Search results for: time series regression
21095 Modification of Fick’s First Law by Introducing the Time Delay
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Fick's first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative). It is clear that the diffusion of flux cannot be instantaneous and should be some time delay in this propagation. But Fick’s first law doesn’t consider this delay which results in some errors especially when there is a considerable time delay in the process. In this paper, we introduce a time delay to Fick’s first law. By this modification, we consider that the diffusion of flux cannot be instantaneous. In order to verify this claim an application sample in fluid diffusion is discussed and the results of modified Fick’s first law, Fick’s first law and the experimental results are compared. The results of this comparison stand for the accuracy of the modified model. The modified model can be used in any application where the time delay has considerable value and neglecting its effect reflects in undesirable results.Keywords: Fick's first law, flux, diffusion, time delay, modified Fick’s first law
Procedia PDF Downloads 41121094 The Investigation of Relationship between Accounting Information and the Value of Companies
Authors: Golamhassan Ghahramani Aghdam, Pedram Bavili Tabrizi
Abstract:
The aim of this research is to investigate the relationship between accounting information and the value of the companies accepted in Tehran Exchange Market. The dependent variable in this research is the value of a company that is measured by price coefficients, and the independent variables are balance sheet information, profit and loss information, cash flow state information, and profit quality characteristics. The profit quality characteristic index is to be related and to be on-time. This research is an application research, and the research population includes all companies that are active in Tehran exchange market. The number of 194 companies was selected by the systematic method as the statistics sample in the period of 2018-2019. The multi-variable linear regression model was used for the hypotheses test. The results show that there is no relationship between accounting information and companies’ value (stock value) that can be due to the lack of efficiency of the investment market and the inability to use the accounting information by investment market activists.Keywords: accounting information, company value, profit quality characteristics, price coefficient
Procedia PDF Downloads 14121093 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 13521092 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.Keywords: classification, fuzzy logic, tolerance relations, rainfall data
Procedia PDF Downloads 31821091 An Evaluation of the Trends in Land Values around Institutions of Higher Learning in North Central Nigeria
Authors: Ben Nwokenkwo, Michael M. Eze, Felix Ike
Abstract:
The need to study trends in land values around institutions of higher learning cannot be overemphasized. Numerous studies in Nigeria have investigated the economic, and social influence of the sitting of institutions of higher learning at the micro, meso and macro levels. However, very few studies have evaluated the temporal extent at which such institution influences local land values. Since institutions greatly influence both the physical and environmental aspects of their immediate vicinity, attention must be taken to understand the influence of such changes on land values. This study examines the trend in land values using the Mann-Kendall analysis in order to determine if, between its beginning and end, a monotonic increase, decrease or stability exist in the land values across six institutions of higher learning for the period between 2004 and 2014. Specifically, The analysis was applied to the time series of the price(or value) of the land .The results of this study revealed that land values has either been increasing or remained stabled across all the institution sampled. The study finally recommends measures that can be put in place as counter magnets for land values estimation across institutions of higher learning.Keywords: influence, land, trend, value
Procedia PDF Downloads 36921090 Corporate Sustainability Practices in Asian Countries: Pattern of Disclosure and Impact on Financial Performance
Authors: Santi Gopal Maji, R. A. J. Syngkon
Abstract:
The changing attitude of the corporate enterprises from maximizing economic benefit to corporate sustainability after the publication of Brundtland Report has attracted the interest of researchers to investigate the sustainability practices of firms and its impact on financial performance. To enrich the empirical literature in Asian context, this study examines the disclosure pattern of corporate sustainability and the influence of sustainability reporting on financial performance of firms from four Asian countries (Japan, South Korea, India and Indonesia) that are publishing sustainability report continuously from 2009 to 2016. The study has used content analysis technique based on Global Reporting Framework (3 and 3.1) reporting framework to compute the disclosure score of corporate sustainability and its components. While dichotomous coding system has been employed to compute overall quantitative disclosure score, a four-point scale has been used to access the quality of the