crude oil that is excessive, tribal politics, the threat of insurgency, bribery, and corruption, violations of human rights, neglect of other sectors like science, technology, education, and transportation, and a careless attitude on the part of the administrators toward the general public. As a result, the standard of living has decreased, foreign exchange has decreased, and the value of the Cameroonian currency has depreciated. Therefore, from 2000 to 2023, this paper focused on the relationship between political leadership and economic development in Cameroon and offered suggestions for improving political leadership that will, in turn, lead to the country's economy getting back on track. The study employed a qualitative technique, with the framework for the investigation derived from the trait theory of leadership. According to the information provided above, the paper was able to conclude that there is a lack of cooperation between the three branches of government in Cameroon. This is shown in situations when one branch operates independently of the others and refuses to function as a backup when needed. The study recommended that the Executive collaborate closely with the National Assembly to speed action on some key legislation required to stimulate economic development. On the other hand, there is a need for more clarity and consistency in the government's policy orientation. There is no doubt that our current economic troubles are at least partially the result of a lack of economic policy leadership and confidence.

Keywords: politics, leadership, economic, development, Cameroon

Procedia PDF Downloads 53
517 Design and Synthesis of Copper-Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal From Waste Water

Authors: Feleke Terefe Fanta

Abstract:

Background: The existence of heavy metals and coliform bacteria contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, Ethiopia has become a public concern as human population increases and land development continues. Hence, it is the right time to design treatment technologies that can handle multiple pollutants. Results: In this study, we prepared a synthetic zeolites and copper doped zeolite composite adsorbents as cost effective and simple approach to simultaneously remove heavy metals and total coliforms from wastewater of Akaki river. The synthesized copper–zeolite X composite was obtained by ion exchange method of copper ions into zeolites frameworks. Iodine test, XRD, FTIR and autosorb IQ automated gas sorption analyzer were used to characterize the adsorbents. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. These concentrations decreased to Cd (0.005 mg/L), Cr (0.052 mg/L) and Pb (bellow detection limit, BDL) for sample treated with bare zeolite X while a further decrease in concentration of Cd (0.005 mg/L), Cr (BDL) and Pb (BDL) was observed for the sample treated with copper–zeolite composite. Zeolite X and copper-modified zeolite X showed complete elimination of total coliforms after 90 and 50 min contact time respectively. Conclusion: The results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbents. Furthermore, these sorbents are efficient in significantly reducing physical parameters such as electrical conductivity, turbidity, BOD and COD.

Keywords: WASTE WATER, COPPER DOPED ZEOITE X, ADSORPITION, HEAVY METAL, DISINFECTION, AKAKI RIVER

Procedia PDF Downloads 69
516 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: distributed energy resources, network energy system, optimization, microgeneration system

Procedia PDF Downloads 189
515 Review of Capitalization of Construction Industry on Sustainable Risk Management in Nigeria

Authors: Nnadi Ezekiel Ejiofor

Abstract:

The construction industry plays a decisive role in the healthy development of any nation. Not only large but even small construction projects contribute to a country’s economic growth. There is a need for good management to ensure successful delivery and sustainability because of the plethora of risks that have resulted in low-profit margins for contractors, cost and schedule overruns, poor quality delivery, and abandoned projects. This research reviewed Capitalization on Sustainable Risk Management. Questionnaires and oral interviews conducted were utilized as means of data collection. One hundred and ninety-eight (198) large construction firms in Nigeria form the population of this study. 15 (fifteen) companies that emanated from merger and acquisition were used for the study. The instruments used for data collection were a researcher-developed structured questionnaire based on a five-point rating scale, interviews, focus group discussion, and secondary sources (bill of quantities and stock and exchange commission). The instrument was validated by two experts in the field. The reliability of the instrument was established by applying the split-half method. Kendall’s coefficient of concordance was used to test the data, and a degree of agreement was obtained. Data were subjected to descriptive statistics and analyzed using analysis of variance, t-test, and SPSS. The identified impacts of capitalization were an increase in turnover (24.5%), improvement in the image (24.5%), risk reduction (20%), business expansion (17.3%), and geographical spread (13.6%). The study strongly advocates the inclusion of risk management evaluation as part of the construction procurement process.

