Search results for: energy saving measures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12110

Search results for: energy saving measures

10700 Construction Sustainability Improvement through Using Recycled Aggregates in Concrete Production

Authors: Zhiqiang Zhu, Khalegh Barati, Xuesong Shen

Abstract:

Due to the energy consumption caused by the construction industry, the public is paying more and more attention to the sustainability of the buildings. With the advancement of research on recycled aggregates, it has become possible to replace natural aggregates with recycled aggregates and to achieve a reduction in energy consumption of materials during construction. The purpose of this paper is to quantitatively compare the emergy consumption of natural aggregate concrete (NAC) and recycled aggregate concrete (RAC). To do so, the emergy analysis method is adopted. Using this technique, it can effectively analyze different forms of energy and substance. The main analysis object is the direct and indirect emergy consumption of the stages in concrete production. Therefore, for indirect energy, consumption of production machinery and transportation vehicle also need to be considered. Finally, the emergy values required to produce the two concrete types are compared to analyze whether the RAC can reduce emergy consumption.

Keywords: sustainable construction, NAC, RAC, emergy, concrete

Procedia PDF Downloads 150
10699 Nanotechnolgy for Energy Harvesting Applications

Authors: Eiman Nour

Abstract:

The rising interest in harvesting power is because of the capabilities application of expanding self-powered systems based on nanostructures. Using renewable and self-powered sources is necessary for the growth of green electronics and could be of the capability to wireless sensor networks. The ambient mechanical power is among the ample sources for various power harvesting device configurations that are published. In this work, we design and fabricate a paper-based nanogenerator (NG) utilizing piezoelectric zinc oxide (ZnO) nanowires (NWs) grown hydrothermally on a paper substrate. The fabricated NG can harvest ambient mechanical energy from various kinds of human motions, such as handwriting. The fabricated NG from a single ZnO NWs/PVDF-TrFE NG has been used firstly as handwriting-driven NG. The mechanical pressure applied on the paper platform while handwriting is harvested by the NG to deliver electrical energy; depending on the mode of handwriting, a maximum harvested voltage of 4.8 V was obtained.

Keywords: nanostructure, zinc oxide, nanogenerator, energy harvesting

Procedia PDF Downloads 63
10698 Energy Absorption Capacity of Aluminium Foam Manufactured by Kelvin Model Loaded Under Different Biaxial Combined Compression-Torsion Conditions

Authors: H. Solomon, A. Abdul-Latif, R. Baleh, I. Deiab, K. Khanafer

Abstract:

Aluminum foams were developed and tested due to their high energy absorption abilities for multifunctional applications. The aim of this research work was to investigate experimentally the effect of quasi-static biaxial loading complexity (combined compression-torsion) on the energy absorption capacity of highly uniform architecture open-cell aluminum foam manufactured by kelvin cell model. The two generated aluminum foams have 80% and 85% porosities, spherical-shaped pores having 11mm in diameter. These foams were tested by means of several square-section specimens. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e., 0°, 37° and 53°). The main mechanical responses of the aluminum foams were studied under simple, intermediate and severe loading conditions. In fact, the key responses to be examined were stress plateau and energy absorption capacity of the two foams with respect to loading complexity. It was concluded that the higher the loading complexity and the higher the relative density, the greater the energy absorption capacity of the foam. The highest energy absorption was thus recorded under the most complicated loading path (i.e., biaxial-53°) for the denser foam (i.e., 80% porosity).

Keywords: open-cell aluminum foams, biaxial loading complexity, foams porosity, energy absorption capacity, characterization

Procedia PDF Downloads 130
10697 Characterizing the Spatially Distributed Differences in the Operational Performance of Solar Power Plants Considering Input Volatility: Evidence from China

Authors: Bai-Chen Xie, Xian-Peng Chen

Abstract:

China has become the world's largest energy producer and consumer, and its development of renewable energy is of great significance to global energy governance and the fight against climate change. The rapid growth of solar power in China could help achieve its ambitious carbon peak and carbon neutrality targets early. However, the non-technical costs of solar power in China are much higher than at international levels, meaning that inefficiencies are rooted in poor management and improper policy design and that efficiency distortions have become a serious challenge to the sustainable development of the renewable energy industry. Unlike fossil energy generation technologies, the output of solar power is closely related to the volatile solar resource, and the spatial unevenness of solar resource distribution leads to potential efficiency spatial distribution differences. It is necessary to develop an efficiency evaluation method that considers the volatility of solar resources and explores the mechanism of the influence of natural geography and social environment on the spatially varying characteristics of efficiency distribution to uncover the root causes of managing inefficiencies. The study sets solar resources as stochastic inputs, introduces a chance-constrained data envelopment analysis model combined with the directional distance function, and measures the solar resource utilization efficiency of 222 solar power plants in representative photovoltaic bases in northwestern China. By the meta-frontier analysis, we measured the characteristics of different power plant clusters and compared the differences among groups, discussed the mechanism of environmental factors influencing inefficiencies, and performed statistical tests through the system generalized method of moments. Rational localization of power plants is a systematic project that requires careful consideration of the full utilization of solar resources, low transmission costs, and power consumption guarantee. Suitable temperature, precipitation, and wind speed can improve the working performance of photovoltaic modules, reasonable terrain inclination can reduce land cost, and the proximity to cities strongly guarantees the consumption of electricity. The density of electricity demand and high-tech industries is more important than resource abundance because they trigger the clustering of power plants to result in a good demonstration and competitive effect. To ensure renewable energy consumption, increased support for rural grids and encouraging direct trading between generators and neighboring users will provide solutions. The study will provide proposals for improving the full life-cycle operational activities of solar power plants in China to reduce high non-technical costs and improve competitiveness against fossil energy sources.

Keywords: solar power plants, environmental factors, data envelopment analysis, efficiency evaluation

Procedia PDF Downloads 91
10696 A Study of Anoxic - Oxic Microbiological Technology for Treatment of Heavy Oily Refinery Wastewater

Authors: Di Wang, Li Fang, Shengyu Fang, Jianhua Li, Honghong Dong, Zhongzhi Zhang

Abstract:

Heavy oily refinery wastewater with the characteristics of high concentration of toxic organic pollutant, poor biodegradability and complicated dissolved recalcitrant compounds is intractable to be degraded. In order to reduce the concentrations of COD and total nitrogen pollutants which are the major pollutants in heavy oily refinery wastewater, the Anoxic - Oxic microbiological technology relies mainly on anaerobic microbial reactor which works with methanogenic archaea mainly that can convert organic pollutants to methane gas, and supplemented by aerobic treatment. The results of continuous operation for 2 months with a hydraulic retention time (HRT) of 60h showed that, the COD concentration from influent water of anaerobic reactor and effluent water from aerobic reactor were 547.8mg/L and 93.85mg/L, respectively. The total removal rate of COD was up to 84.9%. Compared with the 46.71mg/L of total nitrogen pollutants in influent water of anaerobic reactor, the concentration of effluent water of aerobic reactor decreased to 14.11mg/L. In addition, the average removal rate of total nitrogen pollutants reached as high as 69.8%. Based on the data displayed, Anoxic - Oxic microbial technology shows a great potential to dispose heavy oil sewage in energy saving and high-efficiency of biodegradation.

Keywords: anoxic - oxic microbiological technology, COD, heavy oily refinery wastewater, total nitrogen pollutant

Procedia PDF Downloads 494
10695 Analyzing the Results of Buildings Energy Audit by Using Grey Set Theory

Authors: Tooraj Karimi, Mohammadreza Sadeghi Moghadam

Abstract:

Grey set theory has the advantage of using fewer data to analyze many factors, and it is therefore more appropriate for system study rather than traditional statistical regression which require massive data, normal distribution in the data and few variant factors. So, in this paper grey clustering and entropy of coefficient vector of grey evaluations are used to analyze energy consumption in buildings of the Oil Ministry in Tehran. In fact, this article intends to analyze the results of energy audit reports and defines most favorable characteristics of system, which is energy consumption of buildings, and most favorable factors affecting these characteristics in order to modify and improve them. According to the results of the model, ‘the real Building Load Coefficient’ has been selected as the most important system characteristic and ‘uncontrolled area of the building’ has been diagnosed as the most favorable factor which has the greatest effect on energy consumption of building. Grey clustering in this study has been used for two purposes: First, all the variables of building relate to energy audit cluster in two main groups of indicators and the number of variables is reduced. Second, grey clustering with variable weights has been used to classify all buildings in three categories named ‘no standard deviation’, ‘low standard deviation’ and ‘non- standard’. Entropy of coefficient vector of Grey evaluations is calculated to investigate greyness of results. It shows that among the 38 buildings surveyed in terms of energy consumption, 3 cases are in standard group, 24 cases are in ‘low standard deviation’ group and 11 buildings are completely non-standard. In addition, clustering greyness of 13 buildings is less than 0.5 and average uncertainly of clustering results is 66%.

