Search results for: alkali activated cement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1670

Search results for: alkali activated cement

260 Effect of Shape and Size of Concrete Specimen and Strength of Concrete Mixture in the Absence and Presence of Fiber

Authors: Sultan Husein Bayqra, Ali Mardani Aghabaglou, Zia Ahmad Faqiri, Hassane Amidou Ouedraogo

Abstract:

In this study, the effect of shape and size of the concrete specimen on the compressive and splitting tensile strength of the concrete mixtures in the absence and presence of steel fiber was investigated. For this aim, ten different concrete mixtures having w/c ratio of 0.3, 0.4, 0.5, 0.6 and 0.7 with and without fiber were prepared. In the mixtures containing steel fibers having aspect ratio (L/D) of 64 were used by 1% of the total mixture volume. In all concrete mixtures, CEM I 42,5R type Portland cement and crushed Lime-stone aggregates having different aggregate size fractions were used. The combined aggregate was obtained by mixing %40 0-5 mm, %30 5-12 mm and %30 12-22 mm aggregate size fraction. The slump values of concrete mixtures were kept constant as 17 ± 2 cm. To provide the desired slump value, a polycarboxylate ether-based high range water reducing admixture was used. In order to investigate the effect of size and shape of concrete specimen on strength properties 10 cm, 15 cm cubic specimens and 10×20 cm, 15×30 cm cylindrical specimens were prepared for each mixture. The specimens were cured under standard conditions until testing days. The 7- and 28-day compressive and splitting tensile strengths of mixtures were determined. The results obtained from the experimental study showed that the strength ratio between the cylinder and the cube specimens increased with the increase of the strength of the concrete. Regardless of the fiber utilization and specimen shape, strength values of concrete mixtures were increased by decreasing specimen size. However, the mentioned behaviour was not observed for the case that the mixtures having high W/C ratio and containing fiber. The compressive strength of cube specimens containing fiber was less affected by the size of the specimen compared to that of cube specimens containing no fibers.

Keywords: compressive strength, splitting tensile strength, fiber reinforced concrete, size effect, shape effect

Procedia PDF Downloads 162
259 Sports Preferente Intervention as a Predictor of Sustainable Participation at Risk Teenagers in Ibadan Metropolis, Ibadan Nigerian

Authors: Felix Olajide Ibikunle

Abstract:

Introductory Statement: Sustainable participation of teenagers in sport requires deliberate and concerted plan and managerial policy rooted in the “philosophy of catch them young”. At risk, teenagers need proper integration into societal aspiration: This direction will go a long way to streamline them into the security breach and attractive nuisance free lifestyles. Basic Methodology: The population consists of children within 13-19 years old. A proportionate sampling size technique of 60% was adopted to select seven zones out of 11 geo-political zones in the Ibadan metropolis. Qualitative information and interview were used to collect needed information. Majority of the teenagers were out of school, street hawkers, motor pack, touts, and unserious vocation apprentices. These groups have the potentials of security breaches in the metropolis and beyond. Five hundred and thirty-four (534) respondents were used for the study. They were drawn from Ojoo, Akingbile, and Moniya axis = 72, Agbowo, Ajibode, and Apete axis = 74; Akobo, Basorun, and Idi-ape axis 79; Wofun, Monatan, and Iyana-Church axis = 78; Molete, Oke-ado and Oke-Bola axis = 75; Beere, Odinjo, Elekuro axis = 77; Eleyele, Ologuneru, and Alesinloye axis = 79. Major Findings: Multiple regression was used to analyze the independent variables and percentage. The respondents average age was 15.6 years old, and with 100% male. The instrument(questionnaire) used yielded; sport preference (r = 0.72); intervention (r = 0.68) and the sustainable participation (r = 0.70).The relative contributions of sport preference on participation of at risk teenagers was (F-ratio = 1.067); Intervention contribution of sport on participation of at risk teenagers = produced (F-ratio of 12.095) was significant while sustainable participation of at risk teenager produced (F-ratio = 1.062) was significant. Closing Statement: The respondents’ sport preference stimulated their participation in sport. The intervention exposed at risk-teenagers to coaching, which activated their interest and participation in sport. While sustainable participation contributed positively to evolve at risk teenagers participation in their preferred sport.

Keywords: sport, preference, intervention, teenagers, sustainable, participation and risk teenagers

Procedia PDF Downloads 88
258 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials

Authors: I. Kerti, G. Sezen, S. Daglilar

Abstract:

This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.

Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide

Procedia PDF Downloads 330
257 Improvement of the Mechanical Behavior of an Environmental Concrete Based on Demolished

Authors: Larbi Belagraa

Abstract:

The universal need to conserve resources, protect the environment and use energy efficiently must necessarily be felt in the field of concrete technology. The recycling of construction and demolition waste as a source of aggregates for the production of concrete has attracted growing interest from the construction industry. In Algeria, the depletion of natural deposits of aggregates and the difficulties in setting up new quarries; makes it necessary to seek new sources of supply, to meet the need for aggregates for the major projects launched by the Algerian government in the last decades. In this context, this work is a part of the approach to provide answers to concerns about the lack of aggregates for concrete. It also aims to develop the inert fraction of demolition materials and mainly concrete construction demolition waste(C&D) as a source of aggregates for the manufacture of new hydraulic concretes based on recycled aggregates. This experimental study presents the results of physical and mechanical characterizations of natural and recycled aggregates, as well as their influence on the properties of fresh and hardened concrete. The characterization of the materials used has shown that the recycled aggregates have heterogeneity, a high water absorption capacity, and a medium quality hardness. However, the limits prescribed by the standards in force do not disqualify these materials of use for application as recycled aggregate concrete type (RAC). The results obtained from the present study show that acceptable mechanical, compressive, and flexural strengths of RACs are obtained using Superplasticizer SP 45 and 5% replacement of cement with silica fume based on recycled aggregates, compared to those of natural concretes. These mechanical performances demonstrate a characteristic resistance at 28 days in compression within the limits of 30 to 40 MPa without any particular suitable technology .to be adapted in the case.