Keywords: capitalization, project delivery, risks, risk management, sustainability

Procedia PDF Downloads 57
514 Infrastructure Sharing Synergies: Optimal Capacity Oversizing and Pricing

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) deals with both substitution synergies (exchange of waste materials, fatal energy and utilities as resources for production) and infrastructure/service sharing synergies. The latter is based on the intensification of use of an asset and thus requires to balance capital costs increments with snowball effects (network externalities) for its implementation. Initial investors must specify ex-ante arrangements (cost sharing and pricing schedule) to commit toward investments in capacities and transactions. Our model investigate the decision of 2 actors trying to choose cooperatively a level of infrastructure capacity oversizing to set a plug-and-play offer to a potential entrant whose capacity requirement is randomly distributed while satisficing their own requirements. Capacity cost exhibits sub-additive property so that there is room for profitable overcapacity setting in the first period. The entrant’s willingness-to-pay for the access to the infrastructure is dependent upon its standalone cost and the capacity gap that it must complete in case the available capacity is insufficient ex-post (the complement cost). Since initial capacity choices are driven by ex-ante (expected) yield extractible from the entrant we derive the expected complement cost function which helps us defining the investors’ objective function. We first show that this curve is decreasing and convex in the capacity increments and that it is shaped by the distribution function of the potential entrant’s requirements. We then derive the general form of solutions and solve the model for uniform and triangular distributions. Depending on requirements volumes and cost assumptions different equilibria occurs. We finally analyze the effect of a per-unit subsidy a public actor would apply to foster such sharing synergies.

Keywords: capacity, cooperation, industrial symbiosis, pricing

Procedia PDF Downloads 211
513 Electrochemical Coordination Polymers of Copper(II) Synthesis by Using Rigid and Felexible Ligands

Authors: P. Mirahmadpour, M. H. Banitaba, D. Nematollahi

Abstract:

The chemistry of coordination polymers in recent years has grown exponentially not only because of their interesting architectures but also due to their various technical applications in many fields including ion exchange, chemical catalysis, small molecule separations, and drug release. The use of bridging ligands for the controlled self-assembly of one, two or three dimensional metallo-supramolecular species is the subject of serious study in last decade. Numerous different synthetic methods have been offered for the preparation of coordination polymers such as (a) diffusion from the gas phase, (b) slow diffusion of the reactants into a polymeric matrix, (c) evaporation of the solvent at ambient or reduced temperatures, (d) temperature controlled cooling, (e) precipitation or recrystallisation from a mixture of solvents and (f) hydrothermal synthesis. The electrosynthetic process suggested several advantages over conventional approaches. A general advantage of electrochemical synthesis is that it allows synthesis under milder conditions than typical solvothermal or microwave synthesis. In this work we have introduced a simple electrochemical method for growing metal coordination polymers based on copper with a flexible 2,2’-thiodiacetic acid (TDA) and rigid 1,2,4,5-benzenetetracarboxylate (BTC) ligands. The structure of coordination polymers were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), elemental analysis, thermal gravimetric (TG) and differential thermal analyses (DTA). The single-crystal X-ray diffraction analysis revealed that different conformations of the ligands and different coordination modes of the carboxylate group as well as different coordination geometries of the copper atoms. Electrochemical synthesis of coordination polymers has different advantages such as faster synthesis at lower temperature in compare with conventional chemical methods and crystallization of desired materials in a single synthetic step.

Keywords: 1, 2, 4, 5-benzenetetracarboxylate, coordination polymer, copper, 2, 2’-thiodiacetic acid

Procedia PDF Downloads 204
512 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant

Authors: Lucero Luciano, Cesar Celis, Jose Ramos

Abstract:

Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.