Keywords: energy audit, grey set theory, grey incidence matrixes, grey clustering, Iran oil ministry

Procedia PDF Downloads 373
10694 Simulation, Optimization, and Analysis Approach of Microgrid Systems

Authors: Saqib Ali

Abstract:

Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.

Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management

Procedia PDF Downloads 97
10693 Patients' Out-Of-Pocket Expenses-Effectiveness Analysis of Presurgical Teledermatology

Authors: Felipa De Mello-Sampayo

Abstract:

Background: The aim of this study is to undertake, from a patient perspective, an economic analysis of presurgical teledermatology, comparing it with a conventional referral system. Store-and-forward teledermatology allows surgical planning, saving both time and number of visits involving travel, thereby reducing patients’ out-of-pocket expenses, i.e., costs that patients incur when traveling to and from health providers for treatment, visits’ fees, and the opportunity cost of time spent in visits. Method: Patients’ out-of-pocket expenses-effectiveness of presurgical teledermatology were analyzed in the setting of a public hospital during two years. The mean delay in surgery was used to measure effectiveness. The teledermatology network covering the area served by the Hospital Garcia da Horta (HGO), Portugal, linked the primary care centers of 24 health districts with the hospital’s dermatology department. The patients’ opportunity cost of visits, travel costs, and visits’ fee of each presurgical modality (teledermatology and conventional referral), the cost ratio between the most and least expensive alternative, and the incremental cost-effectiveness ratio were calculated from initial primary care visit until surgical intervention. Two groups of patients: those with squamous cell carcinoma and those with basal cell carcinoma were distinguished in order to compare the effectiveness according to the dermatoses. Results: From a patient perspective, the conventional system was 2.15 times more expensive than presurgical teledermatology. Teledermatology had an incremental out-of-pocket expenses-effectiveness ratio of €1.22 per patient and per day of delay avoided. This saving was greater in patients with squamous cell carcinoma than in patients with basal cell carcinoma. Conclusion: From a patient economic perspective, teledermatology used for presurgical planning and preparation is the dominant strategy in terms of out-of-pocket expenses-effectiveness than the conventional referral system, especially for patients with severe dermatoses.

Keywords: economic analysis, out-of-pocket expenses, opportunity cost, teledermatology, waiting time

Procedia PDF Downloads 140
10692 Modelling and Simulation of Biomass Pyrolysis

Authors: P. Ahuja, K. S. S. Sai Krishna

Abstract:

There is a concern over the energy shortage in the modern societies as it is one of the primary necessities. Renewable energy, mainly biomass, is found to be one feasible solution as it is inexhaustible and clean energy source all over the world. Out of various methods, thermo chemical conversion is considered to be the most common and convenient method to extract energy from biomass. The thermo-chemical methods that are employed are gasification, liquefaction and combustion. On gasification biomass yields biogas, on liquefaction biomass yields bio-oil and on combustion biomass yields bio-char. Any attempt to biomass gasification, liquefaction or combustion calls for a good understanding of biomass pyrolysis. So, Irrespective of the method used the first step towards the thermo-chemical treatment of biomass is pyrolysis. Pyrolysis mainly converts the solid mass into liquid with gas and residual char as the byproducts. Liquid is used for the production of heat, power and many other chemicals whereas the gas and char can be used as fuels to generate heat.

Keywords: biomass, fluidisation, pyrolysis, simulation

Procedia PDF Downloads 342
10691 The Implementation of Anti-Circumvention Legislations in Thai Copyright System

Authors: Chuencheewin Yimfuang

Abstract:

The WIPO copyright treaty (WCT) was established by the World Intellectual Property Organisation (WIPO). This agreement required the contracting nations to provide adequate protection to technological measures to prevent massive copyright infringement in the internet system. Thailand had to implement the anti-circumvention rules into domestic legislation to comply with this international obligation. The purpose of this paper is to critically discuss the legislative standard under the WCT. It also aims to examine the legal development of technological protection measures in Thailand and demonstrate that the scope of prohibitions under the copyright Act 2022 (NO.5) is similar to the Digital Millennium Copyright Act 1998 (DMCA) of the United States (US). It could be found that the anti-circumvention laws of Thailand prohibit the circumvention of access-control technologies, and the regulation on trafficking circumvention devices has been added to the latest version of the Thai Copyright Act. These legislative evolutions have revealed the attempt to reinforce the legal protection of technological measures and copyright holders in order to be in line with global practices. However, the amendment has problems concerning the legal definitions of effective technological measure and the prohibited act of circumvention. The vagueness might affect the scope of protection and the boundary of prohibition. With this aspect, the DMCA will be evaluated and compared to gain guidelines for interpretation and enforcement in Thailand. The lessons and experiences learned from this study might be useful to correct the flaws or at least clarify the ambiguities embodied in Thai copyright legislation.

