Search results for: theoretical model
17937 Experimental Study on Floating Breakwater Anchored by Piles
Authors: Yessi Nirwana Kurniadi, Nira Yunita Permata
Abstract:
Coastline is vulnerable to coastal erosion which damage infrastructure and buildings. Floating breakwaters are applied in order to minimize material cost but still can reduce wave height. In this paper, we investigated floating breakwater anchored by piles based on experimental study in the laboratory with model scale 1:8. Two type of floating model were tested with several combination wave height, wave period and surface water elevation to determined transmission coefficient. This experimental study proved that floating breakwater with piles can prevent wave height up to 27 cm. The physical model shows that ratio of depth to wave length is less than 0.6 and ratio of model width to wave length is less than 0.3. It is confirmed that if those ratio are less than those value, the transmission coefficient is 0.5. The result also showed that the first type model of floating breakwater can reduce wave height by 60.4 % while the second one can reduce up to 55.56 %.Keywords: floating breakwater, experimental study, pile, transimission coefficient
Procedia PDF Downloads 53217936 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 49917935 Control Strategy for a Solar Vehicle Race
Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat
Abstract:
Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.Keywords: electrical vehicle, endurance, optimization, shell eco-marathon
Procedia PDF Downloads 26717934 Checking Energy Efficiency by Simulation Tools: The Case of Algerian Ksourian Models
Authors: Khadidja Rahmani, Nahla Bouaziz
Abstract:
Algeria is known for its rich heritage. It owns an immense historical heritage with a universal reputation. Unfortunately, this wealth is withered because of abundance. This research focuses on the Ksourian model, which constitutes a large portion of this wealth. In fact, the Ksourian model is not just a witness to a great part of history or a vernacular culture, but also it includes a panoply of assets in terms of energetic efficiency. In this context, the purpose of our work is to evaluate the performance of the old techniques which are derived from the Ksourian model , and that using the simulation tools. The proposed method is decomposed in two steps; the first consists of isolate and reintroduce each device into a basic model, then run a simulation series on acquired models. And this in order to test the contribution of each of these dialectal processes. In another scale of development, the second step consists of aggregating all these processes in an aboriginal model, then we restart the simulation, to see what it will give this mosaic on the environmental and energetic plan .The model chosen for this study is one of the ksar units of Knadsa city of Bechar (Algeria). This study does not only show the ingenuity of our ancestors in their know-how, and their adapting power to the aridity of the climate, but also proves that their conceptions subscribe in the current concerns of energy efficiency, and respond to the requirements of sustainable development.Keywords: dialectal processes, energy efficiency, evaluation, Ksourian model, simulation tools
Procedia PDF Downloads 19517933 Seismic Response of Moment Resisting Steel Frame with Hysteresis Envelope Model of Joints
Authors: Krolo Paulina
Abstract:
The seismic response of moment-resisting steel frames depends on the behavior of the joints, especially when they are considered as ductile zones. The aim of this research is to provide a realistic assessment of the moment-resisting steel frame behavior under seismic loading using nonlinear static pushover analysis (N2 method). The hysteresis behavior of the joints in the frame model was described using a new hysteresis envelope model. The obtained seismic response was compared with the results of the seismic analysis obtained for the same steel frame that takes into account the monotonic model of the joints.Keywords: beam-to-column joints, hysteresis envelope model, moment-resisting frame, nonlinear static pushover analysis, N2 method
Procedia PDF Downloads 26517932 Models of Copyrights System
Authors: A. G. Matveev
Abstract:
The copyrights system is a combination of different elements. The number, content and the correlation of these elements are different for different legal orders. The models of copyrights systems display this system in terms of the interaction of economic and author's moral rights. Monistic and dualistic models are the most popular ones. The article deals with different points of view on the monism and dualism in copyright system. A specific model of the copyright in Switzerland in the XXth century is analyzed. The evolution of a French dualistic model of copyright is shown. The author believes that one should talk not about one, but rather about a number of dualism forms of copyright system.Keywords: copyright, exclusive copyright, economic rights, author's moral rights, rights of personality, monistic model, dualistic model
Procedia PDF Downloads 42017931 Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method
Authors: Ho Young Son, Bu Seog Ju, Woo Young Jung
Abstract:
This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures.Keywords: seismic, numerical analysis, FEM, weir, boundary condition
Procedia PDF Downloads 45317930 Sliding Mode Controller for Active Suspension System on a Passenger Car Model
Authors: Nouby M. Ghazaly, Ahmed O. Moaaz, Mostafa Makrahy
Abstract:
The main purpose of a car suspension system is to reduce the vibrations resulting from road roughness. The main objective of this research paper is to decrease vibration and improve passenger comfort through controlling car suspension system using sliding mode control techniques. The mathematical model for passive and active suspensions systems for quarter car model which subject to excitation from different road profiles is obtained. The active suspension system is synthesized based on sliding mode control for a quarter car model. The performance of the sliding mode control is determined through computer simulations using MATLAB and SIMULINK toolbox. The simulated results plotted in time domain, and root mean square values. It is found that active suspension system using sliding mode control improves the ride comfort and decrease vibration.Keywords: quarter car model, active suspension system, sliding mode control, road profile
