Search results for: drain waste management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11346

Search results for: drain waste management

9936 The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE

Authors: Lakrim Abderrazak, Tahri Driss

Abstract:

This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).

Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.

Procedia PDF Downloads 563
9935 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.

Keywords: asphalt, basalt, pavement, recycled aggregate

Procedia PDF Downloads 152
9934 Positive Behaviour Management Strategies: An Action Research Conducted in a Kindergarten Classroom in Remote Regional Queensland

Authors: Suxiang Yu

Abstract:

As an early childhood teacher in a socially and economically highly disadvantaged suburb in regional QLD, the author endeavors to find out effective positive approaches to behavior management for a classroom that is overwhelmed with challenging behaviors. After evaluating the first-hand data collected from the action research, the author summarizes a few innovative, positive behavior management strategies. The research also implies that behavior management opportunities are actually great social and emotional teachable moments, and by tapping into those teachable moments effectively, the teacher and children will have a closer relationship.

Keywords: action research, behavior management, classroom strategies, social and emotional teaching

Procedia PDF Downloads 150
9933 Evaluation of SDS (Software Defined Storage) Controller (CorpHD) for Various Storage Demands

Authors: Shreya Bokare, Sanjay Pawar, Shika Nema

Abstract:

Growth in cloud applications is generating the tremendous amount of data, building load on traditional storage management systems. Software Defined Storage (SDS) is a new storage management concept becoming popular to handle this large amount of data. CoprHD is one of the open source SDS controller, available for experimentation and development in the storage industry. In this paper, the storage management techniques provided by CoprHD to manage heterogeneous storage platforms are experimented and analyzed. Various storage management parameters such as time to provision, storage capacity measurement, and heterogeneity are experimentally evaluated along with the theoretical expression to prove the completeness of CoprHD controller for storage management.

Keywords: software defined storage, SDS, CoprHD, open source, SMI-S simulator, clarion, Symmetrix

Procedia PDF Downloads 295
9932 Perceived Power and Conflict Management in Spousal Relationships

Authors: Dana Weimann-Saks, Inbal Peleg-Koriat

Abstract:

The perception of relative power within a couple relies on the resources (emotional-social, materialistic) each partner perceives to have. The present study examines a model in which the perceived power of the couple predicts the spouses’ conflict management. In addition, we examined whether this relationship is mediated by the perceived quality of the relationship. It was found that the perception of social-emotional power predicts cooperative conflict management styles of the couple. It was also found that this correlation is mediated by the perceived quality of the relationship. Contrary to the hypothesis, perception of social-emotional power did not predict the use of non-cooperative conflict management styles.

Keywords: spouses’ conflict management, conflict management, perceived quality of the relationship, social-emotional power

Procedia PDF Downloads 316
9931 Internet of Things Applications on Supply Chain Management

Authors: Beatriz Cortés, Andrés Boza, David Pérez, Llanos Cuenca

Abstract:

The Internet of Things (IoT) field is been applied in industries with different purposes. Sensing Enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the internet. These fields have come into focus recently on the enterprises and there is some evidence of the use and implications in supply chain management while finding it as an interesting aspect to work on. This paper presents a revision and proposals of IoT applications in supply chain management.

Keywords: industrial, internet of things, production systems, sensing enterprises, sensor, supply chain management

Procedia PDF Downloads 399
9930 Project Stakeholders' Perceptions of Sustainability: A Case Example From the Turkish Construction Industry

Authors: F. Heyecan Giritli, Gizem Akgül

Abstract:

Because of the raising population of world; the need for houses, buildings and infrastructures are increasing rapidly. Energy and water consumption, waste production continues to increase. If this situation of resources continues, there will be a significant loss for next generations. Therefore, there are a lot of researches and solutions developed in the world. Also sustainability criteria are collected together by some countries to serve construction industry with certification systems. Sustainable building production process’s scope requires different path from traditional building production process. Moreover, the key objective of sustainable buildings is that the process includes whole life cycle duration. The process approaches from the decision of the project to the end of it; so the project team is needed from the beginning of the integrated project delivery model. Further more, by defining project team at the beginning of the project provides communication among the team members and defined problem solving and decision making methods. In this research includes the certification systems among the world to comprehend the head lines and assessment criteria. Therefore, it is understand that usually all green building criteria have the same contents. The aim of this research is to assess the sustainable project stakeholder’ perceptions in Turkish construction industry from the point of occupation, job title and years of experience. Therefore, a survey is made to assess the perceptions of each attendant. In Turkey, sustainability criteria are not clearly defined; on the other hand some regulations like waste management, energy efficiency are made by legal agencies. LEED certification system is the most popular system in Turkey that has attended and certificated. From the LEED official data, it’s understood that 308 project registered in Turkey. Therefore, LEED sustainability criteria are used in the survey. Head lines of LEED certification criteria; sustainable sites, water efficiency, energy and atmosphere, material and resources, indoor environmental quality, innovation and regional priority are indicated to assess the perceptions of survey participants. Moreover, only surveying of criteria are not enough; so the equipment, methods, risks and benefits also considered.