Keywords: legal development, technological protection measure, circumvention, Thailand

Procedia PDF Downloads 87
10690 Unconventional Hydrocarbon Management Strategy

Authors: Edi Artono, Budi Tamtomo, Gema Wahyudi Purnama

Abstract:

The world energy demand increasing extreamly high time by time, including domestic demand. That is impossible to avoid because energy a country demand proportional to surge in the number of residents, economic growth and addition of industrial sector. Domestic Oil and gas conventional reserves depleted naturally while production outcome from reservoir also depleted time to time. In the other hand, new reserve did not discover significantly to replace it all. Many people are investigating to looking for new alternative energy to answer the challenge. There are several option to solve energy fossil needed problem using Unconventional Hydrocarbon. There are four aspects to consider as a management reference in order that Unconventional Hydrocarbon business can work properly, divided to: 1. Legal aspect, 2. Environmental aspect, 3. Technical aspect and 4. Economy aspect. The economic aspect as the key to whether or not a project can be implemented or not in Oil and Gas business scheme, so do Unconventional Hydorcarbon business scheme. The support of regulation are needed to buttress Unconventional Hydorcarbon business grow up and make benefits contribute to Government.

Keywords: alternative energy, unconventional hydrocarbon, regulation support, management strategy

Procedia PDF Downloads 350
10689 Optimization of a Hybrid PV-Diesel Minigrid System: A Case Study of Vimtim-Mubi, Nigeria

Authors: Julius Agaka Yusufu, Tsutomu Dei, Hanif Ibrahim Awal

Abstract:

This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.

Keywords: Vimtim-Nigeria, Homer, renewable energy, PV-diesel hybrid system

Procedia PDF Downloads 86
10688 A Feasibility Study on Producing Bio-Coal from Orange Peel Residue by Using Torrefaction

Authors: Huashan Tai, Chien-Hui Lung

Abstract:

Nowadays people use massive fossil fuels which not only cause environmental impacts and global climate change, but also cause the depletion of non-renewable energy such as coal and oil. Bioenergy is currently the most widely used renewable energy, and agricultural waste is one of the main raw materials for bioenergy. In this study, we use orange peel residue, which is easier to collect from agricultural waste to produce bio-coal by torrefaction. The orange peel residue (with 25 to 30% moisture) was treated by torrefaction, and the experiments were conducted with initial temperature at room temperature (approximately at 25° C), with heating rates of 10, 30, and 50°C / min, with terminal temperatures at 150, 200, 250, 300, 350℃, and with residence time of 10, 20, and 30 minutes. The results revealed that the heating value, ash content and energy densification ratio of the solid products after torrefaction are in direct proportion to terminal temperatures and residence time, and are inversely proportional to heating rates. The moisture content, solid mass yield, energy yield, and volumetric energy density of the solid products after torrefaction are inversely proportional to terminal temperatures and residence time, and are in direct proportion to heating rates. In conclusion, we found that the heating values of the solid products were 1.3 times higher than those of the raw orange peels before torrefaction, and the volumetric energy densities were increased by 1.45 times under operating parameters with terminal temperature at 250°C, residence time of 10 minutes, and heating rate of 10°C / min of torrefaction. The results indicated that the residue of orange peel treated by torrefaction improved its energy density and fuel properties, and became more suitable for bio-fuel applications.

Keywords: biomass energy, orange, torrefaction

Procedia PDF Downloads 291
10687 Impact of PV Distributed Generation on Loop Distribution Network at Saudi Electricity Company Substation in Riyadh City

Authors: Mohammed Alruwaili‬

Abstract:

Nowadays, renewable energy resources are playing an important role in replacing traditional energy resources such as fossil fuels by integrating solar energy with conventional energy. Concerns about the environment led to an intensive search for a renewable energy source. The Rapid growth of distributed energy resources will have prompted increasing interest in the integrated distributing network in the Kingdom of Saudi Arabia next few years, especially after the adoption of new laws and regulations in this regard. Photovoltaic energy is one of the promising renewable energy sources that has grown rapidly worldwide in the past few years and can be used to produce electrical energy through the photovoltaic process. The main objective of the research is to study the impact of PV in distribution networks based on real data and details. In this research, site survey and computer simulation will be dealt with using the well-known computer program software ETAB to simulate the input of electrical distribution lines with other variable inputs such as the levels of solar radiation and the field study that represent the prevailing conditions and conditions in Diriah, Riyadh region, Saudi Arabia. In addition, the impact of adding distributed generation units (DGs) to the distribution network, including solar photovoltaic (PV), will be studied and assessed for the impact of adding different power capacities. The result has been achieved with less power loss in the loop distribution network from the current condition by more than 69% increase in network power loss. However, the studied network contains 78 buses. It is hoped from this research that the efficiency, performance, quality and reliability by having an enhancement in power loss and voltage profile of the distribution networks in Riyadh City. Simulation results prove that the applied method can illustrate the positive impact of PV in loop distribution generation.

Keywords: renewable energy, smart grid, efficiency, distribution network

Procedia PDF Downloads 140
10686 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously

Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen

Abstract:

Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.

Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO₂ cycle, transcritical CO₂ cycle

Procedia PDF Downloads 260
10685 Prediction of Seismic Damage Using Scalar Intensity Measures Based on Integration of Spectral Values

Authors: Konstantinos G. Kostinakis, Asimina M. Athanatopoulou

Abstract:

A key issue in seismic risk analysis within the context of Performance-Based Earthquake Engineering is the evaluation of the expected seismic damage of structures under a specific earthquake ground motion. The assessment of the seismic performance strongly depends on the choice of the seismic Intensity Measure (IM), which quantifies the characteristics of a ground motion that are important to the nonlinear structural response. Several conventional IMs of ground motion have been used to estimate their damage potential to structures. Yet, none of them has been proved to be able to predict adequately the seismic damage. Therefore, alternative, scalar intensity measures, which take into account not only ground motion characteristics but also structural information have been proposed. Some of these IMs are based on integration of spectral values over a range of periods, in an attempt to account for the information that the shape of the acceleration, velocity or displacement spectrum provides. The adequacy of a number of these IMs in predicting the structural damage of 3D R/C buildings is investigated in the present paper. The investigated IMs, some of which are structure specific and some are nonstructure-specific, are defined via integration of spectral values. To achieve this purpose three symmetric in plan R/C buildings are studied. The buildings are subjected to 59 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along the structural axes. The response is determined by nonlinear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures are correlated with seven scalar ground motion IMs. The comparative assessment of the results revealed that the structure-specific IMs present higher correlation with the seismic damage of the three buildings. However, the adequacy of the IMs for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.

Keywords: damage measures, bidirectional excitation, spectral based IMs, R/C buildings

Procedia PDF Downloads 328
10684 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete

Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen

Abstract:

The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.

Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete

Procedia PDF Downloads 295
10683 Experimental Verification of On-Board Power Generation System for Vehicle Application

Authors: Manish Kumar, Krupa Shah

Abstract:

The usage of renewable energy sources is increased day by day to overcome the dependency on fossil fuels. The wind energy is considered as a prominent source of renewable energy. This paper presents an approach for utilizing wind energy obtained from moving the vehicle for cell-phone charging. The selection of wind turbine, blades, generator, etc. is done to have the most efficient system. The calculation procedure for power generated and drag force is shown to know the effectiveness of the proposal. The location of the turbine is selected such that the system remains symmetric, stable and has the maximum induced wind. The calculation of the generated power at different velocity is presented. The charging is achieved for the speed 30 km/h and the system works well till 60 km/h. The model proposed seems very useful for the people traveling long distances in the absence of mobile electricity. The model is very economical and easy to fabricate. It has very less weight and area that makes it portable and comfortable to carry along. The practical results are shown by implementing the portable wind turbine system on two-wheeler.