Keywords: recycled aggregates, concrete(RAC), superplasticizer, silica fume, compressive strength

Procedia PDF Downloads 156
256 Assessment of Socio-Economic and Water Related Topics at Community Level in Yatta Town, Palestine

Authors: Nibal Al-Batsh, Issam A. Al-Khatib, Subha Ghannam

Abstract:

Yatta is a town in the Governorate of Hebron, located 9 km south of Hebron City in the West Bank. The town houses over 100,000 people, 49% of which are females; a population that doubles every 15 years. Yatta has been connected to a water network since 1974 serving nearly 85% of the households. The water network is old and inadequate to meet the needs of the population. The water supply made available to the area is also very limited, estimated to be around 20 l/c/d. Residents are thus forced to rely on water vendors which supply water with a lower quality compared to municipal water while being 400% more expensive. As a cheaper and more reliable alternative, rainwater harvesting is a common practice in the area, with the majority of the households owning at least one cistern. Rainwater harvesting is of great socioeconomic importance in areas where water sources are scarce or polluted. In this research, the quality of harvested rainwater used for drinking and domestic purposes in the Yatta area was assessed throughout a year. A total of 100 samples, were collected from (cisterns) with an average capacity of 69 m3, which are adjacent to cement-roof catchment areas with an average area of 145 m2. Samples were analyzed for a number of parameters including: pH, alkalinity, hardness, turbidity, Total Dissolved Solids (TDS), NO3, NH4, chloride and salinity. Biological and microbiological contents such as Total Coliforms (TCC) and Fecal Coliforms (FC) bacteria were also tested. Results showed that most of the rainwater samples were within WHO and EPA guidelines set for chemical parameters. The research also addressed the impact of different socioeconomic attributes on rainwater harvesting through questionnaire that was pre-tested before the actual statically sample is collected.

Keywords: rainwater, harvesting, water quality, socio-economic aspects

Procedia PDF Downloads 235
255 Electrochemistry Analysis of Oxygen Reduction with Microalgal on Microbial Fuel Cell

Authors: Azri Yamina Mounia, Zitouni Dalila, Aziza Majda, Tou Insaf, Sadi Meriem

Abstract:

To confront the fossil fuel crisis and the consequences of global warning, many efforts were devoted to develop alternative electricity generation and attracted numerous researchers, especially in the microbial fuel cell field, because it allows generating electric energy and degrading multiple organics compounds at the same time. However, one of the main constraints on power generation is the slow rate of oxygen reduction at the cathode electrode. This paper describes the potential of algal biomass (Chlorella vulgaris) as photosynthetic cathodes, eliminating the need for a mechanical air supply and the use of often expensive noble metal cathode catalysts, thus improving the sustainability and cost-effectiveness of the MFC system. During polarizations, MFC power density using algal biomass was 0.4mW/m², whereas the MFC with mechanic aeration showed a value of 0.2mW/m². Chlorella vulgaris was chosen due to its fastest growing. C. vulgaris grown in BG11 medium in sterilized Erlenmeyer flask. C. vulgaris was used as a bio‐cathode. Anaerobic activated sludge from the plant of Beni‐Messous WWTP(Algiers) was used in an anodic compartment. A dual‐chamber reactor MFC was used as a reactor. The reactor has been fabricated in the laboratory using plastic jars. The cylindrical and rectangular jars were used as the anode and cathode chambers, respectively. The volume of anode and cathode chambers was 0.8 and 2L, respectively. The two chambers were connected with a proton exchange membrane (PEM). The plain graphite plates (5 x 2cm) were used as electrodes for both anode and cathode. The cyclic voltammetry analysis of oxygen reduction revealed that the cathode potential was proportional to the amount of oxygen available in the cathode surface electrode. In the case of algal aeration, the peak reduction value of -2.18A/m² was two times higher than in mechanical aeration -1.85A/m². The electricity production reached 70 mA/m² and was stimulated immediately by the oxygen produced by algae up to the value of 20 mg/L.

Keywords: Chlorella vulgaris, cyclic voltammetry, microbial fuel cell, oxygen reduction

Procedia PDF Downloads 42
254 Sports Preference Intervention as a Predictor of Sustainable Participation at Risk Teenagers in Ibadan Metropolis, Ibadan Nigerian

Authors: Felix Olajide Ibikunle

Abstract:

Introductory Statement: Sustainable participation of teenagers in sports requires deliberate and concerted plans and managerial policy rooted in the “philosophy of catch them young.” At risk, teenagers need proper integration into societal aspiration: This direction will go a long way to streamline them into security breaches and attractive nuisance free lifestyles. Basic Methodology: The population consists of children between 13-19 years old. A proportionate sampling size technique of 60% was adopted to select seven zones out of 11 geo-political zones in the Ibadan metropolis. Qualitative information and interview were used to collect needed information. The majority of the teenagers were out of school, street hawkers, motor pack touts and unserious vocation apprentices. These groups have the potential for security breaches in the metropolis and beyond. Five hundred and thirty-four (534) respondents were used for the study. They were drawn from Ojoo, Akingbile and Moniya axis = 72; Agbowo, Ajibode and Apete axis = 74; Akobo, Basorun and Idi-ape axis 79; Wofun, Monatan and Iyana-Church axis = 78; Molete, Oke-ado and Oke-Bola axis = 75; Beere, Odinjo, Elekuro axis = 77; Eleyele, Ologuneru and Alesinloye axis = 79. Major Findings: Multiple regression was used to analyze the independent variables and percentages. The respondents' average age was 15.6 years old, and 100% were male. The instrument (questionnaire) used yielded; sport preference (r = 0.72), intervention (r = 0.68), and sustainable participation (r = 0.70). The relative contributions of sport preference on the participation of at risk teenagers was (F-ratio = 1.067); Intervention contribution of sport on the participation of at risk teenagers = produced (F-ratio of 12.095) was significant while, sustainable participation of at risk teenagers produced (F-ratio = 1.062) was significant. Closing Statement: The respondents’ sport preference stimulated their participation in sports. The intervention exposed at risk-teenagers to coaching, which activated their interest and participation in sports. At the same time, sustainable participation contributed positively to evolving at risk teenagers' participation in their preferred sport.