Keywords: LEED, sustainability, perceptions, stakeholders, construction, Turkey, risk, benefit

Procedia PDF Downloads 287
9929 Practice of Supply Chain Management in Local SMEs

Authors: Oualid Kherbach, Marian Liviu Mocan, Amine Ghoumrassi, Cristian Dumitrache

Abstract:

The Globalization system and the development of economy, e-business, and introduction of new technologies formation create new challenges to all organizations particularly for small and medium enterprises (SMEs). Many studies on supply chain management (SCM) focus on large companies with universal operations employing high-stage information technology. These make a gap in the knowing of how SMEs use and practice supply chain management. In this screenplay, successful practices of supply chain management (SCM) can give SMEs an edge over their competitors. However, SMEs in Romania and Balkan countries face problems in SCM implementation and practices due to lack of resources and direction. The objectives of this research highlight the supply chain management practices of the small and medium enterprise strip in Romania and understand how SMEs manage and use SCM. This study Checks the potential existence of systematic differences between small businesses and medium-sized businesses with regard to supply chain management practices and the application of supply management has contributed to the improvement performance and increase the profitability of companies such as increasing the market share and improving the level of clients.

Keywords: globalization, small and medium enterprises, supply chain management, practices

Procedia PDF Downloads 351
9928 Contemplating Preference Ratings of Corporate Social Responsibility Practices for Supply Chain Performance System Implementation

Authors: Mohit Tyagi, Pradeep Kumar

Abstract:

The objective of this research work is to identify and analyze the significant corporate social responsibility (CSR) practices with an aim to improve the supply chain performance of automobile industry located at National Capital Region (NCR) of India. To achieve the objective, 6 CSR practices have been considered and analyzed using expert’s preference rating (EPR) approach. The considered CSR practices are namely, Top management and employee awareness about CSR (P1), Employee involvement in social and environmental problems (P2), Protection of human rights (P3), Waste reduction, energy saving and water conservation (P4), Proper visibility of CSR guidelines (P5) and Broad perception towards CSR initiatives (P6). The outcomes of this research may help mangers in decision making processes and framing polices for SCP implementation under CSR context.

Keywords: supply chain performance, corporate social responsibility, CSR practices, expert’s preference rating approach

Procedia PDF Downloads 318
9927 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum

Authors: Krasimira Georgieva, Yordan Denev

Abstract:

Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.

Keywords: urea formaldehyde resins, gas-filled thermostes, phosphogypsum, mechanical properties

Procedia PDF Downloads 93
9926 Al2O3-Dielectric AlGaN/GaN Enhancement-Mode MOS-HEMTs by Using Ozone Water Oxidization Technique

Authors: Ching-Sung Lee, Wei-Chou Hsu, Han-Yin Liu, Hung-Hsi Huang, Si-Fu Chen, Yun-Jung Yang, Bo-Chun Chiang, Yu-Chuang Chen, Shen-Tin Yang

Abstract:

AlGaN/GaN high electron mobility transistors (HEMTs) have been intensively studied due to their intrinsic advantages of high breakdown electric field, high electron saturation velocity, and excellent chemical stability. They are also suitable for ultra-violet (UV) photodetection due to the corresponding wavelengths of GaN bandgap. To improve the optical responsivity by decreasing the dark current due to gate leakage problems and limited Schottky barrier heights in GaN-based HEMT devices, various metal-oxide-semiconductor HEMTs (MOS-HEMTs) have been devised by using atomic layer deposition (ALD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), liquid phase deposition (LPD), and RF sputtering. The gate dielectrics include MgO, HfO2, Al2O3, La2O3, and TiO2. In order to provide complementary circuit operation, enhancement-mode (E-mode) devices have been lately studied using techniques of fluorine treatment, p-type capper, piezoneutralization layer, and MOS-gate structure. This work reports an Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMT design by using a cost-effective ozone water oxidization technique. The present ozone oxidization method advantages of low cost processing facility, processing simplicity, compatibility to device fabrication, and room-temperature operation under atmospheric pressure. It can further reduce the gate-to-channel distance and improve the transocnductance (gm) gain for a specific oxide thickness, since the formation of the Al2O3 will consume part of the AlGaN barrier at the same time. The epitaxial structure of the studied devices was grown by using the MOCVD technique. On a Si substrate, the layer structures include a 3.9 m C-doped GaN buffer, a 300 nm GaN channel layer, and a 5 nm Al0.25Ga0.75N barrier layer. Mesa etching was performed to provide electrical isolation by using an inductively coupled-plasma reactive ion etcher (ICP-RIE). Ti/Al/Au were thermally evaporated and annealed to form the source and drain ohmic contacts. The device was immersed into the H2O2 solution pumped with ozone gas generated by using an OW-K2 ozone generator. Ni/Au were deposited as the gate electrode to complete device fabrication of MOS-HEMT. The formed Al2O3 oxide thickness 7 nm and the remained AlGaN barrier thickness is 2 nm. A reference HEMT device has also been fabricated in comparison on the same epitaxial structure. The gate dimensions are 1.2 × 100 µm 2 with a source-to-drain spacing of 5 μm for both devices. The dielectric constant (k) of Al2O3 was characterized to be 9.2 by using C-V measurement. Reduced interface state density after oxidization has been verified by the low-frequency noise spectra, Hooge coefficients, and pulse I-V measurement. Improved device characteristics at temperatures of 300 K-450 K have been achieved for the present MOS-HEMT design. Consequently, Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMTs by using the ozone water oxidization method are reported. In comparison with a conventional Schottky-gate HEMT, the MOS-HEMT design has demonstrated excellent enhancements of 138% (176%) in gm, max, 118% (139%) in IDS, max, 53% (62%) in BVGD, 3 (2)-order reduction in IG leakage at VGD = -60 V at 300 (450) K. This work is promising for millimeter-wave integrated circuit (MMIC) and three-terminal active UV photodetector applications.

Keywords: MOS-HEMT, enhancement mode, AlGaN/GaN, passivation, ozone water oxidation, gate leakage

Procedia PDF Downloads 252
9925 A Generalised Propensity Score Analysis to Investigate the Influence of Agricultural Research Systems on Greenhouse Gas Emissions

Authors: Spada Alessia, Fiore Mariantonietta, Lamonaca Emilia, Contò Francesco

Abstract:

Bioeconomy can give the chance to face new global challenges and can move ahead the transition from a waste economy to an economy based on renewable resources and sustainable consumption. Air pollution is a grave issue in green challenges, mainly caused by anthropogenic factors. The agriculture sector is a great contributor to global greenhouse gases (GHGs) emissions due to lacking efficient management of the resources involved and research policies. In particular, livestock sector contributes to emissions of GHGs, deforestation, and nutrient imbalances. More effective agricultural research systems and technologies are crucial in order to improve farm productivity but also to reduce the GHGs emissions. Using data from FAOSTAT statistics and concern the EU countries; the aim of this research is to evaluate the impact of ASTI R&D (Agricultural Science and Technology Indicators) on GHGs emissions for countries EU in 2015 by generalized propensity score procedures, estimating a dose-response function, also considering a set of covariates. Expected results show the existence of the influence of ASTI R&D on GHGs across EU countries. Implications are crucial: reducing GHGs emissions by means of R&D based policies and correlatively reaching eco-friendly management of required resources by means of green available practices could have a crucial role for fair intra-generational implications.

Keywords: agricultural research systems, dose-response function, generalized propensity score, GHG emissions

Procedia PDF Downloads 265
9924 Top Management Support as an Enabling Factor for Academic Innovation through Knowledge Sharing

Authors: Sawsan J. Al-husseini, Talib A. Dosa

Abstract:

Educational institutions are today facing increasing pressures due to economic, political and social upheaval. This is only exacerbated by the nature of education as an intangible good which relies upon the intellectual assets of the organisation, its staff. Top management support has been acknowledged as having a positive general influence on knowledge management and creativity. However, there is a lack of models linking top management support, knowledge sharing, and innovation within higher education institutions, in general within developing countries, and particularly in Iraq. This research sought to investigate the impact of top management support on innovation through the mediating role of knowledge sharing in Iraqi private HEIs. A quantitative approach was taken and 262 valid responses were collected to test the causal relationships between top management support, knowledge sharing, and innovation. Employing structural equation modelling with AMOS v.25, the research demonstrated that knowledge sharing plays a pivotal role in the relationship between top management support and innovation. The research has produced some guidelines for researchers as well as leaders, and provided evidence to support the use of knowledge sharing to increase innovation within the higher education environment in developing countries, particularly Iraq.