Keywords: cell-phone charging, on-board power generation, wind energy, vehicle

Procedia PDF Downloads 295
10682 Rural Water Management Strategies and Irrigation Techniques for Sustainability. Nigeria Case Study; Kwara State

Authors: Faith Eweluegim Enahoro-Ofagbe

Abstract:

Water is essential for sustaining life. As a limited resource, effective water management is vital. Water scarcity has become more common due to the effects of climate change, land degradation, deforestation, and population growth, especially in rural communities, which are more susceptible to water-related issues such as water shortage, water-borne disease, et c., due to the unsuccessful implementation of water policies and projects in Nigeria. Since rural communities generate the majority of agricultural products, they significantly impact on water management for sustainability. The development of methods to advance this goal for residential and agricultural usage in the present and the future is a challenge for rural residents. This study evaluated rural water supply systems and irrigation management techniques to conserve water in Kwara State, North-Central Nigeria. Suggesting some measures to conserve water resources for sustainability, off-season farming, and socioeconomic security that will remedy water degradation, unemployment which is one of the causes of insecurity in the country, by considering the use of fabricated or locally made irrigation equipment, which are affordable by rural farmers, among other recommendations. Questionnaires were distributed to respondents in the study area for quantitative evaluation of irrigation methods practices. For physicochemical investigation, samples were also gathered from their available water sources. According to the study's findings, 30 percent of farmers adopted intelligent irrigation management techniques to conserve water resources, saving 45% of the water previously used for irrigation. 70 % of farmers practice seasonal farming. Irrigation water is drawn from river channels, streams, and unlined and unprotected wells. 60% of these rural residents rely on private boreholes for their water needs, while 40% rely on government-supplied rural water. Therefore, the government must develop additional water projects, raise awareness, and offer irrigation techniques that are simple to adapt for water management, increasing socio-economic productivity, security, and water sustainability.

Keywords: water resource management, sustainability, irrigation, rural water management, irrigation management technique

Procedia PDF Downloads 111
10681 Energy-Efficient Contact Selection Method for CARD in Wireless Ad-Hoc Networks

Authors: Mehdi Assefi, Keihan Hataminezhad

Abstract:

One of the efficient architectures for exploring the resources in wireless ad-hoc networks is contact-based architecture. In this architecture, each node assigns a unique zone for itself and each node keeps all information from inside the zone, as well as some from outside the zone, which is called contact. Reducing the overlap between different zones of a node and its contacts increases its performance, therefore Edge Method (EM) is designed for this purpose. Contacts selected by EM do not have any overlap with their sources, but for choosing the contact a vast amount of information must be transmitted. In this article, we will offer a new protocol for contact selection, which is called PEM. The objective would be reducing the volume of transmitted information, using Non-Uniform Dissemination Probabilistic Protocols. Consumed energy for contact selection is a function of the size of transmitted information between nodes. Therefore, by reducing the content of contact selection message using the PEM will decrease the consumed energy. For evaluation of the PEM we applied the simulation method. Results indicated that PEM consumes less energy compared to EM, and by increasing the number of nodes (level of nodes), performance of PEM will improve in comparison with EM.

Keywords: wireless ad-hoc networks, contact selection, method for CARD, energy-efficient

Procedia PDF Downloads 290
10680 Music Aptitude and School Readiness in Indonesian Children

Authors: Diella Gracia Martauli

Abstract:

This study investigated the relationship between music aptitude and school readiness in Indonesian children. Music aptitude is described as children’s music potential, whereas school readiness is defined as a condition in which a child is deemed ready to enter the formal education system. This study presents a hypothesis that music aptitude is correlated with school readiness. This is a correlational research study of 17 children aged 5-6 years old (M = 6.10, SD = 0.33) who were enrolled in a kindergarten school in Jakarta, Indonesia. Music aptitude scores were obtained from Primary Measures of Music Audiation, whereas School readiness scores were obtained from Bracken School Readiness Assessment Third Edition. The analysis of the data was performed using Pearson Correlation. The result found no correlation between music aptitude and school readiness (r = 0.196, p = 0.452). Discussions regarding the results, perspective from the measures and cultures are presented. Further study is recommended to establish links between music aptitude and school readiness.

Keywords: BSRA, music aptitude, PMMA, school readiness

Procedia PDF Downloads 144
10679 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach

Authors: Apu Kumar Saha, Mrinmoy Majumder

Abstract:

The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.

Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering

Procedia PDF Downloads 549
10678 Hybrid Energy System for the German Mining Industry: An Optimized Model

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly.