Keywords: sport, preference, intervention, teenagers, sustainable, participation and risk teenagers

Procedia PDF Downloads 51
253 Pioglitazone Ameliorates Methotrexate-Induced Renal Endothelial Dysfunction via Amending Detrimental Changes in Antioxidant Profile, Systemic Cytokines and Apoptotic Factors

Authors: Sahar M. El-Gowilly, Mai M. Helmy, Hanan M. El-Gowelli

Abstract:

Methotrexate (MTX) is widely used in treatment of cancers and autoimmune diseases. However, nephrotoxicity is one of the most important side effects of MTX. The peroxisome proliferator-activated receptor gamma agonist, pioglitazone (PIO), is known to exert anti-inflammatory and reno-protective effects in various kidney injuries. The purpose of this study was to investigate the potential involvement of endothelial damage in MTX-induced renal injury and to elaborate the possible protective effect of PIO against MTX-induced nephropathy. Compared with saline-treated rats, treatment with MTX (7 mg/kg for 3 day) caused significant elevations in serum levels of urea and creatinine, increased renal nitrate/nitrite level and impaired renovascular responsiveness of isolated perfused kidney to endothelium-dependent vasodilations induced by acetylcholine (0.01-2.43 nmol) and isoprenaline (1µmol). These effects were abolished by concurrent treatment with PIO (2.5 mg/kg, for 5 days starting two days before MTX). Alternatively, MTX treatment did not affect endothelium-independent renovascular relaxation induced by sodium nitroprusside (1-30 μmole). The possibility that alterations in renal antioxidants, circulating cytokine and apoptotic factor (Fas) levels contributed to MTX-PIO interaction was assessed. PIO treatment abrogated renal oxidative stress (decreased reduced glutathione and catalase activity and increased malondialdehyde), elevated serum cytokine (interleukin-6, interleukin-10, tumor necrosis factor-alpha and transforming growth factor-beta1) and Fas induced by MTX. Histologically, MTX caused defused tubular cells swelling and vacuolization associated with endothelial damage in renal arterioles. These effects disappeared upon co-treated with PIO. Collectively, PIO abolished MTX-induced endothelium dysfunction and nephrotoxicity via ameliorating oxidative stress and rectifying cytokines and Fas abnormalities caused by MTX.

Keywords: methotrexate, pioglitazone, endothelium, kidney

Procedia PDF Downloads 296
252 Mastering Digital Transformation with the Strategy Tandem Innovation Inside-Out/Outside-In: An Approach to Drive New Business Models, Services and Products in the Digital Age

Authors: S. N. Susenburger, D. Boecker

Abstract:

In the age of Volatility, Uncertainty, Complexity, and Ambiguity (VUCA), where digital transformation is challenging long standing traditional hardware and manufacturing companies, innovation needs a different methodology, strategy, mindset, and culture. What used to be a mindset of scaling per quantity is now shifting to orchestrating ecosystems, platform business models and service bundles. While large corporations are trying to mimic the nimbleness and versatile mindset of startups in the core of their digital strategies, they’re at the frontier of facing one of the largest organizational and cultural changes in history. This paper elaborates on how a manufacturing giant transformed its Corporate Information Technology (IT) to enable digital and Internet of Things (IoT) business while establishing the mindset and the approaches of the Innovation Inside-Out/Outside-In Strategy. It gives insights into the core elements of an innovation culture and the tactics and methodologies leveraged to support the cultural shift and transformation into an IoT company. This paper also outlines the core elements for an innovation culture and how the persona 'Connected Engineer' thrives in the digital innovation environment. Further, it explores how tapping domain-focused ecosystems in vibrant innovative cities can be used as a part of the strategy to facilitate partner co-innovation. Therefore, findings from several use cases, observations and surveys led to conclusion for the strategy tandem of Innovation Inside-Out/Outside-In. The findings indicate that it's crucial in which phases and maturity level the Innovation Inside-Out/Outside-In Strategy is activated: cultural aspects of the business and the regional ecosystem need to be considered, as well as cultural readiness from management and active contributors. The 'not invented here syndrome' is a barrier of large corporations that need to be addressed and managed to successfully drive partnerships, as well as embracing co-innovation and a mindset shifting away from physical products toward new business models, services, and IoT platforms. This paper elaborates on various methodologies and approaches tested in different countries and cultures, including the U.S., Brazil, Mexico, and Germany.

Keywords: innovation management, innovation culture, innovation methodologies, digital transformation

Procedia PDF Downloads 116
251 Pioglitazone Ameliorates Methotrexate-Induced Renal Endothelial Dysfunction via Amending Detrimental Changes in Antioxidant Profile, Systemic Cytokines and Fas Production

Authors: Sahar M. El-Gowilly, Mai M. Helmy, Hanan M. El-Gowelli

Abstract:

Methotrexate (MTX) is widely used in treatment of cancers and autoimmune diseases. However, nephrotoxicity is one of its most important side effects. The peroxisome proliferator-activated receptor gamma agonist, pioglitazone, is known to exert antiinflammatory and reno-protective effects in various kidney injuries. The purpose of this study was to investigate the potential involvement of endothelial damage in MTX-induced renal injury and to elaborate the possible protective effect of pioglitazone against MTX-induced endothelial impairment. Compared with saline-treated rats, treatment with MTX (7 mg/kg for 3 day) caused significant elevations in serum levels of urea and creatinine, increased renal nitrate/nitrite level and impaired renovascular responsiveness of isolated perfused kidney to endothelium-dependent vasodilations induced by acetylcholine (0.01-2.43 nmol) and isoprenaline (1µmol). These effects were abolished by concurrent treatment with pioglitazone (2.5 mg/kg, for 5 days starting two days before MTX). Alternatively, MTX treatment did not affect endothelium-independent renovascular relaxation induced by sodium nitroprusside (0.001-10 μmole). The possibility that alterations in renal antioxidants, circulating cytokine and apoptotic factor (Fas) levels contributed to MTX-pioglitazone interaction was assessed. Pioglitazone treatment abrogated renal oxidative stress (decreased reduced glutathione and catalase activity and increased malondialdehyde), elevated serum cytokine (interleukin-6, interleukin-10, tumor necrosis factor-alpha and transforming growth factor-beta1) and Fas induced by MTX. Histologically, MTX caused defused tubular cells swelling and vacuolization associated with endothelial damage in renal arterioles. These effects disappeared upon co-treated with pioglitazone. Collectively, pioglitazone abolished MTX-induced endothelium dysfunction and nephrotoxicity via ameliorating oxidative stress and rectifying cytokines and Fas abnormalities caused by MTX.

Keywords: methotrexate, pioglitazone, endothelium, kidney

Procedia PDF Downloads 483
250 Experimental Studies on Flexural Behaviour on Beam Using Lathe Waste in SIFCON

Authors: R. Saravanakumar, A. Siva, R. Banupriya, K. Balasubramanian

Abstract:

Slurry infiltrated fibrous concrete (SIFCON) is one of the recently developed construction material that can be considered as a special type of high performance fibre reinforced concrete (HPFRC) with higher fibre content. Fibre reinforced concrete is essentially a composite material in which fibres out of waste having higher modulus of elasticity. SIFCON is a special type of high fibrous concrete and it is having a high cementious content and sand. The matrix usually consists of cement-sand slurry or fluent mortar. The construction industry is in need of finding cost effective materials for increasing the strength of concrete structures hence an endeavour has been made in the present investigations to study the influence of addition of waste material like Lathe waste from workshop at different dosages to the total weight of concrete. The waste of steel scrap material which is available from the lathe is used as a steel fibre for innovative construction industry. To get sustainable and environmental benefits, lathe scrap as recycled fibres with concrete are likely to be used. An experimental program was carried out to investigate the flexural behavior of Slurry infiltrated fibrous concrete (SIFCON) in which the fibres having an aspect ratio of 100 is used. The investigations were done using M25 mix and tests were carried out as per recommended procedures by appropriate codes. SIFCON specimens with 8%, 10% and 12% volume of fraction fibres are used in this study. Test results were presented in comparison of SIFCON with and without conventional steel reinforcement. The load carrying capacity of SIFCON specimen is higher than conventional concrete and it also reduced crack width. In the SIFCON specimen less number of cracks as compared with conventional concrete.

Keywords: SIFCON, lathe waste, RCC, fibre volume, flexural behaviour

Procedia PDF Downloads 299
249 Artificial Intelligence Impact on Strategic Stability

Authors: Darius Jakimavicius

Abstract:

Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.

Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop

Procedia PDF Downloads 20
248 A Contemporary Advertising Strategy on Social Networking Sites

Authors: M. S. Aparna, Pushparaj Shetty D.

Abstract:

Nowadays social networking sites have become so popular that the producers or the sellers look for these sites as one of the best options to target the right audience to market their products. There are several tools available to monitor or analyze the social networks. Our task is to identify the right community web pages and find out the behavior analysis of the members by using these tools and formulate an appropriate strategy to market the products or services to achieve the set goals. The advertising becomes more effective when the information of the product/ services come from a known source. The strategy explores great buying influence in the audience on referral marketing. Our methodology proceeds with critical budget analysis and promotes viral influence propagation. In this context, we encompass the vital bits of budget evaluation such as the number of optimal seed nodes or primary influential users activated onset, an estimate coverage spread of nodes and maximum influence propagating distance from an initial seed to an end node. Our proposal for Buyer Prediction mathematical model arises from the urge to perform complex analysis when the probability density estimates of reliable factors are not known or difficult to calculate. Order Statistics and Buyer Prediction mapping function guarantee the selection of optimal influential users at each level. We exercise an efficient tactics of practicing community pages and user behavior to determine the product enthusiasts on social networks. Our approach is promising and should be an elementary choice when there is little or no prior knowledge on the distribution of potential buyers on social networks. In this strategy, product news propagates to influential users on or surrounding networks. By applying the same technique, a user can search friends who are capable to advise better or give referrals, if a product interests him.

Keywords: viral marketing, social network analysis, community web pages, buyer prediction, influence propagation, budget constraints

Procedia PDF Downloads 238
247 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal

Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero

Abstract:

The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.

Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater

Procedia PDF Downloads 64
246 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments

Authors: Ana Londral, Burcu Demiray, Marcus Cheetham

Abstract:

Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.

Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation

Procedia PDF Downloads 266
245 Identification of Clay Mineral for Determining Reservoir Maturity Levels Based on Petrographic Analysis, X-Ray Diffraction and Porosity Test on Penosogan Formation Karangsambung Sub-District Kebumen Regency Central Java

Authors: Ayu Dwi Hardiyanti, Bernardus Anggit Winahyu, I. Gusti Agung Ayu Sugita Sari, Lestari Sutra Simamora, I. Wayan Warmada

Abstract:

The Penosogan Formation sandstone, that has Middle Miosen age, has been deemed as a reservoir potential based on sample data from sandstone outcrop in Kebakalan and Kedawung villages, Karangsambung sub-district, Kebumen Regency, Central Java. This research employs the following analytical methods; petrography, X-ray diffraction (XRD), and porosity test. Based on the presence of micritic sandstone, muddy micrite, and muddy sandstone, the Penosogan Formation sandstone has a fine-coarse granular size and middle-to-fine sorting. The composition of the sandstone is mostly made up of plagioclase, skeletal grain, and traces of micrite. The percentage of clay minerals based on petrographic analysis is 10% and appears to envelop grain, resulting enveloping grain which reduces the porosity of rocks. The porosity types as follows: interparticle, vuggy, channel, and shelter, with an equant form of cement. Moreover, the diagenesis process involves compaction, cementation, authigenic mineral growth, and dissolving due to feldspar alteration. The maturity of the reservoir can be seen through the X-ray diffraction analysis results, using ethylene glycol solution for clay minerals fraction transformed from smectite–illite. Porosity test analysis showed that the Penosogan Formation sandstones has a porosity value of 22% based on the Koeseomadinata classification, 1980. That shows high maturity is very influential for the quality of reservoirs sandstone of the Penosogan Formation.