Keywords: top management support, knowledge sharing, innovation, structural equation modelling

Procedia PDF Downloads 317
9923 Knowledge Management Challenges within Traditional Procurement System

Authors: M. Takhtravanchi, C. Pathirage

Abstract:

In the construction industry, project members are conveyor of project knowledge which is, often, not managed properly to be used in future projects. As construction projects are temporary and unique, project members are willing to be recruited once a project is completed. Therefore, poor management of knowledge across construction projects will lead to a considerable amount of knowledge loss; the ignoring of which would be detrimental to project performance. This issue is more prominent in projects undertaken through the traditional procurement system, as this system does not incentives project members for integration. Thus, disputes exist between the design and construction phases based on the poor management of knowledge between those two phases. This paper aims to highlight the challenges of the knowledge management that exists within the traditional procurement system. Expert interviews were conducted and challenges were identified and analysed by the Interpretive Structural Modelling (ISM) approach in order to summarise the relationships among them. Two identified key challenges are the Culture of an Organisation and Knowledge Management Policies. A knowledge of the challenges and their relationships will help project manager and stakeholders to have a better understanding of the importance of knowledge management.

Keywords: challenges, construction industry, knowledge management, traditional procurement system

Procedia PDF Downloads 416
9922 Low Carbon Tourism Management: Strategies for Climate-Friendly Tourism of Koh Mak, Thailand

Authors: Panwad Wongthong, Thanan Apivantanaporn, Sutthiwan Amattayakul

Abstract:

Nature-based tourism is one of the fastest growing industries that can bring in economic benefits, improve quality of life and promote conservation of biodiversity and habitats. As tourism develops, substantial socio-economic and environmental costs become more explicit. Particularly in island destinations, the dynamic system and geographical limitations makes the intensity of tourism development and severity of the negative environmental impacts greater. The current contribution of the tourism sector to global climate change is established at approximately 5% of global anthropogenic CO2 emissions. In all scenarios, tourism is anticipated to grow substantially and to account for an increasingly large share of global greenhouse gas emissions. This has prompted an urgent call for more sustainable alternatives. This study selected a small island of Koh Mak in Thailand as a case study because of its reputation of being laid back, family oriented and rich in biodiversity. Importantly, it is a test platform for low carbon tourism development project supported by the Designated Areas for Sustainable Tourism Administration (DASTA) in collaboration with the Institute for Small and Medium Enterprises Development (ISMED). The study explores strategies for low carbon tourism management and assesses challenges and opportunities for Koh Mak to become a low carbon tourism destination. The goal is to identify suitable management approaches applicable for Koh Mak which may then be adapted to other small islands in Thailand and the region. Interventions/initiatives to increase energy efficiency in hotels and resorts; cut carbon emissions; reduce impacts on the environment; and promote conservation will be analyzed. Ways toward long-term sustainability of climate-friendly tourism will be recommended. Recognizing the importance of multi-stakeholder involvement in the tourism sector, findings from this study can reward Koh Mak tourism industry with a triple-win: cost savings and compliance with higher standards/markets; less waste, air emissions and effluents; and better capabilities of change, motivation of business owners, staff, tourists as well as residents. The consideration of climate change issues in the planning and implementation of tourism development is of great significance to protect the tourism sector from negative impacts.

Keywords: climate change, CO2 emissions, low carbon tourism, sustainable tourism management

Procedia PDF Downloads 268
9921 Sustainable Technologies for Decommissioning of Nuclear Facilities

Authors: Ahmed Stifi, Sascha Gentes

Abstract:

The German nuclear industry, while implementing the German policy, believes that the journey towards the green-field, namely phasing out of nuclear energy, should be achieved through green techniques. The most important techniques required for the wide range of decommissioning activities are decontamination techniques, cutting techniques, radioactivity measuring techniques, remote control techniques, techniques for worker and environmental protection and techniques for treating, preconditioning and conditioning nuclear waste. Many decontamination techniques are used for removing contamination from metal, concrete or other surfaces like the scales inside pipes. As the pipeline system is one of the important components of nuclear power plants, the process of decontamination in tubing is of more significance. The development of energy sectors like oil sector, gas sector and nuclear sector, since the middle of 20th century, increased the pipeline industry and the research in the decontamination of tubing in each sector is found to serve each other. The extraction of natural products and material through the pipeline can result in scale formation. These scales can be radioactively contaminated through an accumulation process especially in the petrochemical industry when oil and gas are extracted from the underground reservoir. The radioactivity measured in these scales can be significantly high and pose a great threat to people and the environment. At present, the decontamination process involves using high pressure water jets with or without abrasive material and this technology produces a high amount of secondary waste. In order to overcome it, the research team within Karlsruhe Institute of Technology developed a new sustainable method to carry out the decontamination of tubing without producing any secondary waste. This method is based on vibration technique which removes scales and also does not require any auxiliary materials. The outcome of the research project proves that the vibration technique used for decontamination of tubing is environmental friendly in other words a sustainable technique.

