Search results for: exponential smoothing methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15679

Search results for: exponential smoothing methods

14269 Different Methods of Producing Bioemulsifier by Bacillus licheniformis Strains

Authors: Saba Pajuhan, Afshin Farahbakhsh, S. M. M. Dastgheib

Abstract:

Biosurfactants and bioemulsifiers are a structurally diverse group of surface-active molecules synthesized by microorganisms, they are amphipathic molecules which reduce surface and interfacial tensions and widely used in pharmaceutical, cosmetic, food and petroleum industries. In this paper, several methods of bioemulsifer synthesis and purification by Bacillus licheniformis strains (namely ACO1, PTCC 1595 and ACO4) were investigated. Strains were grown in nutrient broth with different conditions in order to get maximum production of bioemulsifer. The purification of bio emulsifier and the quality evaluation of the product was done by adding sulfuric acid (H₂SO₄) (98%), Ethanol or HCl to the solution followed by centrifuging. To determine the optimal conditions yielding the highest bioemulsifier production, the effect of various carbon and nitrogen sources, temperature, NaCl concentration, pH, O₂ levels, incubation time are indispensable and all of them were highly effective in bioemulsifiers production.

Keywords: biosurfactant, bioemulsifier, purification, surface tension, interfacial tension

Procedia PDF Downloads 271
14268 Use of Artificial Intelligence in Teaching Practices: A Meta-Analysis

Authors: Azmat Farooq Ahmad Khurram, Sadaf Aslam

Abstract:

This meta-analysis systematically examines the use of artificial intelligence (AI) in instructional methods across diverse educational settings through a thorough analysis of empirical research encompassing various disciplines, educational levels, and regions. This study aims to assess the effects of AI integration on teaching methodologies, classroom dynamics, teachers' roles, and student engagement. Various research methods were used to gather data, including literature reviews, surveys, interviews, and focus group discussions. Findings indicate paradigm shifts in teaching and education, identify emerging trends, practices, and the application of artificial intelligence in learning, and provide educators, policymakers, and stakeholders with guidelines and recommendations for effectively integrating AI in educational contexts. The study concludes by suggesting future research directions and practical considerations for maximizing AI's positive influence on pedagogical practices.

Keywords: artificial intelligence, teaching practices, meta-analysis, teaching-learning

Procedia PDF Downloads 77
14267 The Digital Library and Its Influential Role in Developing the Establishment of the Grand Egyptian Museum

Authors: Gourg Ebrahim Shafik Eskandar

Abstract:

The essential role of the digital library in developing museum display methods, recording ancient Egyptian antiquities, facilitating scientific research and storing antiquities in the Grand Egyptian Museum, which helped and saved a lot of time and money spent to equip the Grand Egyptian Museum. The technology of digital library, linking it to ancient Egyptian antiquities and the latest results, which scientific research has reached in the field of libraries and its impact on many areas of tourism and antiquities. The research also aims to show the main role of the digital library and the Arab countries emulating European countries in digitizing libraries and recent developments in Egyptian libraries and their role in many areas of life and linking them to Egyptology. The research will also explain how the museum display methods will be developed in the Grand Egyptian Museum, and the recording of ancient Egyptian antiquities in order to facilitate the process of scientific research and methods of storing antiquities, and it will also work to save time and effort for researchers. The research will also deal with lighting, and its prominent role in the display in the interior design and coordination of the Grand Egyptian Museum, through which the unique artifacts and artifacts displayed can be displayed, and they can be used in a strong or simple form. Depending on the condition of the piece to be displayed. The research will also go to show the role of the digital library in how the Grand Egyptian Museum contains gathering areas and how to distribute spaces, guidance, information, reception, libraries, lecture halls, restaurants, cafeterias, shops, permanent and temporary galleries, and bathrooms.