Keywords: sandstone reservoir, Penosogan Formation, smectite, XRD

Procedia PDF Downloads 152
244 Use of Waste Glass as Coarse Aggregate in Concrete: A Possibility towards Sustainable Building Construction

Authors: T. S. Serniabat, M. N. N. Khan, M. F. M. Zain

Abstract:

As climate change and environmental pressures are now well established as major international issues, to which governments, businesses and consumers have to respond through more environmentally friendly and aware practices, products and policies; the need to develop alternative sustainable construction materials, reduce greenhouse gas emissions, save energy, look to renewable energy sources and recycled materials, and reduce waste are just some of the pressures impacting significantly on the construction industry. The utilization of waste materials (slag, fly ash, glass beads, plastic and so on) in concrete manufacturing is significant due to engineering, financial, environmental and ecological importance. Thus, utilization of waste materials in concrete production is very much helpful to reach the goal of the sustainable construction. Therefore, this study intends to use glass beads in concrete production. The paper reports on the performance of 9 different concrete mixes containing different ratios of glass crushed to 5 mm - 20 mm maximum size and glass marble of 20 mm size as coarse aggregate .Ordinary Portland cement type 1 and fine sand less than 0.5 mm were used to produce standard concrete cylinders. Compressive strength tests were carried out on concrete specimens at various ages. Test results indicated that the mix having the balanced ratio of glass beads and round marbles possess maximum compressive strength which is 3888.68 psi, as glass beads perform better in bond formation but have lower strength, on the other hand marbles are strong in themselves but not good in bonding. These mixes were prepared following a specific W/C and aggregate ratio; more strength can be expected to achieve from different W/C, aggregate ratios, adding admixtures like strength increasing agents, ASR inhibitor agents etc.

Keywords: waste glass, recycling, environmentally friendly, glass aggregate, strength development

Procedia PDF Downloads 355
243 Expression of ULK-1 mRNA in Human Peripheral Blood Mononuclear Cells from Patients with Alzheimer's Disease

Authors: Ali Bayram, Remzi Yiğiter

Abstract:

Objective: Alzheimer's disease (AD), the most common cause of dementia, is a progressive neurodegenerative disease. At present, diagnosis of AD is rather late in the disease. Therefore, we attempted to find peripheral biomarkers for the early diagnosis of AD. Herein, we conducted a study to investigate the unc-51 like autophagy activating kinase-1 (ULK1) mRNA expression levels in human peripheral blood mononuclear cells from patients with Alzheimer's disease. Method: To determine whether ULK1 gene expression are altered in AD patients, we measured their gene expression in human peripheral blood cell in 50 patients with AD and 50 age and gender matched healthy controls by quantitative real-time PCR technique. Results: We found that both ULK1 gene expression in peripheral blood cell were significantly decreased in patients with AD as compared with controls (p <0.05). Lower levels of ULK1 gene expression were significantly associated with the increased risk for AD. Conclusions: Serine/threonine-protein kinase involved in autophagy in response to starvation. Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes. Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR. Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2, and PRKAG1, leading to negatively regulate AMPK activity. May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences. Plays a role early in neuronal differentiation and is required for granule cell axon formation. Alzheimer is the most common neurodegenerative disease. Our results provide useful information that the ULK1 gene expression is decreased in the neurodegeneration and AD patients with, indicating their possible systemic involvement in AD.

Keywords: Alzheimer’s sisease, ULK1, mRNA expression, RT-PCR

Procedia PDF Downloads 378
242 Training a Neural Network to Segment, Detect and Recognize Numbers

Authors: Abhisek Dash

Abstract:

This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.

Keywords: convolutional neural networks, OCR, text detection, text segmentation

Procedia PDF Downloads 137
241 Evaluation of the Antiviral Activity of Dermaseptin Analogs Against Zika Virus

Authors: Houda Haddad, Nolwen Jouvenet, Maxime Chazal, Frédéric Tangy, Amira Zairi

Abstract:

Zika virus represents the primary cause of infection during pregnancy and can lead to various neurological disorders, such as microcephaly and Guillain-Barré syndrome, affecting both children and adults. This infection is also associated with urological and nephrological problems. So far, evidence of mosquito-borne Zika virus infection has been reported in a total of 89 countries and territories. However, surveillance efforts primarily concentrate on outbreaks that this virus can cause, yet the measures implemented are typically limited. Currently, there are no specific treatments or vaccines designed for the prevention or treatment of Zika virus infection or its associated disease. The development of effective therapeutic agents presents an urgent need. Importantly, an alternative for advancing the discovery of molecules could be dermaseptins, a family of antimicrobial peptides known for their potential antiviral properties. In this study, we carried out the synthesis of dermaseptins and their analogs and subsequently assessed the bioactivity tests against Zika virus (ZIKV PF13) of dermaseptins B2 and S4 and their derivatives. The cytotoxicity of these peptides was investigated on the HMC3 cell line and HeLa cells by CellTiter-Glo® Luminescent Cell Viability Assay. Thereafter, we evaluated the antiviral activity caused by the action of our dermaseptins on the viral envelope using the Fluorescence Activated Cell Sorting (FACS). The cytotoxicity of our molecules was concentration-dependent at microgram concentrations except for dermaseptin B2 and its derivative, which present no toxicity against HeLa and HMC3 cell lines. It was observed that all tested analogs from the S4 family exhibited antiviral activity with low concentrations ranging from 3 to 12.5 μg/mL, unlike the native B2 and its derivative, which increased the infectivity. Pre-incubating of dermaseptins with ZIKV PF13 before infection revealed that these derivatives inhibit the initial stages of virus infection. In summary, these results suggest that dermaseptins could serve as lead structures for the development of potent antiviral agents against Zika virus infections.