disclosure. For analysing the disclosure pattern of corporate sustainability, box plot has been used. Further, Pearson chi-square test has been used to examine whether there is any difference in the proportion of disclosure between the countries. Finally, quantile regression model has been employed to examine the influence of corporate sustainability reporting on the difference locations of the conditional distribution of firm performance. The findings of the study indicate that Japan has occupied first position in terms of disclosure of sustainability information followed by South Korea and India. In case of Indonesia, the quality of disclosure score is considerably less as compared to other three countries. Further, the gap between the quality and quantity of disclosure score is comparatively less in Japan and South Korea as compared to India and Indonesia. The same is evident in respect of the components of sustainability. The results of quantile regression indicate that a positive impact of corporate sustainability becomes stronger at upper quantiles in case of Japan and South Korea. But the study fails to extricate any definite pattern on the impact of corporate sustainability disclosure on the financial performance of firms from Indonesia and India.Keywords: corporate sustainability, quality and quantity of disclosure, content analysis, quantile regression, Asian countries
Procedia PDF Downloads 19921089 The Development of E-Commerce in Mexico: An Econometric Analysis
Authors: Alma Lucero Ortiz, Mario Gomez
Abstract:
Technological advances contribute to the well-being of humanity by allowing man to perform in a more efficient way. Technology offers tangible advantages to countries with the adoption of information technologies, communication, and the Internet in all social and productive sectors. The Internet is a networking infrastructure that allows the communication of people throughout the world, exceeding the limits of time and space. Nowadays the internet has changed the way of doing business leading to a digital economy. In this way, e-commerce has emerged as a commercial transaction conducted over the Internet. For this inquiry e-commerce is seen as a source of economic growth for the country. Thereby, these research aims to answer the research question, which are the main variables that have affected the development of e-commerce in Mexico. The research includes a period of study from 1990 to 2017. This inquiry aims to get insight on how the independent variables influence the e-commerce development. The independent variables are information infrastructure construction, urbanization level, economic level, technology level, human capital level, educational level, standards of living, and price index. The results suggest that the independent variables have an impact on development of the e-commerce in Mexico. The present study is carried out in five parts. After the introduction, in the second part, a literature review about the main qualitative and quantitative studies to measure the variables subject to the study is presented. After, an empirical study is applied through time series data, and to process the data an econometric model is performed. In the fourth part, the analysis and discussion of results are presented, and finally, some conclusions are included.Keywords: digital economy, e-commerce, econometric model, economic growth, internet
Procedia PDF Downloads 24521088 Factors Contributing to Farmers’ Attitude Towards Climate Adaptation Farming Practices: A Farm Level Study in Bangladesh
Authors: Md Rezaul Karim, Farha Taznin
Abstract:
The purpose of this study was to assess and describe the individual and household characteristics of farmers, to measure the attitude of farmers towards climate adaptation farming practices and to explore the individual and household factors contributing in predicting their attitude towards climate adaptation farming practices. Data were collected through personal interviews using a pre-tested interview schedule. The data collection was done at Biral Upazila under Dinajpur district in Bangladesh from 1st November to 15 December 2018. Besides descriptive statistical parameters, Pearson’s Product Moment Correlation Coefficient (r), multiple regression and step-wise multiple regression analysis were used for the statistical analysis. Findings indicated that the highest proportion (77.6 percent) of the farmers had moderately favorable attitudes, followed by only 11.2 percent with highly favorable attitudes and 11.2 percent with slightly favorable attitudes towards climate adaptation farming practices. According to the computed correlation coefficients (r), among the 10 selected factors, five of them, such as education of household head, farm size, annual household income, organizational participation, and information access by extension services, had a significant relationship with the attitude of farmers towards climate-smart practices. The step-wise multiple regression results showed that two characteristics as education of household head and information access by extension services, contributed 26.2% and 5.1%, respectively, in predicting farmers' attitudes towards climate adaptation farming practices. In addition, more than two-thirds of farmers cited their opinion to the problems in response to ‘price of vermi species is high and it is not easily available’ as 1st ranked problem, followed by ‘lack of information for innovative climate-smart technologies’. This study suggests that policy implications are necessary to promote extension education and information services and overcome the obstacles to climate adaptation farming practices. It further recommends that research study should be conducted in diverse contexts of nationally or globally.Keywords: factors, attitude, climate adaptation, farming practices, Bangladesh