Keywords: sustainable technologies, decontamination, pipeline, nuclear industry

Procedia PDF Downloads 290
9920 Optimizing Cellulase Production from Municipal Solid Wastes (MSW) Following a Solid State Fermentation (SSF) by Trichoderma reesei and Aspergillus niger

Authors: Jwan J. Abdullah, Greetham Darren, Gregory A, Tucker, Chenyu Du

Abstract:

Solid-state fermentation (SSF) is an alternative to liquid fermentations for the production of commercially important products such as antibiotics, single cell proteins, enzymes, organic acids, or biofuels from lignocellulosic material. This paper describes the optimisation of SSF on municipal solid waste (MSW) for the production of cellulase enzyme. Production of cellulase enzymes was optimised by Trichoderma reesei or Aspergillus niger for temperature, moisture content, inoculation, and period of incubation. Also, presence of minerals, and alternative carbon and nitrogen sources. Optimisation revealed that production of cellulolytic enzymes was optimal when using Trichoderma spp at 30°C with an incubation period of 168 hours with a 60% moisture content. Crude enzymes produced from MSW, by Trichoderma were evaluated for the saccharification of MSW and compared with activity of a commercially available enzyme, results demonstrated that MSW can be used as inexpensive lignocellulosic material for the production of cellulase enzymes using Trichoderma reesei.

Keywords: SSF, enzyme hydrolysis, municipal solid waste (MSW), optimizing conditions, enzyme hydrolysis

Procedia PDF Downloads 537
9919 Using a Simulated Learning Environment to Teach Pre-Service Special Educators Behavior Management

Authors: Roberta Gentry

Abstract:

A mixed methods study that examined candidate’s perceptions of the use of computerized simulation as an effective tool to learn classroom management will be presented. The development, implementation, and assessment of the simulation and candidate data on the feasibility of the approach in comparison to other methods will be presented.

Keywords: behavior management, simulations, teacher preparation, teacher education

Procedia PDF Downloads 387
9918 Thermosonic Devulcanization of Waste Ground Rubber Tires by Quaternary Ammonium-Based Ternary Deep Eutectic Solvents and the Effect of α-Hydrogen

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid

Abstract:

Landfills, water contamination, and toxic gas emission are a few impacts faced by the environment due to the increasing number of αof waste rubber tires (WRT). In spite of such concerning issue, only minimal efforts are taken to reclaim or recycle these wastes as their products are generally not-profitable for companies. Unlike the typical reclamation process, devulcanization is a method to selectively cleave sulfidic bonds within vulcanizates to avoid polymeric scissions that compromise elastomer’s mechanical and tensile properties. The process also produces devulcanizates that are re-processable similar to virgin rubber. Often, a devulcanizing agent is needed. In the current study, novel and sustainable ammonium chloride-based ternary deep eutectic solvents (TDES), with a different number of α-hydrogens, were utilised to devulcanize ground rubber tire (GRT) as an effort to implement green chemistry to tackle such issue. 40-mesh GRT were soaked for 1 day with different TDESs and sonicated at 37-80 kHz for 60-120 mins and heated at 100-140oC for 30-90 mins. Devulcanizates were then filtered, dried, and evaluated based on the percentage of by means of Flory-Rehner calculation and swelling index. The result shows that an increasing number of α-Hs increases the degree of devulcanization, and the value achieved was around eighty-percent, thirty percent higher than the typical industrial-autoclave method. Resulting bondages of devulcanizates were also analysed by Fourier transform infrared spectrometer (FTIR), Horikx fitting, and thermogravimetric analyser (TGA). The earlier two confirms only sulfidic scissions were experienced by GRT through the treatment, while the latter proves the absence or negligibility of carbon-chains scission.

Keywords: ammonium, sustainable, deep eutectic solvent, α-hydrogen, waste rubber tire

Procedia PDF Downloads 109
9917 Evaluation of Capacity of Bed Planted with Macrophytes for Wastewater Treatment of Biskra City, Algeria

Authors: Mimeche Leila, Debabeche Mahmoud

Abstract:

It is question to study and to value the possibility of settling the process of purification by plants (constructed wetland) to treat the domestic waste water of Biskra, city in a semi-arid environment with grave problems of. According to the bibliography, the process of treatment by plants is considered as more advantageous than the classic techniques. It is the use of beds with macrophytes where the purification is made by the combined action of plants and micro-organisms in a filtering bed. The micro-organisms which are aerobic bacteria and\or anaerobic have for main function to degrade the polluting materials. Plants in the macrophytes beds have for function to serve as support in the development of bacteria and to favour also their development. In this study, we present a preliminary experimental analysis of the potentialities of treatment of some macrpohytes plants, implanted in basins filled of gravel. Analyses physico chemical and bacteriological of the waste water indicate a good elimination of the polluting materials, and put in evidence the purifier power of these plants, in association with bacteria. The obtained results seem to be interesting and encourage deepening the study for other types of plants in other conditions.