Keywords: desalination, design and integration, polygeneration systems, renewable energy

Procedia PDF Downloads 123
511 Strengthening the Security of the Thai-Myanmar Border Trade of the People in the Mae Sot Customs Checkpoint Area, Tak Province

Authors: Sakapas Saengchai

Abstract:

A Study on Strengthening the Security of the Thai-Myanmar Border Trade Area of the people in the Mae Sot customs checkpoint area, Tak province, was designed as a qualitative research study. Its objectives were to study the principles of strengthening border trade security and enhancing people's participation. To develop a border trade model that enhances the spatial economy and improves people's quality of life by collecting data using a participant observation method. In-depth interview group chats border checkpoint administrators, Mae Sot customs checkpoint, Tak province, private entrepreneurs, community leaders, and the opening of a community forum to exchange opinions with people in the area. The results of the study found that 1. Security development is to promote crime reduction. Reduce drug trafficking problems Smuggling and human trafficking have been reduced. Including planning and preparation to protect people from terrorism, epidemics, and communicable diseases, including cooperation with Burma on border rules for people and workers, 2. Wealth development is to promote investment. Transport links value chain logistics Cross-border goods and services on the Thai-Myanmar border Both amending regulations and laws to promote fair trade. Emphasis on convenient and fast service as well as promoting the Thai border area to be a tourist attraction that can create prosperity and income for the community in the area By using balanced natural resources, with production and consumption that are environmentally friendly, and emphasizes the participation of the public sector, the private sector, and people from all sectors in the sustainable development of the Thai border.

Keywords: security, border trade, customs, participation, people

Procedia PDF Downloads 180
510 Bacterio-Algal Microbial Fuel Cells for Sustainable Power Production, Wastewater Treatment, and Desalination

Authors: Ann D. Christy, Beenish Saba

Abstract:

The Microbial fuel Cell (MFC) is a successful integrated technology for power production and wastewater treatment. MFCs are recognized for their dual function, but research in this field is still ongoing to increase efficiency and power output. One such effort is successful integration of phototrophic and autotrophic microorganisms to create bacterio-algal MFCs for sustainable electricity production along with wastewater treatment and algal biomass production. An MFC is typically configured with an anaerobic anodic chamber containing exoelectrogenic microorganisms separated by a cation exchange membrane from an adjacent aerobic cathodic chamber. The two electrodes are connected by an external circuit. This conventional MFC can be converted into a phototrophic MFC by introducing photosynthetic microorganisms into the cathode chamber. This study examines adding a third desalination chamber to a two-chamber bacterio-algal MFC. Successful results have been observed from these three-chamber MFCs demonstrating wastewater treatment in the anodic chamber, phototrophic algal growth in the cathodic chamber, and desalination in the middle chamber. The present article will summarize successful results of the bacterio-algal fuel cells and offer insights about the mechanisms involved. Tables summarizing the input substrate along with optimized operational conditions and output performance in terms of power production and efficiencies of water and wastewater treatment will be presented. The negative impacts and challenges will be discussed, along with possible future research directions. Results suggest that the three chamber bacterio-algal desalination cell has potential as a feasible technology for power production, wastewater treatment and desalination, but it needs further investigation under optimized conditions.

Keywords: bacterio-algal MFC, three chamber, microbial fuel cell, wastewater treatment and desalination

Procedia PDF Downloads 360
509 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions

Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang

Abstract:

Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.

Keywords: computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity

Procedia PDF Downloads 138
508 Modeling the Reliability of a Fuel Cell and the Influence of Mechanical Aspects on the Production of Electrical Energy

Authors: Raed Kouta

Abstract:

A fuel cell is a multi-physical system. Its electrical performance depends on chemical, electrochemical, fluid, and mechanical parameters. Many studies focus on physical and chemical aspects. Our study contributes to the evaluation of the influence of mechanical aspects on the performance of a fuel cell. This study is carried out as part of a reliability approach. Reliability modeling allows to consider the uncertainties of the incoming parameters and the probabilistic modeling of the outgoing parameters. The fuel cell studied is the one often used in land, sea, or air transport. This is the Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC). This battery can provide the required power level. One of the main scientific and technical challenges in mastering the design and production of a fuel cell is to know its behavior in its actual operating environment. The study proposes to highlight the influence on the production of electrical energy: Mechanical design and manufacturing parameters and their uncertainties (Young module, GDL porosity, permeability, etc.). The influence of the geometry of the bipolar plates is also considered. An experimental design is proposed with two types of materials as well as three geometric shapes for three joining pressures. Other experimental designs are also proposed for studying the influence of uncertainties of mechanical parameters on cell performance. - Mechanical (static, dynamic) and thermal (tightening - compression, vibrations (road rolling and tests on vibration-climatic bench, etc.) loads. This study is also carried out according to an experimental scheme on a fuel cell system for vibration loads recorded on a vehicle test track with three temperatures and three expected performance levels. The work will improve the coupling between mechanical, physical, and chemical phenomena.

Keywords: fuel cell, mechanic, reliability, uncertainties

Procedia PDF Downloads 187
507 Existing International Cooperation Mechanisms and Proposals to Enhance Their Effectiveness for Marine-Based Geoengineering Governance

Authors: Aylin Mohammadalipour Tofighi

Abstract:

Marine-based geoengineering methods, proposed to mitigate climate change, operate primarily through two mechanisms: reducing atmospheric carbon dioxide levels and diminishing solar absorption by the oceans. While these approaches promise beneficial outcomes, they are fraught with environmental, legal, ethical, and political challenges, necessitating robust international governance. This paper underscores the critical role of international cooperation within the governance framework, offering a focused analysis of existing international environmental mechanisms applicable to marine-based geoengineering governance. It evaluates the efficacy and limitations of current international legal structures, including treaties and organizations, in managing marine-based geoengineering, noting significant gaps such as the absence of specific regulations, dedicated international entities, and explicit governance mechanisms such as monitoring. To rectify these problems, the paper advocates for concrete steps to bolster international cooperation. These include the formulation of dedicated marine-based geoengineering guidelines within international agreements, the establishment of specialized supervisory entities, and the promotion of transparent, global consensus-building. These recommendations aim to foster governance that is environmentally sustainable, ethically sound, and politically feasible, thereby enhancing knowledge exchange, spurring innovation, and advancing the development of marine-based geoengineering approaches. This study emphasizes the importance of collaborative approaches in managing the complexities of marine-based geoengineering, contributing significantly to the discourse on international environmental governance in the face of rapid climate and technological changes.

Keywords: climate change, environmental law, international cooperation, international governance, international law, marine-based geoengineering, marine law, regulatory frameworks

Procedia PDF Downloads 70
506 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee

Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado

Abstract:

Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.

Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses

Procedia PDF Downloads 34
505 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.

Keywords: emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi method

Procedia PDF Downloads 287
504 Green Synthesis (Using Environment Friendly Bacteria) of Silver-Nanoparticles and Their Application as Drug Delivery Agents

Authors: Sutapa Mondal Roy, Suban K. Sahoo

Abstract:

The primary aim of this work is to synthesis silver nanoparticles (AgNPs) through environmentally benign routes to avoid any chemical toxicity related undesired side effects. The nanoparticles were stabilized with drug ciprofloxacin (Cp) and were studied for their effectiveness as drug delivery agent. Targeted drug delivery improves the therapeutic potential of drugs at the diseased site as well as lowers the overall dose and undesired side effects. The small size of nanoparticles greatly facilitates the transport of active agents (drugs) across biological membranes and allows them to pass through the smallest capillaries in the body that are 5-6 μm in diameter, and can minimize possible undesired side effects. AgNPs are non-toxic, inert, stable, and has a high binding capacity and thus can be considered as biomaterials. AgNPs were synthesized from the nutrient broth supernatant after the culture of environment-friendly bacteria Bacillus subtilis. The AgNPs were found to show the surface plasmon resonance (SPR) band at 425 nm. The Cp capped Ag nanoparticles formation was complete within 30 minutes, which was confirmed from absorbance spectroscopy. Physico-chemical nature of the AgNPs-Cp system was confirmed by Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) etc. The AgNPs-Cp system size was found to be in the range of 30-40 nm. To monitor the kinetics of drug release from the surface of nanoparticles, the release of Cp was carried out by careful dialysis keeping AgNPs-Cp system inside the dialysis bag at pH 7.4 over time. The drug release was almost complete after 30 hrs. During the drug delivery process, to understand the AgNPs-Cp system in a better way, the sincere theoretical investigation is been performed employing Density Functional Theory. Electronic charge transfer, electron density, binding energy as well as thermodynamic properties like enthalpy, entropy, Gibbs free energy etc. has been predicted. The electronic and thermodynamic properties, governed by the AgNPs-Cp interactions, indicate that the formation of AgNPs-Cp system is exothermic i.e. thermodynamically favorable process. The binding energy and charge transfer analysis implies the optimum stability of the AgNPs-Cp system. Thus, the synthesized Cp-Ag nanoparticles can be effectively used for biological purposes due to its environmentally benign routes of synthesis procedures, which is clean, biocompatible, non-toxic, safe, cost-effective, sustainable and eco-friendly. The Cp-AgNPs as biomaterials can be successfully used for drug delivery procedures due to slow release of drug from nanoparticles over a considerable period of time. The kinetics of the drug release show that this drug-nanoparticle assembly can be effectively used as potential tools for therapeutic applications. The ease of synthetic procedure, lack of possible chemical toxicity and their biological activity along with excellent application as drug delivery agent will open up vista of using nanoparticles as effective and successful drug delivery agent to be used in modern days.

Keywords: silver nanoparticles, ciprofloxacin, density functional theory, drug delivery

Procedia PDF Downloads 384
503 Promotional Effects of Zn in Cu-Zn/Core-Shell Al-MCM-41 for Selective Catalytic Reduction of NO with NH3: Acidic Properties, NOx Adsorption Properties, and Nature of Copper

Authors: Thidarat Imyen, Paisan Kongkachuichay

Abstract:

Cu-Zn/core-shell Al-MCM-41 catalyst with various copper species, prepared by a combination of three methods—substitution, ion-exchange, and impregnation, was studied for the selective catalytic reduction (SCR) of NO with NH3 at 300 °C for 150 min. In order to investigate the effects of Zn introduction on the nature of the catalyst, Cu/core-shell Al-MCM-41 and Zn/core-shell Al-MCM-41 catalysts were also studied. The roles of Zn promoter in the acidity and the NOx adsorption properties of the catalysts were investigated by in situ Fourier transform infrared spectroscopy (FTIR) of NH3 and NOx adsorption, and temperature-programmed desorption (TPD) of NH3 and NOx. The results demonstrated that the acidity of the catalyst was enhanced by the Zn introduction, as exchanged Zn(II) cations loosely bonded with Al-O-Si framework could create Brønsted acid sites by interacting with OH groups. Moreover, Zn species also provided the additional sites for NO adsorption in the form of nitrite (NO2–) and nitrate (NO3–) species, which are the key intermediates for SCR reaction. In addition, the effect of Zn on the nature of copper was studied by in situ FTIR of CO adsorption and in situ X-ray adsorption near edge structure (XANES). It was found that Zn species hindered the reduction of Cu(II) to Cu(0), resulting in higher Cu(I) species in the Zn promoted catalyst. The Cu-Zn/core-shell Al-MCM-41 exhibited higher catalytic activity compared with that of the Cu/core-shell Al-MCM-41 for the whole reaction time, as it possesses the highest amount of Cu(I) sites, which are responsible for SCR catalytic activity. The Cu-Zn/core-shell Al-MCM-41 catalyst also reached the maximum NO conversion of 100% with the average NO conversion of 76 %. The catalytic performance of the catalyst was further improved by using Zn promoter in the form of ZnO instead of reduced Zn species. The Cu-ZnO/core-shell Al-MCM-41 catalyst showed better catalytic performance with longer working reaction time, and achieved the average NO conversion of 81%.

Keywords: Al-MCM-41, copper, nitrogen oxide, selective catalytic reduction, zinc

Procedia PDF Downloads 298