Keywords: grand egyptian museum, egyptian, museum, egyptian museum

Procedia PDF Downloads 21
14266 Climate Change in Awash River Basin of Ethiopia: A Projection Study Using Global and Regional Climate Model Simulations

Authors: Mahtsente Tadese, Lalit Kumar, Richard Koech

Abstract:

The aim of this study was to project and analyze climate change in the Awash River Basin (ARB) using bias-corrected Global and Regional Climate Model simulations. The analysis included a baseline period from 1986-2005 and two future scenarios (the 2050s and 2070s) under two representative concentration pathways (RCP4.5 and RCP8.5). Bias correction methods were evaluated using graphical and statistical methods. Following the evaluation of bias correction methods, the Distribution Mapping (DM) and Power Transformation (PT) were used for temperature and precipitation projection, respectively. The 2050s and 2070s RCP4 simulations showed an increase in precipitation during half of the months with 32 and 10%, respectively. Moreover, the 2050s and 2070s RCP8.5 simulation indicated a decrease in precipitation with 18 and 26%, respectively. The 2050s and 2070s RCP8.5 simulation indicated a significant decrease in precipitation in four of the months (February/March to May) with the highest decreasing rate of 34.7%. The 2050s and 2070s RCP4.5 simulation showed an increase of 0.48-2.6 °C in maximum temperature. In the case of RCP8.5, the increase rate reached 3.4 °C and 4.1 °C in the 2050s and 2070s, respectively. The changes in precipitation and temperature might worsen the water stress, flood, and drought in ARB. Moreover, the critical focus should be given to mitigation strategies and management options to reduce the negative impact. The findings of this study provide valuable information on future precipitation and temperature change in ARB, which will help in the planning and design of sustainable mitigation approaches in the basin.

Keywords: variability, climate change, Awash River Basin, precipitation

Procedia PDF Downloads 174
14265 A Supervised Face Parts Labeling Framework

Authors: Khalil Khan, Ikram Syed, Muhammad Ehsan Mazhar, Iran Uddin, Nasir Ahmad

Abstract:

Face parts labeling is the process of assigning class labels to each face part. A face parts labeling method (FPL) which divides a given image into its constitutes parts is proposed in this paper. A database FaceD consisting of 564 images is labeled with hand and make publically available. A supervised learning model is built through extraction of features from the training data. The testing phase is performed with two semantic segmentation methods, i.e., pixel and super-pixel based segmentation. In pixel-based segmentation class label is provided to each pixel individually. In super-pixel based method class label is assigned to super-pixel only – as a result, the same class label is given to all pixels inside a super-pixel. Pixel labeling accuracy reported with pixel and super-pixel based methods is 97.68 % and 93.45% respectively.

Keywords: face labeling, semantic segmentation, classification, face segmentation

Procedia PDF Downloads 255
14264 A Heart Arrhythmia Prediction Using Machine Learning’s Classification Approach and the Concept of Data Mining

Authors: Roshani S. Golhar, Neerajkumar S. Sathawane, Snehal Dongre

Abstract:

Background and objectives: As the, cardiovascular illnesses increasing and becoming cause of mortality worldwide, killing around lot of people each year. Arrhythmia is a type of cardiac illness characterized by a change in the linearity of the heartbeat. The goal of this study is to develop novel deep learning algorithms for successfully interpreting arrhythmia using a single second segment. Because the ECG signal indicates unique electrical heart activity across time, considerable changes between time intervals are detected. Such variances, as well as the limited number of learning data available for each arrhythmia, make standard learning methods difficult, and so impede its exaggeration. Conclusions: The proposed method was able to outperform several state-of-the-art methods. Also proposed technique is an effective and convenient approach to deep learning for heartbeat interpretation, that could be probably used in real-time healthcare monitoring systems

Keywords: electrocardiogram, ECG classification, neural networks, convolutional neural networks, portable document format

Procedia PDF Downloads 69
14263 Enabling Quantitative Urban Sustainability Assessment with Big Data

Authors: Changfeng Fu

Abstract:

Sustainable urban development has been widely accepted a common sense in the modern urban planning and design. However, the measurement and assessment of urban sustainability, especially the quantitative assessment have been always an issue obsessing planning and design professionals. This paper will present an on-going research on the principles and technologies to develop a quantitative urban sustainability assessment principles and techniques which aim to integrate indicators, geospatial and geo-reference data, and assessment techniques together into a mechanism. It is based on the principles and techniques of geospatial analysis with GIS and statistical analysis methods. The decision-making technologies and methods such as AHP and SMART are also adopted to address overall assessment conclusions. The possible interfaces and presentation of data and quantitative assessment results are also described. This research is based on the knowledge, situations and data sources of UK, but it is potentially adaptable to other countries or regions. The implementation potentials of the mechanism are also discussed.