Procedia PDF Downloads 9121087 A Study of Islamic Stock Indices and Macroeconomic Variables
Authors: Mohammad Irfan
Abstract:
The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.Keywords: Indian Shariah Indices, macroeconomic variables, co-integration, Granger causality, vector error correction model (VECM)
Procedia PDF Downloads 28221086 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 7121085 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 7621084 Existence and Uniqueness of Solutions to Singular Higher Order Two-Point BVPs on Time Scales
Authors: Zhenjie Liu
Abstract:
This paper investigates the existence and uniqueness of solutions for singular higher order boundary value problems on time scales by using mixed monotone method. The theorems obtained are very general. For the different time scale, the problem may be the corresponding continuous or discrete boundary value problem.Keywords: mixed monotone operator, boundary value problem, time scale, green's function, positive solution, singularity
Procedia PDF Downloads 25921083 Holistic Approach Illustrating the Use of Complementary and Alternative Medicine in Pain and Stress Management for Spinal Cord Injury
Authors: Priyanka Kalra
Abstract:
Background: Complementary and alternative medicine (CAM) includes various practices like Ayurveda, Yoga & Meditation Acupressure Acupuncture and Reiki. These practices are frequently used by patients with spinal cord injury (SCI). They have shown effectiveness in the management of pain and stress consequently improving overall quality of life post injury. Objective: The goals of the present case series were to evaluate the feasibility of 1) Using of Ayurvedic herbal oil massages in shoulder pain management, 2) Using yoga & meditation on managing the stress in spinal cord injury. Methodology: 15 SCI cases with muscular pain around shoulder were treated with Ayurvedic herbal oil massage for 10 days in CAM Department. Each session consisted of 30 min oil massage followed by 10 min hot towel fomentation. The patients continued regular therapy medications along with CAM. Another 15 SCI cases were treated with yoga and meditation for 15 days 30 min yoga (20 min Asana+ 10 min Pranayam + 15 min Meditation) in isolated yoga room of CAM department. Results: On the VAS scale the patients reported a reduction in their pain score by 70 %. On the PSS scale, the patients reported a reduction in their stress score by 80 %. Conclusion: These case series may encourage more people to explore CAM therapies.Keywords: spinal cord injury, Ayurveda, complementary and alternative medicine, yoga, meditation
Procedia PDF Downloads 30621082 Leverage Effect for Volatility with Generalized Laplace Error
Authors: Farrukh Javed, Krzysztof Podgórski
Abstract:
We propose a new model that accounts for the asymmetric response of volatility to positive ('good news') and negative ('bad news') shocks in economic time series the so-called leverage effect. In the past, asymmetric powers of errors in the conditionally heteroskedastic models have been used to capture this effect. Our model is using the gamma difference representation of the generalized Laplace distributions that efficiently models the asymmetry. It has one additional natural parameter, the shape, that is used instead of power in the asymmetric power models to capture the strength of a long-lasting effect of shocks. Some fundamental properties of the model are provided including the formula for covariances and an explicit form for the conditional distribution of 'bad' and 'good' news processes given the past the property that is important for the statistical fitting of the model. Relevant features of volatility models are illustrated using S&P 500 historical data.Keywords: heavy tails, volatility clustering, generalized asymmetric laplace distribution, leverage effect, conditional heteroskedasticity, asymmetric power volatility, GARCH models
Procedia PDF Downloads 38821081 Analyzing Preservice Teachers’ Attitudes toward Technology
Authors: Ahmet Oguz Akturk, Kemal Izci, Gurbuz Caliskan, Ismail Sahin
Abstract:
Rapid developments in technology are to necessitate societies to closely follow technological developments and change themselves to adopt those developments. It is obvious that one of the areas that are impacted from technological developments is education. Analyzing preservice teachers’ attitudes toward technology is crucial for both educational and professional purposes since teacher candidates are essential for educating future individual living in technological age. In this study, it is aimed to analyze preservice teachers’ attitudes toward technology and some variables (e.g., gender, daily internet usage and possessed technological devices) that predicting those attitudes. In this study, relational survey model used as research method and 329 preservice teachers who are studying in a large university located at the middle part of Turkey are voluntarily participated. Results of the study showed that mostly preservice teachers displayed positive attitudes toward technology while male preservice teachers’ attitudes toward technology was more positive than female preservice teachers. In order to analyze predicting factors for preservice teachers’ attitudes toward technology, stepwise multiple regressions were utilized. The results of stepwise multiple regression showed that daily internet use was the most strong predicting factor for predicting preservice teachers’ attitudes toward technology.Keywords: attitudes toward technology, preservice teachers, gender, stepwise multiple regression analysis