Keywords: constructed wetlands, macrophytes, sewage treatment, wastewater

Procedia PDF Downloads 385
9916 Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model

Authors: Mohamed Asaad Abdelrazek, Amir Taher El-Sheikh, M. Zayan, A.M. Elhady

Abstract:

The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.

Keywords: axiomatic design, quality function deployment, systems engineering management, system development lifecycle

Procedia PDF Downloads 343
9915 Information Technologies in Human Resources Management - Selected Examples

Authors: A. Karasek

Abstract:

Rapid growth of Information Technologies (IT) has had huge influence on enterprises, and it has contributed to its promotion and increasingly extensive use in enterprises. Information Technologies have to a large extent determined the processes taking place in a enterprise; what is more, IT development has brought the need to adopt a brand new approach to human resources management in an enterprise. The use of IT in Human Resource Management (HRM) is of high importance due to the growing role of information and information technologies. The aim of this paper is to evaluate the use of information technologies in human resources management in enterprises. These practices will be presented in the following areas: Recruitment and selection, development and training, employee assessment, motivation, talent management, personnel service. Results of conducted survey show diversity of solutions applied in particular areas of human resource management. In the future, further development in this area should be expected, as well as integration of individual HRM areas, growing mobile-enabled HR processes and their transfer into the cloud. Presented IT solutions applied in HRM are highly innovative, which is of great significance due to their possible implementation in other enterprises.

Keywords: e-HR, human resources management, HRM practices, HRMS, information technologies

Procedia PDF Downloads 331
9914 The Need for Innovation Management in the Context of Integrated Management Systems

Authors: Adela Mariana Vadastreanu, Adrian Bot, Andreea Maier, Dorin Maier

Abstract:

This paper approaches the need for innovation management in the context of an existing integrated management system implemented in an organization. The road to success for companies in today’s economic environment is more demanding than ever and the capacity of adapting to the rapid changes is compensatory in order to resist on the market. The managers struggle, daily, with increasingly complex problems, caused by fierce competition in the market but also from the rising demands of customers. Innovation seems to be the solution for these problems. During the last decade almost all companies have been certificated according to various management systems, like quality management system, environmental management system, health and safety management system and others; furthermore many companies have implemented an integrated management system, by integrating two or more management systems. The problem rising today is how to integrate innovation in this integrated management systems. The challenge of the problem is that the development of an innovation management system is in the early phase. In this paper we have studied the possibility of integrating some of the innovation request in an existing management system, we have identify the innovation performance request and we proposed some recommendations regarding innovation management and its implementation as a part of an integrated management system. This paper lies down the bases for developing an model of integration management systems that include innovation as a main part of it. Organizations are becoming more aware of the importance of Integrated Management Systems (IMS). Integrating two or more management systems into an integrated management system can have much advantages.This paper examines various models of management systems integration in accordance with professional references ISO 9001, ISO 18001 and OHSAS 18001, highlighting strengths and weaknesses, creating a basis for future development of integrated management systems, and their involvement in various other processes within the organization, such as innovation management. The more and more demanding economic context emphasizes the awareness of the importance of innovation for organizations. This paper highlights the importance of the innovation for an organization and also gives some practical solution in order to improve the overall success of the business through a better approach of innovation. Various standards have been developed in order to certificate organizations that they respect the requirements. Applying an integrated standards model is shown to be a more effective way then applying the standards independently. The problem that arises is that in order to adopt the integrated version of standards there have to be made some changes at the organizational level. Every change that needs to be done has an effect on its activity, and in this sense the paper tries to deal with the changes needed for adopting an integrated management system and if those changes have an influence over the performance. After the analysis of the results, we can conclude that in order to improve the performance a necessary step is the implementation of innovation in the existing integrated management system.

Keywords: innovation, integrated management systems, innovation management, quality

Procedia PDF Downloads 299
9913 Projectification: Using Project Management Methodology to Manage the Academic Program Review

Authors: Adam Marks, Munir Majdalawieh, Maytha Al Ali

Abstract:

While research is rich with what criteria could be included in the academic program review processes, there is rarely any mention of how this significant and complex process should be managed. This paper proposes using project management methodology in alignment with the program review criteria of the Dickeson’s Prioritizing Academic Programs model. Project management and academic program review share two distinct characteristics; one is their life cycle, and the second is the core knowledge areas they use. This aligned and structured approach offers academic administrators a step-by-step guide that can help them manage this process and effectively assess academic programs.