Keywords: urban sustainability assessment, quantitative analysis, sustainability indicator, geospatial data, big data

Procedia PDF Downloads 359
14262 Analysis of Splicing Methods for High Speed Automated Fibre Placement Applications

Authors: Phillip Kearney, Constantina Lekakou, Stephen Belcher, Alessandro Sordon

Abstract:

The focus in the automotive industry is to reduce human operator and machine interaction, so manufacturing becomes more automated and safer. The aim is to lower part cost and construction time as well as defects in the parts, sometimes occurring due to the physical limitations of human operators. A move to automate the layup of reinforcement material in composites manufacturing has resulted in the use of tapes that are placed in position by a robotic deposition head, also described as Automated Fibre Placement (AFP). The process of AFP is limited with respect to the finite amount of material that can be loaded into the machine at any one time. Joining two batches of tape material together involves a splice to secure the ends of the finishing tape to the starting edge of the new tape. The splicing method of choice for the majority of prepreg applications is a hand stich method, and as the name suggests requires human input to achieve. This investigation explores three methods for automated splicing, namely, adhesive, binding and stitching. The adhesive technique uses an additional adhesive placed on the tape ends to be joined. Binding uses the binding agent that is already impregnated onto the tape through the application of heat. The stitching method is used as a baseline to compare the new splicing methods to the traditional technique currently in use. As the methods will be used within a High Speed Automated Fibre Placement (HSAFP) process, this meant the parameters of the splices have to meet certain specifications: (a) the splice must be able to endure a load of 50 N in tension applied at a rate of 1 mm/s; (b) the splice must be created in less than 6 seconds, dictated by the capacity of the tape accumulator within the system. The samples for experimentation were manufactured with controlled overlaps, alignment and splicing parameters, these were then tested in tension using a tensile testing machine. Initial analysis explored the use of the impregnated binding agent present on the tape, as in the binding splicing technique. It analysed the effect of temperature and overlap on the strength of the splice. It was found that the optimum splicing temperature was at the higher end of the activation range of the binding agent, 100 °C. The optimum overlap was found to be 25 mm; it was found that there was no improvement in bond strength from 25 mm to 30 mm overlap. The final analysis compared the different splicing methods to the baseline of a stitched bond. It was found that the addition of an adhesive was the best splicing method, achieving a maximum load of over 500 N compared to the 26 N load achieved by a stitching splice and 94 N by the binding method.

Keywords: analysis, automated fibre placement, high speed, splicing

Procedia PDF Downloads 155
14261 Optimization of Process Parameters for Rotary Electro Discharge Machining Using EN31 Tool Steel: Present and Future Scope

Authors: Goutam Dubey, Varun Dutta

Abstract:

In the present study, rotary-electro discharge machining of EN31 tool steel has been carried out using a pure copper electrode. Various response variables such as Material Removal Rate (MRR), Tool Wear Rate (TWR), and Machining Rate (MR) have been studied against the selected process variables. The selected process variables were peak current (I), voltage (V), duty cycle, and electrode rotation (N). EN31 Tool Steel is hardened, high carbon steel which increases its hardness and reduces its machinability. Reduced machinability means it not economical to use conventional methods to machine EN31 Tool Steel. So, non-conventional methods play an important role in machining of such materials.

Keywords: electric discharge machining, EDM, tool steel, tool wear rate, optimization techniques

Procedia PDF Downloads 203
14260 Improving Enhanced Oil Recovery by Using Alkaline-Surfactant-Polymer Injection and Nanotechnology

Authors: Amir Gerayeli, Babak Moradi

Abstract:

The continuously declining oil reservoirs and reservoirs aging have created a huge demand for utilization of Enhanced Oil Recovery (EOR) methods recently. Primary and secondary oil recovery methods have various limitations and are not practical for all reservoirs. Therefore, it is necessary to use chemical methods to improve oil recovery efficiency by reducing oil and water surface tension, increasing sweeping efficiency, and reducing displacer phase viscosity. One of the well-known methods of oil recovery is Alkaline-Surfactant-Polymer (ASP) flooding that shown to have significant impact on enhancing oil recovery. As some of the biggest oil reservoirs including those of Iran’s are fractional reservoirs with substantial amount of trapped oil in their fractures, the use of Alkaline-Surfactant-Polymer (ASP) flooding method is increasingly growing, the method in which the impact of several parameters including type and concentration of the Alkaline, Surfactant, and polymer are particularly important. This study investigated the use of Nano particles to improve Enhanced Oil Recovery (EOR). The study methodology included performing several laboratory tests on drill cores extracted from Karanj Oil field Asmary Formation in Khuzestan, Iran. In the experiments performed, Sodium dodecyl benzenesulfonate (SDBS) and 1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) were used as surfactant, hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer, Sodium hydroxide (NaOH) as alkaline, and Silicon dioxide (SiO2) and Magnesium oxide (MgO) were used as Nano particles. The experiment findings suggest that water viscosity increased from 1 centipoise to 5 centipoise when hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer. The surface tension between oil and water was initially measured as 25.808 (mN/m). The optimum surfactant concentration was found to be 500 p, at which the oil and water tension surface was measured to be 2.90 (mN/m) when [C12mim] [Cl] was used, and 3.28 (mN/m) when SDBS was used. The Nano particles concentration ranged from 100 ppm to 1500 ppm in this study. The optimum Nano particle concentration was found to be 1000 ppm for MgO and 500 ppm for SiO2.

Keywords: alkaline-surfactant-polymer, ionic liquids, relative permeability, reduced surface tension, tertiary enhanced oil recovery, wettability change

Procedia PDF Downloads 152
14259 Nonparametric Estimation of Risk-Neutral Densities via Empirical Esscher Transform

Authors: Manoel Pereira, Alvaro Veiga, Camila Epprecht, Renato Costa

Abstract:

This paper introduces an empirical version of the Esscher transform for risk-neutral option pricing. Traditional parametric methods require the formulation of an explicit risk-neutral model and are operational only for a few probability distributions for the returns of the underlying. In our proposal, we make only mild assumptions on the pricing kernel and there is no need for the formulation of the risk-neutral model for the returns. First, we simulate sample paths for the returns under the physical distribution. Then, based on the empirical Esscher transform, the sample is reweighted, giving rise to a risk-neutralized sample from which derivative prices can be obtained by a weighted sum of the options pay-offs in each path. We compare our proposal with some traditional parametric pricing methods in four experiments with artificial and real data.

Keywords: esscher transform, generalized autoregressive Conditional Heteroscedastic (GARCH), nonparametric option pricing

Procedia PDF Downloads 489
14258 Effects of Climate Change on Hydraulic Design Methods of Railway Infrastructures

Authors: Chiara Cesali

Abstract:

The effects of climate change are increasingly evident: increases in temperature (i.e. global warming), greater frequency of extreme weather events, i.e. storms, floods, which often affect transport infrastructures. Large-scale climatological models with long-term horizons (up to 2100) show the possibility of significant increases in precipitation in the future, according to the greenhouse gas emissions scenarios from IPCC. Consequently, the insufficiency of existing hydraulic works (i.e. bridges, culverts, drainage systems) may be more frequent, or those currently being designed may become insufficient in the future. Thus, the hydraulic design methods of transport infrastructure must begin to take into account the influence of climate change. To this purpose, criteria for applying to the hydraulic design of a railway infrastructure some of the approaches currently available for determining design rainfall intensity and/or peak discharge flow on the basis of possible climate change scenarios are defined and proposed in the paper. Some application cases are also described.

Keywords: climate change, hydraulic design, precipitation, railway

Procedia PDF Downloads 179
14257 Molecular Interaction of Acetylcholinesterase with Flavonoids Involved in Neurodegenerative Diseases

Authors: W. Soufi, F. Boukli Hacene, S. Ghalem

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disease that leads to a progressive and permanent deterioration of nerve cells. This disease is progressively accompanied by an intellectual deterioration leading to psychological manifestations and behavioral disorders that lead to a loss of autonomy. It is the most frequent of degenerative dementia. Alzheimer's disease (AD), which affects a growing number of people, has become a major public health problem in a few years. In the context of the study of the mechanisms governing the evolution of AD disease, we have found that natural flavonoids are good acetylcholinesterase inhibitors that reduce the rate of ßA secretion in neurons. This work is to study the inhibition of acetylcholinesterase (AChE) which is an enzyme involved in Alzheimer's disease, by methods of molecular modeling. These results will probably help in the development of an effective therapeutic tool in the fight against the development of Alzheimer's disease. Our goal of the research is to study the inhibition of acetylcholinesterase (AChE) by molecular modeling methods.