Procedia PDF Downloads 29321080 Study on Measuring Method and Experiment of Arc Fault Detection Device
Authors: Yang Jian-Hong, Zhang Ren-Cheng, Huang Li
Abstract:
Arc fault is one of the main inducements of electric fires. Arc Fault Detection Device (AFDD) can detect arc fault effectively. Arc fault detections and unhooking standards are the keys to AFDD practical application. First, an arc fault continuous production system was developed, which could count the arc half wave number. Then, Combining with the UL1699 standard, ignition probability curve of cotton and unhooking time of various currents intensity were obtained by experiments. The combustion degree of arc fault could be expressed effectively by arc area. Experiments proved that electric fires would be misjudged or missed only using arc half wave number as AFDD unhooking basis. At last, Practical tests were carried out on the self-developed AFDD system. The result showed that actual AFDD unhooking time was the sum of arc half wave cycling number, Arc wave identification time and unhooking mechanical operation time And the first two shared shorter time. Unhooking time standard depended on the shortest mechanical operation time.Keywords: arc fault detection device, arc area, arc half wave, unhooking time, arc fault
Procedia PDF Downloads 51321079 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study
Authors: Kasim Görenekli, Ali Gülbağ
Abstract:
This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management
Procedia PDF Downloads 2321078 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery
Authors: Chun-Lang Chang, Chun-Kai Liu
Abstract:
In this study, the patients that have undergone total knee replacement surgery from the 2010 National Health Insurance database were adopted as the study participants. The important factors were screened and selected through literature collection and interviews with physicians. Through the Cross Entropy Method (CE), Genetic Algorithm Logistic Regression (GALR), and Particle Swarm Optimization (PSO), the weights of the factors were obtained. In addition, the weights of the respective algorithms, coupled with the Excel VBA were adopted to construct the Case Based Reasoning (CBR) system. The results through statistical tests show that the GALR and PSO produced no significant differences, and the accuracy of both models were above 97%. Moreover, the area under the curve of ROC for these two models also exceeded 0.87. This study shall serve as a reference for medical staff as an assistance for clinical assessment of infections in order to effectively enhance medical service quality and efficiency, avoid unnecessary medical waste, and substantially contribute to resource allocations in medical institutions.Keywords: Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization, Total Knee Replacement Surgery
Procedia PDF Downloads 32621077 Incidence and Causes of Elective Surgery Cancellations in Songklanagarind Hospital, Thailand
Authors: A. Kaeotawee, N. Bunmas, W. Chomthong
Abstract:
Background: The cancellation of elective surgery is a major indicator of poor operating room efficiency. Furthermore, it is recognized as a major cause of emotional trauma to patients as well as their families. This study was carried out to assess the incidence and causes of elective surgery cancellation in our setting and to find the appropriate solutions for better quality management. Objective: To determine the incidence and causes of elective surgery cancellations in Songklanagarind Hospital. Material and Method: A prospective survey was conducted from September to November 2012. All patients who had their scheduled elective operations cancelled were assessed. Data was collected on the following 2 components: (1) patient demographics;(2) main reasons for cancellations, which were grouped into patient-related factors and organizational-related factors. Data are reported as a percentage of patients whose operations were cancelled. The association between cancellation status and patient demographics was assessed using univariate logistic regression. Results: 2,395 patients were scheduled for elective surgery and of these 343 (14.3%) had their operations cancelled. Cardiothoracic surgery had the highest rate of cancellations (28.7%) while the least number of cancellations occurred in ophthalmology (10.1%). The main reasons for cancellations were related to the unit's organization (53.6%), due to the surgeon (48.4%). Patient related causes (46.4%), due to non medical reasons (32.1%). The most common cause of cancellation by the surgeon was lack of theater time (21.3%), by patients due to the patient’s nonappearance (25.1%). Cancellation was significantly associated with type of patient, health insurance, type of anesthesia and specialties (p<0.05). Conclusion: Surgery cancellations by surgeons relating to a lack of theater time was a significant problem in our setting. Appropriate solutions for better quality improvement are needed.Keywords: elective cases, surgery cancellation, quality management, appropriate solutions