Keywords: project management, academic program, program review, education, higher education institution, strategic management

Procedia PDF Downloads 352
9912 The Impact of Mining Activities on the Surface Water Quality: A Case Study of the Kaap River in Barberton, Mpumalanga

Authors: M. F. Mamabolo

Abstract:

Mining activities are identified as the most significant source of heavy metal contamination in river basins, due to inadequate disposal of mining waste thus resulting in acid mine drainage. Waste materials generated from gold mining and processing have severe and widespread impacts on water resources. Therefore, a total of 30 water samples were collected from Fig Tree Creek, Kaapriver, Sheba mine stream & Sauid kaap river to investigate the impact of gold mines on the Kaap River system. Physicochemical parameters (pH, EC and TDS) were taken using a BANTE 900P portable water quality meter. The concentration of Fe, Cu, Co, and SO₄²⁻ in water samples were analysed using Inductively Coupled Plasma-Mass spectrophotometry (ICP-MS) at 0.01 mg/L. The results were compared to the regulatory guideline of the World Health Organization (WHO) and the South Africa National Standards (SANS). It was found that Fe, Cu and Co were below the guideline values while SO₄²⁻ detected in Sheba mine stream exceeded the 250 mg/L limit for both seasons, attributed by mine wastewater. SO₄²⁻ was higher in wet season due to high evaporation rates and greater interaction between rocks and water. The pH of all the streams was within the limit (≥5 to ≤9.7), however EC of the Sheba mine stream, Suid Kaap River & where the tributary connects with the Fig Tree Creek exceeded 1700 uS/m, due to dissolved material. The TDS of Sheba mine stream exceeded 1000 mg/L, attributed by high SO₄²⁻ concentration. While the tributary connecting to the Fig Tree Creek exceed the value due to pollution from household waste, runoff from agriculture etc. In conclusion, the water from all sampled streams were safe for consumption due to low concentrations of physicochemical parameters. However, elevated concentration of SO₄²⁻ should be monitored and managed to avoid water quality deterioration in the Kaap River system.

Keywords: Kaap river system, mines, heavy metals, sulphate

Procedia PDF Downloads 61
9911 The Purification of Waste Printing Developer with the Fixed Bed Adsorption Column

Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Kecić S. Vesna, Oros B. Ivana

Abstract:

The present study investigates the effectiveness of newly designed clayey pellets (fired clay pellets diameter sizes of 5 and 8 mm, and unfired clay pellets with the diameter size of 15 mm) as the beds in the column adsorption process. The adsorption experiments in the batch mode were performed before the column experiment with the purpose to determine the order of adsorbent package in the column which was to be designed in the investigation. The column experiment was performed by using a known mass of the clayey beds and the volume of the waste printing developer, which was purified. The column was filled in the following order: fired clay pellets of the diameter size of 5 mm, fired clay pellets of the diameter size of 8 mm, and unfired clay pellets of the diameter size of 15 mm. The selected order of the adsorbents showed a high removal efficiency for zinc (97.8%) and copper (81.5%) ions. These efficiencies were better than those in the case of the already existing mode adsorption. The obtained experimental data present a good basis for the selection of an appropriate column fill, but further testing is necessary in order to obtain more accurate results.

Keywords: clay materials, fix bed adsorption column, metal ions, printing developer

Procedia PDF Downloads 308
9910 Yield and Physiological Evaluation of Coffee (Coffea arabica L.) in Response to Biochar Applications

Authors: Alefsi D. Sanchez-Reinoso, Leonardo Lombardini, Hermann Restrepo

Abstract:

Colombian coffee is recognized worldwide for its mild flavor and aroma. Its cultivation generates a large amount of waste, such as fresh pulp, which leads to environmental, health, and economic problems. Obtaining biochar (BC) by pyrolysis of coffee pulp and its incorporation to the soil can be a complement to the crop mineral nutrition. The objective was to evaluate the effect of the application of BC obtained from coffee pulp on the physiology and agronomic performance of the Castillo variety coffee crop (Coffea arabica L.). The research was developed in field condition experiment, using a three-year-old commercial coffee crop, carried out in Tolima. Four doses of BC (0, 4, 8 and 16 t ha-1) and four levels of chemical fertilization (CF) (0%, 33%, 66% and 100% of the nutritional requirements) were evaluated. Three groups of variables were recorded during the experiment: i) physiological parameters such as Gas exchange, the maximum quantum yield of PSII (Fv/Fm), biomass, and water status were measured; ii) physical and chemical characteristics of the soil in a commercial coffee crop, and iii) physiochemical and sensorial parameters of roasted beans and coffee beverages. The results indicated that a positive effect was found in plants with 8 t ha-1 BC and fertilization levels of 66 and 100%. Also, a positive effect was observed in coffee trees treated with 8 t ha-1 BC and 100%. In addition, the application of 16 t ha-1 BC increased the soil pHand microbial respiration; reduced the apparent density and state of aggregation of the soil compared to 0 t ha-1 BC. Applications of 8 and 16 t ha-1 BC and 66%-100% chemical fertilization registered greater sensitivity to the aromatic compounds of roasted coffee beans in the electronic nose. Amendments of BC between 8 and 16 t ha-1 and CF between 66% and 100% increased the content of total soluble solids (TSS), reduced the pH, and increased the titratable acidity in beverages of roasted coffee beans. In conclusion, 8 t ha-1 BC of the coffee pulp can be an alternative to supplement the nutrition of coffee seedlings and trees. Applications between 8 and 16 t ha-1 BC support coffee soil management strategies and help the use of solid waste. BC as a complement to chemical fertilization showed a positive effect on the aromatic profile obtained for roasted coffee beans and cup quality attributes.