Keywords: Alzheimer's disease, acetylcholinesterase, flavonoids, molecular modeling

Procedia PDF Downloads 105
14256 Tumor Detection of Cerebral MRI by Multifractal Analysis

Authors: S. Oudjemia, F. Alim, S. Seddiki

Abstract:

This paper shows the application of multifractal analysis for additional help in cancer diagnosis. The medical image processing is a very important discipline in which many existing methods are in search of solutions to real problems of medicine. In this work, we present results of multifractal analysis of brain MRI images. The purpose of this analysis was to separate between healthy and cancerous tissue of the brain. A nonlinear method based on multifractal detrending moving average (MFDMA) which is a generalization of the detrending fluctuations analysis (DFA) is used for the detection of abnormalities in these images. The proposed method could make separation of the two types of brain tissue with success. It is very important to note that the choice of this non-linear method is due to the complexity and irregularity of tumor tissue that linear and classical nonlinear methods seem difficult to characterize completely. In order to show the performance of this method, we compared its results with those of the conventional method box-counting.

Keywords: irregularity, nonlinearity, MRI brain images, multifractal analysis, brain tumor

Procedia PDF Downloads 443
14255 Cadmium Separation from Aqueous Solutions by Natural Biosorbents

Authors: Z. V. P. Murthy, Preeti Arunachalam, Sangeeta Balram

Abstract:

Removal of metal ions from different wastewaters has become important due to their effects on living beings. Cadmium is one of the heavy metals found in different industrial wastewaters. There are many conventional methods available to remove heavy metals from wastewaters like adsorption, membrane separations, precipitation, electrolytic methods, etc. and all of them have their own advantages and disadvantages. The present work deals with the use of natural biosorbents (chitin and chitosan) to separate cadmium ions from aqueous solutions. The adsorption data were fitted with different isotherms and kinetics models. Amongst different adsorption isotherms used to fit the adsorption data, the Freundlich isotherm showed better fits for both the biosorbents. The kinetics data of adsorption of cadmium showed better fit with pseudo-second order model for both the biosorbents. Chitosan, the derivative from chitin, showed better performance than chitin. The separation results are encouraging.

Keywords: chitin, chitosan, cadmium, isotherm, kinetics

Procedia PDF Downloads 411
14254 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
14253 Trade and Economic Relations between Georgia and Germany – the Impediments Caused by the Pandemic and Future Prospects

Authors: Tamar Lazariashvili

Abstract:

There are a number of factors that determine the growth and development of the country's economy; however, trade and economic relations with other countries are the most important of all these factors. The paper analyzes the trade and economic relations between Georgia and Germany, identifies the impediments caused by the Covid pandemic, and substantiates the need for further economic cooperation between the countries. Research objectives. The objective of the research is to develop recommendations and reveal the prospects of further cooperation between Georgia and Germany based on identifying the problems in the field of trade and economy in the post-crisis situation. The research object is Georgian German economic relations. Germany is Georgia's largest trading partner in the European Union. Georgia and Germany actively cooperate within the framework of international organizations as well. The paper analyzes the multilateral and intensive economic relations between Germany and Georgia; evaluates the investments of German companies in Georgia and the activities of Georgian companies in Germany. Research methods. The paper uses general and specific research methods; in particular, analysis, synthesis, induction, deduction, comparison, statistical (selection, grouping, observation, trend), and other research methods.SWOT analysis is used to determine development opportunities between countries. As a result of the research economic ranking of Georgia and Germany are determined according to the above criteria, the causes of the impediments due to the pandemic are studied; the main problems in the field of trade and economy are identified. The paper provides conclusions on the problems in the trade relations between Georgia and Germany and suggests recommendations regarding the prospects for improving these relations.