Procedia PDF Downloads 26121076 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption
Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed
Abstract:
In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.Keywords: optimization, neural networks, real-time scheduling, low-power consumption
Procedia PDF Downloads 37421075 Improving the Ability of Constructed Wetlands to Treat Acid Mine Drainage
Authors: Chigbo Emmanuel Ikechukwu
Abstract:
Constructed wetlands are seen as a potential means of ameliorating the poor quality water that derives from coal and gold mining operations. However, the processes whereby a wetland environment is able to improve water quality are not well understood and techniques for optimising their performance poorly developed. A parameter that may be manipulated in order to improve the treatment capacity of a wetland is the substrate in which the aquatic plants are rooted. This substrate can provide an environment wherein sulphate reducing bacteria, which contribute to the removal of contaminants from the water, are able to flourish. The bacteria require an energy source which is largely provided by carbon in the substrate. This paper discusses the form in which carbon is most suitable for the bacteria and describes the results of a series of experiments in which different materials were used as substrate. Synthetic acid mine drainage was passed through an anaerobic bioreactor that contained either compost or cow manure. The effluent water quality was monitored with respect to time and the effect of the substrate composition discussed.Keywords: constructed wetland, bacteria, carbon, acid mine drainage, sulphate
Procedia PDF Downloads 44421074 The Investigation of Work Stress and Burnout in Nurse Anesthetists: A Cross-Sectional Study
Authors: Yen Ling Liu, Shu-Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Chia-Yu Chen
Abstract:
Purpose: Nurse anesthetists are confronting extraordinarily high job stress in their daily practice, deriving from the fast-track anesthesia care, risk of perioperative complications, routine rotating shifts, teaching programs and interactions with the surgical team in the operating room. This study investigated the influence of work stress on the burnout and turnover intention of nurse anesthetists in a regional general hospital in Southern Taiwan. Methods: This was a descriptive correlational study carried out in 66 full-time nurse anesthetists. Data was collected from March 2017 to June 2017 by in-person interview, and a self-administered structured questionnaire was completed by the interviewee. Outcome measurements included the Practice Environment Scale of the Nursing Work Index (PES-NWI), Maslach Burnout Inventory (MBI) and nursing staff turnover intention. Numerical data were analyzed by descriptive statistics, independent t test, or one-way ANOVA. Categorical data were compared using the chi-square test (x²). Datasets were computed with Pearson product-moment correlation and linear regression. Data were analyzed by using SPSS 20.0 software. Results: The average score for job burnout was 68.7916.67 (out of 100). The three major components of burnout, including emotional depletion (mean score of 26.32), depersonalization (mean score of 13.65), and personal(mean score of 24.48). These average scores suggested that these nurse anesthetists were at high risk of burnout and inversely correlated with turnover intention (t = -4.048, P < 0.05). Using linear regression model, emotional exhaustion and depersonalization were the two independent factors that predicted turnover intention in the nurse anesthetists (19.1% in total variance). Conclusion/Implications for Practice: The study identifies that the high risk of job burnout in the nurse anesthetists is not simply derived from physical overload, but most likely resulted from the additional emotional and psychological stress. The occurrence of job burnout may affect the quality of nursing work, and also influence family harmony, in turn, may increase the turnover rate. Multimodal approach is warranted to reduce work stress and job burnout in nurse anesthetists to enhance their willingness to contribute in anesthesia care.Keywords: anesthesia nurses, burnout, job, turnover intention
Procedia PDF Downloads 30021073 Factors Affecting Expectations and Intentions of University Students’ Mobile Phone Use in Educational Contexts
Authors: Davut Disci
Abstract:
Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance- Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling(SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.Keywords: education, mobile behavior, mobile learning, technology, Turkey
Procedia PDF Downloads 42521072 Predictive Value of ¹⁸F-Fluorodeoxyglucose Accumulation in Visceral Fat Activity to Detect Epithelial Ovarian Cancer Metastases
Authors: A. F. Suleimanov, A. B. Saduakassova, V. S. Pokrovsky, D. V. Vinnikov
Abstract:
Relevance: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with relapse occurring in about 70% of advanced cases with poor prognoses. The aim of the study was to evaluate functional visceral fat activity (VAT) evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in epithelial ovarian cancer (EOC). Materials and methods: We assessed 53 patients with histologically confirmed EOC who underwent ¹⁸F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVₘₐₓ) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also identified the best areas under the curve (AUC) for SUVₘₐₓ with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted-for regression models and ROC analysis, ¹⁸F-FDG accumulation in RE (cut-off SUVₘₐₓ 1.18; Se 64%; Sp 64%; AUC 0.669; p = 0.035) could predict later metastases in EOC patients, as opposed to age, sex, primary tumor location, tumor grade, and histology. Conclusions: VAT SUVₘₐₓ is significantly associated with later metastases in EOC patients and can be used as their predictor.Keywords: ¹⁸F-FDG, PET/CT, EOC, predictive value
Procedia PDF Downloads 6921071 Factors Affecting Expectations and Intentions of University Students in Educational Context
Authors: Davut Disci
Abstract:
Objective: to measure the factors affecting expectations and intentions of using mobile phone in educational contexts by university students, using advanced equations and modeling techniques. Design and Methodology: According to the literature, Mobile Addiction, Parental Surveillance-Safety/Security, Social Relations, and Mobile Behavior are most used terms of defining mobile use of people. Therefore, these variables are tried to be measured to find and estimate their effects on expectations and intentions of using mobile phone in educational context. 421 university students participated in this study and there are 229 Female and 192 Male students. For the purpose of examining the mobile behavior and educational expectations and intentions, a questionnaire is prepared and applied to the participants who had to answer all the questions online. Furthermore, responses to close-ended questions are analyzed by using The Statistical Package for Social Sciences(SPSS) software, reliabilities are measured by Cronbach’s Alpha analysis and hypothesis are examined via using Multiple Regression and Linear Regression analysis and the model is tested with Structural Equation Modeling (SEM) technique which is important for testing the model scientifically. Besides these responses, open-ended questions are taken into consideration. Results: When analyzing data gathered from close-ended questions, it is found that Mobile Addiction, Parental Surveillance, Social Relations and Frequency of Using Mobile Phone Applications are affecting the mobile behavior of the participants in different levels, helping them to use mobile phone in educational context. Moreover, as for open-ended questions, participants stated that they use many mobile applications in their learning environment in terms of contacting with friends, watching educational videos, finding course material via internet. They also agree in that mobile phone brings greater flexibility to their lives. According to the SEM results the model is not evaluated and it can be said that it may be improved to show in SEM besides in multiple regression. Conclusion: This study shows that the specified model can be used by educationalist, school authorities to improve their learning environment.Keywords: learning technology, instructional technology, mobile learning, technology
Procedia PDF Downloads 45621070 The Relationship between Inventory Management and Profitability: A Comparative Research on Turkish Firms Operated in Weaving Industry, Eatables Industry, Wholesale and Retail Industry
Authors: Gamze Sekeroglu, Mikail Altan
Abstract:
Working capital is identified as firm’s all current assets. Inventories which are one of the working capital elements are very important among current assets for firms. Because, profitability is an indicator for firms’ financial success is provided with minimum cost and optimum inventory quantity. So in this study, it is investigated as comparatively that the effect of inventory management on the profitability of Turkish firms which operated in weaving industry, eatables industry, wholesale and retail industry in between 2003 – 2012 years. Research data consist of profitability ratios and inventory turnovers ratio calculated by using balance sheets and income statements of firms which operated in Borsa Istanbul (BIST). In this research, the relationship between inventories and profitability is investigated by using SPSS-20 software with regression and correlation analysis. The results achieved from three industry departments which exist in study interpreted as comparatively. Accordingly, it is determined that there is a positive relationship between inventory management and profitability in eatables industry. However, it was founded that there is no relationship between inventory management and profitability in weaving industry and wholesale and retail industry.Keywords: profitability, regression analysis, inventory management, working capital
Procedia PDF Downloads 34021069 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.Keywords: recurrent neural networks, global solar radiation, multi-layer perceptron, gradient, root mean square error
Procedia PDF Downloads 45021068 The Effects of Perceived Service Quality on Customers' Satisfaction, Trust and Loyalty in Online Shopping: A Case of Saudi Consumers' Perspectives
Authors: Nawt Almutairi, Ramzi El-Haddadeh