Keywords: dermaseptin B2, dermaseptin S4, analogs, zika virus, neurological infections, antiviral activity

Procedia PDF Downloads 41
240 Assessment of Platelet and Lymphocyte Interaction in Autoimmune Hyperthyroidism

Authors: Małgorzata Tomczyńska, Joanna Saluk-Bijak

Abstract:

Background: Graves’ disease is a frequent organ-specific autoimmune thyroid disease, which characterized by the presence of different kind autoantibodies, that, in most cases, act as agonists of the thyrotropin receptor, leading to hyperthyroidism. Role of platelets and lymphocytes can be modulated in the pathophysiology of thyroid autoimmune diseases. Interference in the physiology of platelets can lead to enhanced activity of these cells. Activated platelets can bind to circulating lymphocytes and to affect lymphocyte adhesion. Platelets and lymphocytes can regulate mutual functions. Therefore, the activation of T lymphocytes, as well as blood platelets, is associated with the development of inflammation and oxidative stress within the target tissue. The present study was performed to investigate a platelet-lymphocyte relation by assessing the degree of their mutual aggregation in whole blood of patients with Graves’ disease. Also, the purpose of this study was to examine the impact of platelet interaction on lymphocyte migration capacity. Methods: 30 patients with Graves’ disease were recruited in the study. The matched 30 healthy subjects were served as the control group. Immunophenotyping of lymphocytes was carried out by flow cytometry method. A CytoSelect™ Cell Migration Assay Kit was used to evaluate lymphocyte migration and adhesion to blood platelets. Visual assessment of lymphocyte-platelet aggregate morphology was done using confocal microscope after magnetic cell isolation by Miltenyi Biotec. Results: The migration and functional responses of lymphocytes to blood platelets were greater in the group of Graves’ disease patients compared with healthy controls. The group of Graves’ disease patients exhibited a reduced T lymphocyte and a higher B cell count compared with controls. Based on microscopic analysis, more platelet-lymphocyte aggregates were found in patients than in control. Conclusions: Studies have shown that in Graves' disease, lymphocytes show increased platelet affinity, more strongly migrating toward them, and forming mutual cellular conglomerates. This may be due to the increased activation of blood platelets in this disease.

Keywords: blood platelets, cell migration, Graves’ disease, lymphocytes, lymphocyte-platelet aggregates

Procedia PDF Downloads 203
239 Isolation and Characterization of the First Known Inhibitor Cystine Knot Peptide in Sea Anemone: Inhibitory Activity on Acid-Sensing Ion Channels

Authors: Armando A. Rodríguez, Emilio Salceda, Anoland Garateix, André J. Zaharenko, Steve Peigneur, Omar López, Tirso Pons, Michael Richardson, Maylín Díaz, Yasnay Hernández, Ludger Ständker, Jan Tytgat, Enrique Soto

Abstract:

Acid-sensing ion channels are cation (Na+) channels activated by a pH drop. These proteins belong to the ENaC/degenerin superfamily of sodium channels. ASICs are involved in sensory perception, synaptic plasticity, learning, memory formation, cell migration and proliferation, nociception, and neurodegenerative disorders, among other processes; therefore those molecules that specifically target these channels are of growing pharmacological and biomedical interest. Sea anemones produce a large variety of ion channels peptide toxins; however, those acting on ligand-gated ion channels, such as Glu-gated, Ach-gated ion channels, and acid-sensing ion channels (ASICs), remain barely explored. The peptide PhcrTx1 is the first compound characterized from the sea anemone Phymanthus crucifer, and it constitutes a novel ASIC inhibitor. This peptide was purified by chromatographic techniques and pharmacologically characterized on acid-sensing ion channels of mammalian neurons using patch-clamp techniques. PhcrTx1 inhibited ASIC currents with an IC50 of 100 nM. Edman degradation yielded a sequence of 32 amino acids residues, with a molecular mass of 3477 Da by MALDI-TOF. No similarity to known sea anemone peptides was found in protein databases. The computational analysis of Cys-pattern and secondary structure arrangement suggested that this is a structurally ICK (Inhibitor Cystine Knot)-type peptide, a scaffold that had not been found in sea anemones but in other venomous organisms. These results show that PhcrTx1 represents the first member of a new structural group of sea anemones toxins acting on ASICs. Also, this peptide constitutes a novel template for the development of drugs against pathologies related to ASICs function.

Keywords: animal toxin, inhibitor cystine knot, ion channel, sea anemone

Procedia PDF Downloads 283
238 The Legal Implications of Gender Quota for Public Companies

Authors: Murat Can Pehlivanoglu

Abstract:

Historically, gender equality has been mainly defended in the legal arenas of constitutional law and employment law. However, social and economic progress has required corporate law to provide gender equality on corporate boards. Recently, following the trend in Europe, the State of California (United States) enacted a law requiring that every publicly traded corporation based in California should have women on its board of directors. Still, the legal, social and economic implications of this law are yet to be discovered. The contractarian view of corporate law is predominant in the U.S. jurisprudence. However, gender quota law may not be justified through contractarian theory grounds. Therefore, the conformity of gender quota law with the general principles of U.S. corporate law remains questionable, and the immunity of close corporations from the scope of gender quota legislation provides support for the discrepancy. The methodology employed in this paper in the discussion of the rule’s conformity with corporate law is doctrinal, and American case law and legal scholarship are the basis for this discussion. This paper uses the aforementioned California law as sample legislation to evaluate the gender quota laws’ conformity with the contractarian theory of corporate law. It chooses California law as the sample due to its newness and the presence of pending shareholder lawsuits against it. Also, since California is home to global companies, the effect of such law is expected to be wider. As alternative theories laid down by corporate law may already be activated to provide gender equality on boards of publicly traded corporations, enacting a specific gender quota law would not be justified by an allegedly present statutory deficiency based on contractarian theory. However, this theoretical reality would not enable shareholders to succeed in their lawsuits against such law on corporate law grounds, and investors will have limited options against its results. This will eventually harm the integrity of the marketplace. Through the analysis of the contractarian theory of corporate law and California gender quota law, the major finding of this paper is that the contractarian theory of corporate law does not permit mandating board room equality through corporate law. In conclusion, it expresses that the issue should be dealt with through separate legislation with a different remedial structure, to preserve the traditional rationale of corporate law in U.S. law.