Keywords: georgia-germany, trade and economic relations, economic ranking, perspective directions

Procedia PDF Downloads 159
14252 Banks Profitability Indicators in CEE Countries

Authors: I. Erins, J. Erina

Abstract:

The aim of the present article is to determine the impact of the external and internal factors of bank performance on the profitability indicators of the CEE countries banks in the period from 2006 to 2012. On the basis of research conducted abroad on bank and macroeconomic profitability indicators, in order to obtain research results, the authors evaluated return on average assets (ROAA) and return on average equity (ROAE) indicators of the CEE countries banks. The authors analyzed profitability indicators of banks using descriptive methods, SPSS data analysis methods as well as data correlation and linear regression analysis. The authors concluded that most internal and external indicators of bank performance have no direct effect on the profitability of the banks in the CEE countries. The only exceptions are credit risk and bank size which affect one of the measures of bank profitability–return on average equity.

Keywords: banks, CEE countries, profitability ROAA, ROAE

Procedia PDF Downloads 367
14251 Organisationmatcher: An Organisation Ranking System for Student Placement Using Preference Weights

Authors: Nor Sahida Ibrahim, Ruhaila Maskat, Aishah Ahmad

Abstract:

Almost all tertiary-level students will undergo some form of training in organisations prior to their graduation. This practice provides the necessary exposure and experience to allow students to cope with actual working environment and culture in the future. Nevertheless, a particular degree of “matching” between what is expected and what can be offered between students and organisations underpins how effective and enriching the experience is. This matching of students and organisations is challenging when preferences from both parties must be satisfied. This work developed a web-based system, namely the OrganisationMatcher, which leverage on the use of preference weights to score each organisation and rank them based on “suitability”. OrganisationMatcher has been implemented on a relational database, designed using object-oriented methods and developed using PHP programming language for browser front-end access. We outline the challenges and limitations of our system and discuss future improvements to the system, specifically in the utilisation of intelligent methods.

Keywords: student industrial placement, information system, web-based, ranking

Procedia PDF Downloads 279
14250 Transferring Cultural Meanings: A Case of Translation Classroom

Authors: Ramune Kasperaviciene, Jurgita Motiejuniene, Dalia Venckiene

Abstract:

Familiarising students with strategies for transferring cultural meanings (intertextual units, culture-specific idioms, culture-specific items, etc.) should be part of a comprehensive translator training programme. The present paper focuses on strategies for transferring such meanings into other languages and explores possibilities for introducing these methods and practice to translation students. The authors (university translation teachers) analyse the means of transferring cultural meanings from English into Lithuanian in a specific travel book, attribute these means to theoretically grounded strategies, and make calculations related to the frequency of adoption of specific strategies; translation students are familiarised with concepts and methods related to transferring cultural meanings and asked to put their theoretical knowledge into practice, i.e. interpret and translate certain culture-specific items from the same source text, and ground their decisions on theory; the comparison of the strategies employed by the professional translator of the source text (as identified by the authors of this study) and by the students is made. As a result, both students and teachers gain valuable experience, and new practices of conducting translation classes for a specific purpose evolve. Conclusions highlight the differences and similarities of non-professional and professional choices, summarise the possibilities for introducing methods of transferring cultural meanings to students, and round up with specific considerations of the impact of theoretical knowledge and the degree of experience on decisions made in the translation process.

Keywords: cultural meanings, culture-specific items, strategies for transferring cultural meanings, translator training

Procedia PDF Downloads 351
14249 Hybrid Risk Assessment Model for Construction Based on Multicriteria Decision Making Methods

Authors: J. Tamosaitiene

Abstract:

The article focuses on the identification and classification of key risk management criteria that represent the most important sustainability aspects of the construction industry. The construction sector is one of the most important sectors in Lithuania. Nowadays, the assessment of the risk level of a construction project is especially important for the quality of construction projects, the growth of enterprises and the sector. To establish the most important criteria for successful growth of the sector, a questionnaire for experts was developed. The analytic hierarchy process (AHP), the expert judgement method and other multicriteria decision making (MCDM) methods were used to develop the hybrid model. The results were used to develop an integrated knowledge system for the measurement of a risk level particular to construction projects. The article presents a practical case that details the developed system, sustainable aspects, and risk assessment.

Keywords: risk, system, model, construction

Procedia PDF Downloads 167
14248 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection

Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi

Abstract:

In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.