Abstract:
With the extensive increase in the number of online shops, loyalty becomes the most purpose for e-retailers by which they can maintain their exit customers and regular income instead of spending large deal of money to target new segmentation. To obtain customers’ loyalty e-marketers should firstly satisfy customers by providing a high quality of services that could fulfil their demand. They have to satisfy them to trust the web-site then increase their intention to re-visit it. This study intends to investigate to what extend the elements of e-service quality presented in the literature affect customers’ satisfaction and how these influences contribute to customers’ trust and loyalty. Three dimensions of service quality are estimated. The first element is web-site interactivity, which is perceived the quality of interactive support and the accessible communications-tool. The second aspect is security/privacy, which is perceived the quality of controlling security and privacy while transaction over the web-site. The third element is web-design that perceived a pleasant user interface with visual appealing. These elements present positive effects on shoppers’ satisfaction. Thus, To examine the proposed constructs of this research, some measurements scale-items adapted from similar prior studies. Survey data collected online from Saudi customers (n=106) were utilized to test the research hypotheses. After that, the hypotheses were analyzed by using a variety of regression tools. The analytical results of this study propose that perceived quality of interactivity and security/privacy affects customers’ satisfaction. As well as trust seems to be a substantial construct that highly affects loyalty in online shopping. This study provides a developed model to obtain a simple understanding of the series of customers’ loyalty in online shopping. One construct presenting in the research model is web-design appears to be not important antecedent of satisfaction (the path to loyalty) in online shopping.Keywords: e-service, satisfaction, trust, loyalty
Procedia PDF Downloads 26021067 Postmodernism and Metanarrative: Deconstruction of Narrative in a Song of Ice and Fire Fantasy TV Series
Authors: Narjes Azimi
Abstract:
It has been a while that narrative and storytelling turned to be the inevitable part of media. The narrative has so many aspects and among those entire aspects, the fantasy genre is consciously challenging one as fantasy readers are used to reading narratives like good versus evil plot. This paper will analyze the ASOIF TV series as a Meta narrative cultural production that deconstructs the elements of a traditional narrative. This study will shade on a grand narrative perspective from poststructuralism point of view. The theoretical framework is structuralism and post structuralism. Lyotard and Barthes are two main poststructuralists and focus of the study. Lyotard grand narrative elements will analyze in this research study. Fantasy genre generated a number of outstanding authors that explore innovative perspectives. Among all these leading authors George R.R Martin is one of the best. George R. R. Martin’s Fantasy a Song of Ice and Fire picturized the brutal world that seven kingdoms struggling for the power. Since 2011 this production has been followed and watched by millions of audiences all around the world. The methodology is the textual analysis of selected scenes. Martin’s distinctive fantasy style which makes it different from other fantasies, yet this shift does not negate how the previous fantasy writers represent the mentioned concepts of war, and etc., but Martin’ fantasy and left the mature audiences full of uncertainty.Keywords: narrative theory, metanarrative, deconstruction, post-structuralism, Lyotard, Barthes
Procedia PDF Downloads 30521066 The Effect of Environmental, Social, and Governance (ESG) Disclosure on Firms’ Credit Rating and Capital Structure
Authors: Heba Abdelmotaal
Abstract:
This paper explores the impact of the extent of a company's environmental, social, and governance (ESG) disclosure on credit rating and capital structure. The analysis is based on a sample of 202 firms from the 350 FTSE firms over the period of 2008-2013. ESG disclosure score is measured using Proprietary Bloomberg score based on the extent of a company's Environmental, Social, and Governance (ESG) disclosure. The credit rating is measured by The QuiScore, which is a measure of the likelihood that a company will become bankrupt in the twelve months following the date of calculation. The Capital Structure is measured by long term debt ratio. Two hypotheses are test using panel data regression. The results suggested that the higher degree of ESG disclosure leads to better credit rating. There is significant negative relationship between ESG disclosure and the long term debit percentage. The paper includes implications for the transparency which is resulting of the ESG disclosure could support the Monitoring Function. The monitoring role of disclosure is the increasing in the transparency of the credit rating agencies, also it could affect on managers’ actions. This study provides empirical evidence on the material of ESG disclosure on credit ratings changes and the firms’ capital decision making.Keywords: capital structure, credit rating agencies, ESG disclosure, panel data regression
Procedia PDF Downloads 363