Keywords: board of directors, gender equality, gender quota, publicly traded corporations

Procedia PDF Downloads 108
237 Evaluation of Antimicrobial Efficacy of Nanofluid Containing Carbon Nanotubes Functionalized with Antibiotic on Urinary Tract Infection

Authors: Erfan Rahimi, Hadi Bahari Far, Mojgan Shikhpour

Abstract:

Background: Urinary tract infection is one of the most common nosocomial infections, especially among women. E. coli is one of the main causes of urinary tract infections and one of the most common antibiotics to fight this bacterium is ampicillin. As conventional antibiotics led to bacterial antibiotic resistance, modification of the pure drugs can address this issue. The aim of this study was to prepare nanofluids containing carbon nanotubes conjugated with ampicillin to improve drug performance and reduce antibiotic resistance. Methods: Multi-walled carbon nanotubes (MWCNTs) were activated with thionyl chloride by reflux system and nanofluids containing antibiotics were prepared by ultrasonic method. The properties of the prepared nano-drug were investigated by general element analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. After the treatment of the desired strain with nanofluid, microbial studies were performed to evaluate the antibacterial effects and molecular studies were carried out to measure the expression of the resistance gene AcrAB. Result: We have shown that the antimicrobial effect of ampicillin-functionalized MWCNTs at low concentrations performed better than that of the conventional drug in both resistant and ATCC strains. Also, a decrease in antibiotic resistance of bacteria treated with ampicillin-functionalized MWCNTs compared to the pure drug was observed. Also, ampicillin-functionalized MWCNTs downregulated the expression of AcrAB in treated bacteria. Conclusion: Because carbon nanotubes are capable of destroying the bacterial wall, which provides antibiotic resistance features in bacteria, their usage in the form of nanofluids can make lower dosages (about three times less) than that of the pure drug more effective. Additionally, the expression of the bacterial resistance gene AcrAB decreased, thereby reducing antibiotic resistance and improving drug performance against bacteria.

Keywords: urinary tract infection, antibiotic resistance, carbon nanotube, nanofluid

Procedia PDF Downloads 126
236 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete

Authors: Farzad Danaei, Yilmaz Akkaya

Abstract:

In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.

Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient

Procedia PDF Downloads 55
235 Amrita Bose-Einstein Condensate Solution Formed by Gold Nanoparticles Laser Fusion and Atmospheric Water Generation

Authors: Montree Bunruanses, Preecha Yupapin

Abstract:

In this work, the quantum material called Amrita (elixir) is made from top-down gold into nanometer particles by fusing 99% gold with a laser and mixing it with drinking water using the atmospheric water (AWG) production system, which is made of water with air. The high energy laser power destroyed the four natural force bindings from gravity-weak-electromagnetic and strong coupling forces, where finally it was the purified Bose-Einstein condensate (BEC) states. With this method, gold atoms in the form of spherical single crystals with a diameter of 30-50 nanometers are obtained and used. They were modulated (activated) with a frequency generator into various matrix structures mixed with AWG water to be used in the upstream conversion (quantum reversible) process, which can be applied on humans both internally or externally by drinking or applying on the treated surfaces. Doing both space (body) and time (mind) will go back to the origin and start again from the coupling of space-time on both sides of time at fusion (strong coupling force) and push out (Big Bang) at the equilibrium point (singularity) occurs as strings and DNA with neutrinos as coupling energy. There is no distortion (purification), which is the point where time and space have not yet been determined, and there is infinite energy. Therefore, the upstream conversion is performed. It is reforming DNA to make it be purified. The use of Amrita is a method used for people who cannot meditate (quantum meditation). Various cases were applied, where the results show that the Amrita can make the body and the mind return to their pure origins and begin the downstream process with the Big Bang movement, quantum communication in all dimensions, DNA reformation, frequency filtering, crystal body forming, broadband quantum communication networks, black hole forming, quantum consciousness, body and mind healing, etc.

Keywords: quantum materials, quantum meditation, quantum reversible, Bose-Einstein condensate

Procedia PDF Downloads 48
234 Self-Assembled Laser-Activated Plasmonic Substrates for High-Throughput, High-Efficiency Intracellular Delivery

Authors: Marinna Madrid, Nabiha Saklayen, Marinus Huber, Nicolas Vogel, Christos Boutopoulos, Michel Meunier, Eric Mazur

Abstract:

Delivering material into cells is important for a diverse range of biological applications, including gene therapy, cellular engineering and imaging. We present a plasmonic substrate for delivering membrane-impermeable material into cells at high throughput and high efficiency while maintaining cell viability. The substrate fabrication is based on an affordable and fast colloidal self-assembly process. When illuminated with a femtosecond laser, the light interacts with the electrons at the surface of the metal substrate, creating localized surface plasmons that form bubbles via energy dissipation in the surrounding medium. These bubbles come into close contact with the cell membrane to form transient pores and enable entry of membrane-impermeable material via diffusion. We use fluorescence microscopy and flow cytometry to verify delivery of membrane-impermeable material into HeLa CCL-2 cells. We show delivery efficiency and cell viability data for a range of membrane-impermeable cargo, including dyes and biologically relevant material such as siRNA. We estimate the effective pore size by determining delivery efficiency for hard fluorescent spheres with diameters ranging from 20 nm to 2 um. To provide insight to the cell poration mechanism, we relate the poration data to pump-probe measurements of micro- and nano-bubble formation on the plasmonic substrate. Finally, we investigate substrate stability and reusability by using scanning electron microscopy (SEM) to inspect for damage on the substrate after laser treatment. SEM images show no visible damage. Our findings indicate that self-assembled plasmonic substrates are an affordable tool for high-throughput, high-efficiency delivery of material into mammalian cells.