Keywords: attention, fire detection, smoke detection, spatio-temporal

Procedia PDF Downloads 203
14247 Development of High Temperature Eutectic Oxide Ceramic Matrix Composites

Authors: Yağmur Can Gündoğan, Kübra Gürcan Bayrak, Ece Özerdem, Buse Katipoğlu, Erhan Ayas, Rifat Yılmaz

Abstract:

Eutectic oxide based ceramic matrix composites have a unique microstructure that does not include grain boundary in the form of a continuous network. Because of this, these materials have the properties of perfect high-temperature strength, creep strength, and high oxidation strength. Mechanical properties of them are much related to occurring solidification structures during eutectic reactions. One of the most important production methods of this kind of material is the process of vacuum arc melting. Within scope of this studying, it is aimed to investigate the production of Al₂O₃-YAG-based eutectic ceramics by Arc melting and Spark Plasma Sintering methods for use in aerospace and defense industries where high-temperature environments play an important role and to examine the effects of ZrO₂ and LiF additions on microstructure development and mechanical properties.

Keywords: alumina, composites, eutectic, YAG

Procedia PDF Downloads 118
14246 Proposal for a Framework for Teaching Entrepreneurship and Innovation Using the Methods and Current Methodologies

Authors: Marcelo T. Okano, Jaqueline C. Bueno, Oduvaldo Vendrametto, Osmildo S. Santos, Marcelo E. Fernandes, Heide Landi

Abstract:

Developing countries are increasingly finding that entrepreneurship and innovation are the ways to speed up their developments and initiate or encourage technological development. The educational institutions such as universities, colleges and colleges of technology, has two main roles in this process, to guide and train entrepreneurs and provide technological knowledge and encourage innovation. Thus there was completing the triple helix model of innovation with universities, government and industry. But the teaching of entrepreneurship and innovation can not be only the traditional model, with blackboard, chalk and classroom. The new methods and methodologies such as Canvas, elevator pitching, design thinking, etc. require students to get involved and to experience the simulations of business, expressing their ideas and discussing them. The objective of this research project is to identify the main methods and methodologies used for the teaching of entrepreneurship and innovation, to propose a framework, test it and make a case study. To achieve the objective of this research, firstly was a survey of the literature on the entrepreneurship and innovation, business modeling, business planning, Canvas business model, design thinking and other subjects about the themes. Secondly, we developed the framework for teaching entrepreneurship and innovation based on bibliographic research. Thirdly, we tested the framework in a higher education class IT management for a semester. Finally, we detail the results in the case study in a course of IT management. As important results we improve the level of understanding and business administration students, allowing them to manage own affairs. Methods such as canvas and business plan helped students to plan and shape the ideas and business. Pitching for entrepreneurs and investors in the market brought a reality for students. The prototype allowed the company groups develop their projects. The proposed framework allows entrepreneurship education and innovation can leave the classroom, bring the reality of business roundtables to university relying on investors and real entrepreneurs.

Keywords: entrepreneurship, innovation, Canvas, traditional model

Procedia PDF Downloads 576
14245 Code Refactoring Using Slice-Based Cohesion Metrics and AOP

Authors: Jagannath Singh, Durga Prasad Mohapatra

Abstract:

Software refactoring is very essential for maintaining the software quality. It is an usual practice that we first design the software and then go for coding. But after coding is completed, if the requirement changes slightly or our expected output is not achieved, then we change the codes. For each small code change, we cannot change the design. In course of time, due to these small changes made to the code, the software design decays. Software refactoring is used to restructure the code in order to improve the design and quality of the software. In this paper, we propose an approach for performing code refactoring. We use slice-based cohesion metrics to identify the target methods which requires refactoring. After identifying the target methods, we use program slicing to divide the target method into two parts. Finally, we have used the concepts of Aspects to adjust the code structure so that the external behaviour of the original module does not change.

Keywords: software refactoring, program slicing, AOP, cohesion metrics, code restructure, AspectJ

Procedia PDF Downloads 513
14244 Bipolar Impulse Noise Removal and Edge Preservation in Color Images and Video Using Improved Kuwahara Filter

Authors: Reji Thankachan, Varsha PS

Abstract:

Both image capturing devices and human visual systems are nonlinear. Hence nonlinear filtering methods outperforms its linear counterpart in many applications. Linear methods are unable to remove impulsive noise in images by preserving its edges and fine details. In addition, linear algorithms are unable to remove signal dependent or multiplicative noise in images. This paper presents an approach to denoise and smoothen the Bipolar impulse noised images and videos using improved Kuwahara filter. It involves a 2 stage algorithm which includes a noise detection followed by filtering. Numerous simulation demonstrate that proposed method outperforms the existing method by eliminating the painting like flattening effect along the local feature direction while preserving edge with improvement in PSNR and MSE.