Keywords: diesel generation, German mining industry, hybrid energy system, hybrid optimization model for electric renewables, optimized model, renewable energy

Procedia PDF Downloads 344
10677 Topical Nonsteroidal Anti-Inflammatory Eye Drops and Oral Acetazolamide for Macular Edema after Uncomplicated Phacoemulsification: Outcome and Predictors of Non-Response

Authors: Wissam Aljundi, Loay Daas, Yaser Abu Dail, Barbara Käsmann-Kellner, Berthold Seitz, Alaa Din Abdin

Abstract:

Purpose: To investigate the effectiveness of nonsteroidal anti-inflammatory eye drops (NSAIDs) combined with oral acetazolamide for postoperative macular edema (PME) after uncomplicated phacoemulsification (PE) and to identify predictors of non-response. Methods: We analyzed data of uncomplicated PE and identified eyes with PME. First-line therapy included topical NSAIDs combined with oral acetazolamide. In case of non-response, triamcinolone was administered subtenonally. Outcome measures included best-corrected visual acuity (BCVA) and central macular thickness (CMT). Results: 94 eyes out of 9750 uncomplicated PE developed PME, of which 60 eyes were included. Follow-ups occurred 6.4±1.8, 12.5±3.7, and 18.6±6.0 weeks after diagnosis. BCVA and CMT improved significantly in all follow-ups. 40 eyes showed response to first-line therapy at first follow-up (G1). The remaining 20 eyes showed no response and required subtenon triamcinolone (G2), of which 11 eyes showed complete regression at the second follow-up and 4 eyes at the third follow-up. 5 eyes showed no response and required intravitreal injection. Multivariate linear regression model showed that diabetes mellitus (DM) and increased cumulative dissipated energy (CDE) are predictors of non-response. Conclusion: Topical NSAIDs with acetazolamide resulted in complete regression of PME in 67% of all cases. DM and increased CDE might be considered as predictors of nonresponse to this treatment.

Keywords: postoperative macular edema, intravitreal injection, cumulative energy, irvine gass syndrome, pseudophakie

Procedia PDF Downloads 117
10676 Investigating the Energy Harvesting Potential of a Pitch-Plunge Airfoil Subjected to Fluctuating Wind

Authors: Magu Raam Prasaad R., Venkatramani Jagadish

Abstract:

Recent studies in the literature have shown that randomly fluctuating wind flows can give rise to a distinct regime of pre-flutter oscillations called intermittency. Intermittency is characterized by the presence of sporadic bursts of high amplitude oscillations interspersed amidst low-amplitude aperiodic fluctuations. The focus of this study is on investigating the energy harvesting potential of these intermittent oscillations. Available literature has by and large devoted its attention on extracting energy from flutter oscillations. The possibility of harvesting energy from pre-flutter regimes have remained largely unexplored. However, extracting energy from violent flutter oscillations can be severely detrimental to the structural integrity of airfoil structures. Consequently, investigating the relatively stable pre-flutter responses for energy extraction applications is of practical importance. The present study is devoted towards addressing these concerns. A pitch-plunge airfoil with cubic hardening nonlinearity in the plunge and pitch degree of freedom is considered. The input flow fluctuations are modelled using a sinusoidal term with randomly perturbed frequencies. An electromagnetic coupling is provided to the pitch-plunge equations, such that, energy from the wind induced vibrations of the structural response are extracted. With the mean flow speed as the bifurcation parameter, a fourth order Runge-Kutta based time marching algorithm is used to solve the governing aeroelastic equations with electro-magnetic coupling. The harnessed energy from the intermittency regime is presented and the results are discussed in comparison to that obtained from the flutter regime. The insights from this study could be useful in health monitoring of aeroelastic structures.

Keywords: aeroelasticity, energy harvesting, intermittency, randomly fluctuating flows

Procedia PDF Downloads 186
10675 Synthetic Optimizing Control of Wind-Wave Hybrid Energy Conversion System

Authors: Lei Xue, Liye Zhao, Jundong Wang, Yu Xue

Abstract:

A hybrid energy conversion system composed of a floating offshore wind turbine (FOWT) and wave energy converters (WECs) may possibly reduce the levelized cost of energy, improving the platform dynamics and increasing the capacity to harvest energy. This paper investigates the aerodynamic performance and dynamic responses of the combined semi-submersible FOWT and point-absorber WECs in frequency and time domains using synthetic optimizing control under turbulent wind and irregular wave conditions. Individual pitch control is applied to the FOWT part, while spring–damping control is used on the WECs part, as well as the synergistic control effect of both are studied. The effect of the above control optimization is analyzed under several typical working conditions, such as below-rated wind speed, rated wind speed, and above-rated wind speed by OpenFAST and WEC-Sim software. Particularly, the wind-wave misalignment is also comparatively investigated, which has demonstrated the importance of applying proper integrated optimal control in this hybrid energy system. More specifically, the combination of individual pitch control and spring–damping control is able to mitigate the platform pitch motion and improve output power. However, the increase in blade root load needs to be considered which needs further investigations in the future.