Keywords: femtosecond laser, intracellular delivery, plasmonic, self-assembly

Procedia PDF Downloads 511
233 Industrial Kaolinite Resource Deposits Study in Grahamstown Area, Eastern Cape, South Africa

Authors: Adeola Ibukunoluwa Samuel, Afsoon Kazerouni

Abstract:

Industrial mineral kaolin has many favourable properties such as colour, shape, softness, non-abrasiveness, natural whiteness, as well as chemical stability. It occurs extensively in North of Bedford road Grahamstown, South Africa. The relationship between both the physical and chemical properties as lead to its application in the production of certain industrial products which are used by the public; this includes the prospect of production of paper, ceramics, rubber, paint, and plastics. Despite its interesting economic potentials, kaolinite clay mineral remains undermined, and this is threatening its sustainability in the mineral industry. This research study focuses on a detailed evaluation of the kaolinite mineral and possible ways to increase its lifespan in the industry. The methods employed for this study includes petrographic microscopy analysis, X-ray powder diffraction analysis (XRD), and proper field reconnaissance survey. Results emanating from this research include updated geological information on Grahamstown. Also, mineral transformation phases such as quartz, kaolinite, calcite and muscovite were identified in the clay samples. Petrographic analysis of the samples showed that the study area has been subjected to intense tectonic deformation and cement replacement. Also, different dissolution patterns were identified on the Grahamstown kaolinitic clay deposits. Hence incorporating analytical studies and data interpretations, possible ways such as the establishment of processing refinery near mining plants, which will, in turn, provide employment for the locals and land reclamation is suggested. In addition, possible future sustainable industrial applications of the clay minerals seem to be possible if additives, cellulosic wastes are used to alter the clay mineral.

Keywords: kaolinite, industrial use, sustainability, Grahamstown, clay minerals

Procedia PDF Downloads 167
232 Synthesis and Optimization of Bio Metal-Organic Framework with Permanent Porosity

Authors: Tia Kristian Tajnšek, Matjaž Mazaj, Nataša Zabukovec Logar

Abstract:

Metal-organic frameworks (MOFs) with their specific properties and the possibility of tuning the structure represent excellent candidates for use in the biomedical field. Their advantage lies in large pore surfaces and volumes, as well as the possibility of using bio-friendly or bioactive constituents. So-called bioMOFs are representatives of MOFs, which are constructed from at least one biomolecule (metal, a small bioactive molecule in metal clusters and/or linker) and are intended for bio-application (usually in the field of medicine; most commonly drug delivery). When designing a bioMOF for biomedical applications, we should adhere to some guidelines for an improved toxicological profile of the material. Such as (i) choosing an endogenous/nontoxic metal, (ii) GRAS (generally recognized as safe) linker, and (iii) nontoxic solvents. Design and synthesis of bioNICS-1 (bioMOF of National Institute of Chemistry Slovenia – 1) consider all these guidelines. Zinc (Zn) was chosen as an endogenous metal with an agreeable recommended daily intake (RDI) and LD50 value, and ascorbic acid (Vitamin C) was chosen as a GRAS and active linker. With these building blocks, we have synthesized a bioNICS-1 material. The synthesis was done in ethanol using a solvothermal method. The synthesis protocol was further optimized in three separate ways. Optimization of (i) synthesis parameters to improve the yield of the synthesis, (ii) input reactant ratio and addition of specific modulators for production of larger crystals, and (iii) differing of the heating source (conventional, microwave and ultrasound) to produce nano-crystals. With optimization strategies, the synthesis yield was increased. Larger crystals were prepared for structural analysis with the use of a proper species and amount of modulator. Synthesis protocol was adjusted to different heating sources, resulting in the production of nano-crystals of bioNICS-1 material. BioNICS-1 was further activated in ethanol and structurally characterized, resolving the crystal structure of new material.

Keywords: ascorbic acid, bioMOF, MOF, optimization, synthesis, zinc ascorbate

Procedia PDF Downloads 119
231 Decision Support Tool for Selecting Appropriate Sustainable Rainwater Harvesting Based System in Ibadan, Nigeria

Authors: Omolara Lade, David Oloke

Abstract:

The approach to water management worldwide is currently in transition, with a shift from centralised infrastructures to greater consideration of decentralised technologies, such as rainwater harvesting (RWH). However, in Nigeria, implementation of sustainable water management, such as RWH systems, is inefficient and social, environmental and technical barriers, concerns and knowledge gaps exist, which currently restrict its widespread utilisation. This inefficiency contributes to water scarcity, water-borne diseases, and loss of lives and property due to flooding. Meanwhile, several RWH technologies have been developed to improve SWM through both demand and storm-water management. Such technologies involve the use of reinforced concrete cement (RCC) storage tanks, surface water reservoirs and ground-water recharge pits as storage systems. A framework was developed to assess the significance and extent of water management problems, match the problems with existing RWH-based solutions and develop a robust ready-to-use decision support tool that can quantify the costs and benefits of implementing several RWH-based storage systems. The methodology adopted was the mixed method approach, involving a detailed literature review, followed by a questionnaire survey of household respondents, Nigerian Architects and Civil Engineers and focus group discussion with stakeholders. 18 selection attributes have been defined and three alternatives have been identified in this research. The questionnaires were analysed using SPSS, excel and selected statistical methods to derive weightings of the attributes for the tool. Following this, three case studies were modelled using RainCycle software. From the results, the MDA model chose RCC tank as the most appropriate storage system for RWH.

Keywords: rainwater harvesting, modelling, hydraulic assessment, whole life cost, decision support system

Procedia PDF Downloads 357