Keywords: bipolar impulse noise, Kuwahara, PSNR MSE, PDF

Procedia PDF Downloads 498
14243 Vocational Education for Sustainable Development: Teaching Methods and Practices

Authors: Seyilnan Hannah Wadak, Dangway Monica Clement

Abstract:

This theoretical study explores distinct teaching methods and practices for integrating sustainable development principles into vocational education. It examines how vocational institutions can prepare students for a sustainability-oriented workforce while addressing environmental and social challenges. The research analyzes current literature, case studies, and emerging trends to identify effective strategies for incorporating sustainability across various vocational disciplines. Key approaches discussed include experiential learning, green skills training, and interdisciplinary projects that simulate real-world sustainability challenges. The study also investigates the role of technology, such as virtual reality and online collaboration tools, in enhancing sustainability education. Additionally, it addresses the importance of industry partnerships and community engagement in creating relevant, practical learning experiences. The paper highlights potential barriers to implementation and proposes solutions for overcoming them, including professional development for educators and curriculum redesign. Findings suggest that integrating sustainability into vocational education not only enhances students’ employability but also contributes to broader societal goals of sustainable development. This research provides a comprehensive framework for educational institutions and policymakers to transform vocational programs, ensuring they meet the evolving demands of a sustainable future.

Keywords: vocational education, sustainable development, teaching methods, experiential learning, green skills, curriculum integration, industry partnerships, educational technology

Procedia PDF Downloads 30
14242 Investigation about Mechanical Equipment Needed to Break the Molecular Bonds of Heavy Oil by Using Hydrodynamic Cavitation

Authors: Mahdi Asghari

Abstract:

The cavitation phenomenon is the formation and production of micro-bubbles and eventually the bursting of the micro-bubbles inside the liquid fluid, which results in localized high pressure and temperature, causing physical and chemical fluid changes. This pressure and temperature are predicted to be 2000 atmospheres and 5000 °C, respectively. As a result of small bubbles bursting from this process, temperature and pressure increase momentarily and locally, so that the intensity and magnitude of these temperatures and pressures provide the energy needed to break the molecular bonds of heavy compounds such as fuel oil. In this paper, we study the theory of cavitation and the methods of cavitation production by acoustic and hydrodynamic methods and the necessary mechanical equipment and reactors for industrial application of the hydrodynamic cavitation method to break down the molecular bonds of the fuel oil and convert it into useful and economical products.

Keywords: Cavitation, Hydrodynamic Cavitation, Cavitation Reactor, Fuel Oil

Procedia PDF Downloads 121
14241 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis

Authors: Kunya Bowornchockchai

Abstract:

The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0)  without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt  is the time series data at time t, respectively.

Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate

Procedia PDF Downloads 254
14240 A Modified Nonlinear Conjugate Gradient Algorithm for Large Scale Unconstrained Optimization Problems

Authors: Tsegay Giday Woldu, Haibin Zhang, Xin Zhang, Yemane Hailu Fissuh

Abstract:

It is well known that nonlinear conjugate gradient method is one of the widely used first order methods to solve large scale unconstrained smooth optimization problems. Because of the low memory requirement, attractive theoretical features, practical computational efficiency and nice convergence properties, nonlinear conjugate gradient methods have a special role for solving large scale unconstrained optimization problems. Large scale optimization problems are with important applications in practical and scientific world. However, nonlinear conjugate gradient methods have restricted information about the curvature of the objective function and they are likely less efficient and robust compared to some second order algorithms. To overcome these drawbacks, the new modified nonlinear conjugate gradient method is presented. The noticeable features of our work are that the new search direction possesses the sufficient descent property independent of any line search and it belongs to a trust region. Under mild assumptions and standard Wolfe line search technique, the global convergence property of the proposed algorithm is established. Furthermore, to test the practical computational performance of our new algorithm, numerical experiments are provided and implemented on the set of some large dimensional unconstrained problems. The numerical results show that the proposed algorithm is an efficient and robust compared with other similar algorithms.

Keywords: conjugate gradient method, global convergence, large scale optimization, sufficient descent property

Procedia PDF Downloads 206