Keywords: crop yield, cup quality, mineral nutrition, pyrolysis, soil amendment

Procedia PDF Downloads 89
9909 Territories' Challenges and Opportunities to Promote Circular Economy in the Building Sector

Authors: R. Tirado, G. Habert, A. Mailhac, S. Laurenceau

Abstract:

The rapid development of cities implies significant material inflows and outflows. The construction sector is one of the main consumers of raw materials and producers of waste. The waste from the building sector, for its quantity and potential for recovery, constitutes significant deposits requiring major efforts, by combining different actors, to achieve the circular economy's objectives. It is necessary to understand and know the current construction actors' knowledge of stocks, urban metabolism, deposits, and recovery practices in this context. This article aims to explore the role of local governments in planning strategies by facilitating a circular economy. In particular, the principal opportunities and challenges of communities for applying the principles of the circular economy in the building sector will be identified. The approach used for the study was to conduct semi-structured interviews with those responsible for circular economy projects within local administrations of some communities in France. The results show territories' involvement in the inclusion and application of the principles of the circular economy in the building sector. The main challenges encountered are numerous, hence the importance of having identified and described them so that the different actors can work to meet them.

Keywords: building stock, circular economy, interview, local authorities

Procedia PDF Downloads 116
9908 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas

Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders

Abstract:

A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.

Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing

Procedia PDF Downloads 196
9907 Optimization of the Co-Precipitation of Industrial Waste Metals in a Continuous Reactor System

Authors: Thomas S. Abia II, Citlali Garcia-Saucedo

Abstract:

A continuous copper precipitation treatment (CCPT) system was conceived at Intel Chandler Site to serve as a first-of-kind (FOK) facility-scale waste copper (Cu), nickel (Ni), and manganese (Mn) co-precipitation facility. The process was designed to treat highly variable wastewater discharged from a substrate packaging research factory. The paper discusses metals co-precipitation induced by internal changes for manufacturing facilities that lack the capacity for hardware expansion due to real estate restrictions, aggressive schedules, or budgetary constraints. Herein, operating parameters such as pH and oxidation reduction potential (ORP) were examined to analyze the ability of the CCPT System to immobilize various waste metals. Additionally, influential factors such as influent concentrations and retention times were investigated to quantify the environmental variability against system performance. A total of 2,027 samples were analyzed and statistically evaluated to measure the performance of CCPT that was internally retrofitted for Mn abatement to meet environmental regulations. In order to enhance the consistency of the influent, a separate holding tank was cannibalized from another system to collect and slow-feed the segregated Mn wastewater from the factory into CCPT. As a result, the baseline influent Mn decreased from 17.2+18.7 mg1L-1 at pre-pilot to 5.15+8.11 mg1L-1 post-pilot (70.1% reduction). Likewise, the pre-trial and post-trial average influent Cu values to CCPT were 52.0+54.6 mg1L-1 and 33.9+12.7 mg1L-1, respectively (34.8% reduction). However, the raw Ni content of 0.97+0.39 mg1L-1 at pre-pilot increased to 1.06+0.17 mg1L-1 at post-pilot. The average Mn output declined from 10.9+11.7 mg1L-1 at pre-pilot to 0.44+1.33 mg1L-1 at post-pilot (96.0% reduction) as a result of the pH and ORP operating setpoint changes. In similar fashion, the output Cu quality improved from 1.60+5.38 mg1L-1 to 0.55+1.02 mg1L-1 (65.6% reduction) while the Ni output sustained a 50% enhancement during the pilot study (0.22+0.19 mg1L-1 reduced to 0.11+0.06 mg1L-1). pH and ORP were shown to be significantly instrumental to the precipitative versatility of the CCPT System.

Keywords: copper, co-precipitation, industrial wastewater treatment, manganese, optimization, pilot study

Procedia PDF Downloads 258