Keywords: floating offshore wind turbine, wave energy converters, control optimization, individual pitch control, dynamic response

Procedia PDF Downloads 53
10674 Role of Environmental Focus in Legal Protection and Efficient Management of Wetlands in the Republic of Kazakhstan

Authors: K. R. Balabiyev, A. O. Kaipbayeva

Abstract:

The article discusses the legal framework of the government’s environmental function and analyzes the role of the national policy in protection of wetlands. The problem is of interest for it deals with the most important branch of economy–utilization of Kazakhstan’s natural resources, protection of health and environmental well being of the population. Development of a long-term environmental program addressing the protection of wetlands represents the final stage of the government’s environmental policy, and is a relatively new function for the public administration system. It appeared due to the environmental measures that require immediate decisions to be taken. It is an integral part of the effort in the field of management of state-owned natural resource, as well as of the measures aimed at efficient management of natural resources to avoid their early depletion or contamination.

Keywords: environmental focus, government’s environmental function, protection of wetlands, Kazakhstan

Procedia PDF Downloads 347
10673 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm

Authors: Frodouard Minani

Abstract:

Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.

Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks

Procedia PDF Downloads 144
10672 Energy-Level Structure of a Confined Electron-Positron Pair in Nanostructure

Authors: Tokuei Sako, Paul-Antoine Hervieux

Abstract:

The energy-level structure of a pair of electron and positron confined in a quasi-one-dimensional nano-scale potential well has been investigated focusing on its trend in the small limit of confinement strength ω, namely, the Wigner molecular regime. An anisotropic Gaussian-type basis functions supplemented by high angular momentum functions as large as l = 19 has been used to obtain reliable full configuration interaction (FCI) wave functions. The resultant energy spectrum shows a band structure characterized by ω for the large ω regime whereas for the small ω regime it shows an energy-level pattern dominated by excitation into the in-phase motion of the two particles. The observed trend has been rationalized on the basis of the nodal patterns of the FCI wave functions.

Keywords: confined systems, positron, wave function, Wigner molecule, quantum dots

Procedia PDF Downloads 387
10671 Determining Disparities in the Distribution of the Energy Efficiency Resource through the History of Michigan Policy

Authors: M. Benjamin Stacey

Abstract:

Energy efficiency has been increasingly recognized as a high value resource through state policies that require utility companies to implement efficiency programs. While policymakers have recognized the statewide economic, environmental, and health related value to residents who rely on this grid supplied resource, varying interests in energy efficiency between socioeconomic groups stands undifferentiated in most state legislation. Instead, the benefits are oftentimes assumed to be distributed equitably across these groups. Despite this fact, these policies are frequently sited by advocacy groups, regulatory bodies and utility companies for their ability to address the negative financial, health and other social impacts of energy poverty in low income communities. Yet, while most states like Michigan require programs that target low income consumers, oftentimes no requirements exist for the equitable investment and energy savings for low income consumers, nor does it stipulate minimal spending levels on low income programs. To further understand the impact of the absence of these factors in legislation, this study examines the distribution of program funds and energy efficiency savings to answer a fundamental energy justice concern; Are there disparities in the investment and benefits of energy efficiency programs between socioeconomic groups? This study compiles data covering the history of Michigan’s Energy Efficiency policy implementation from 2010-2016, analyzing the energy efficiency portfolios of Michigan’s two main energy providers. To make accurate comparisons between these two energy providers' investments and energy savings in low and non-low income programs, the socioeconomic variation for each utility coverage area was captured and accounted for using GIS and US Census data. Interestingly, this study found that both providers invested more equitably in natural gas efficiency programs, however, together these providers invested roughly three times less per household in low income electricity efficiency programs, which resulted in ten times less electricity savings per household. This study also compares variation in commission approved utility plans and actual spending and savings results, with varying patterns pointing to differing portfolio management strategies between companies. This study reveals that for the history of the implementation of Michigan’s Energy Efficiency Policy, that the 35% of Michigan’s population who qualify as low income have received substantially disproportionate funding and energy savings because of the policy. This study provides an overview of results from a social perspective, raises concerns about the impact on energy poverty and equity between consumer groups and is an applicable tool for law makers, regulatory agencies, utility portfolio managers, and advocacy groups concerned with addressing issues related to energy poverty.

Keywords: energy efficiency, energy justice, low income, state policy

Procedia PDF Downloads 187