Procedia PDF Downloads 30917929 Qualitative Analysis of User Experiences and Needs for Educational Chatbots in Higher Education
Authors: Felix Golla
Abstract:
In an era where technology increasingly intersects with education, the potential of chatbots and ChatGPT agents in enhancing student learning experiences in higher education is both significant and timely. This study explores the integration of these AI-driven tools in educational settings, emphasizing their design and functionality to meet the specific needs of students. Recognizing the gap in literature concerning student-centered AI applications in education, this research offers valuable insights into the role and efficacy of chatbots and ChatGPT agents as educational tools. Employing qualitative research methodologies, the study involved conducting semi-structured interviews with university students. These interviews were designed to gather in-depth insights into the students' experiences and expectations regarding the use of AI in learning environments. The High-Performance Cycle Model, renowned for its focus on goal setting and motivation, served as the theoretical framework guiding the analysis. This model helped in systematically categorizing and interpreting the data, revealing the nuanced perceptions and preferences of students regarding AI tools in education. The major findings of the study indicate a strong preference among students for chatbots and ChatGPT agents that offer personalized interaction, adaptive learning support, and regular, constructive feedback. These features were deemed essential for enhancing student engagement, motivation, and overall learning outcomes. Furthermore, the study revealed that students perceive these AI tools not just as passive sources of information but as active facilitators in the learning process, capable of adapting to individual learning styles and needs. In conclusion, this study underscores the transformative potential of chatbots and ChatGPT agents in higher education. It highlights the need for these AI tools to be designed with a student-centered approach, ensuring their alignment with educational objectives and student preferences. The findings contribute to the evolving discourse on AI in education, suggesting a paradigm shift towards more interactive, responsive, and personalized learning experiences. This research not only informs educators and technologists about the desirable features of educational chatbots but also opens avenues for future studies to explore the long-term impact of AI integration in academic curricula.Keywords: chatbot design in education, high-performance cycle model application, qualitative research in AI, student-centered learning technologies
Procedia PDF Downloads 7017928 Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis
Authors: Beata Jackowska-Zduniak
Abstract:
We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism).Keywords: mathematical modeling, ordinary differential equations, endocrine system, delay differential equation
Procedia PDF Downloads 33617927 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 18617926 Prediction of Coronary Heart Disease Using Fuzzy Logic
Authors: Elda Maraj, Shkelqim Kuka
Abstract:
Coronary heart disease causes many deaths in the world. Unfortunately, this problem will continue to increase in the future. In this paper, a fuzzy logic model to predict coronary heart disease is presented. This model has been developed with seven input variables and one output variable that was implemented for 30 patients in Albania. Here fuzzy logic toolbox of MATLAB is used. Fuzzy model inputs are considered as cholesterol, blood pressure, physical activity, age, BMI, smoking, and diabetes, whereas the output is the disease classification. The fuzzy sets and membership functions are chosen in an appropriate manner. Centroid method is used for defuzzification. The database is taken from University Hospital Center "Mother Teresa" in Tirana, Albania.Keywords: coronary heart disease, fuzzy logic toolbox, membership function, prediction model
Procedia PDF Downloads 16317925 A Boundary Fitted Nested Grid Model for Tsunami Computation along Penang Island in Peninsular Malaysia
Authors: Md. Fazlul Karim, Ahmad Izani Md. Ismail, Mohammed Ashaque Meah
Abstract:
This paper focuses on the development of a 2-D Boundary Fitted and Nested Grid (BFNG) model to compute the tsunami propagation of Indonesian tsunami 2004 along the coastal region of Penang in Peninsular Malaysia. In the presence of a curvilinear coastline, boundary fitted grids are suitable to represent the model boundaries accurately. On the other hand, when large gradient of velocity within a confined area is expected, the use of a nested grid system is appropriate to improve the numerical accuracy with the least grid numbers. This paper constructs a shallow water nested and orthogonal boundary fitted grid model and presents computational results of the tsunami impact on the Penang coast due to the Indonesian tsunami of 2004. The results of the numerical simulations are compared with available data.Keywords: boundary fitted nested model, tsunami, Penang Island, 2004 Indonesian Tsunami
Procedia PDF Downloads 32417924 The Status of BIM Adoption in Six Continents
Authors: Wooyoung Jung, Ghang Lee
Abstract:
This paper paper reports the worldwide status of building information modeling (BIM) adoption from the perspectives of the engagement level, the Hype Cycle model, the technology diffusion model, and BIM-uses. An online survey was distributed, and 156 experts from six continents responded. Overall, North America was the most advanced continent, followed by Oceania and Europe. Countries in Asia perceived their phase mainly as slope of enlightenment (mature) in the Hype Cycle model. In the technology diffusion model, the main BIM-users worldwide were “early majority” (third phase), but those in the Middle East/Africa and South America were “early adopters” (second phase). In addition, the more advanced the country, the more number of BIM services employed in general. In summary, North America, Europe, Oceania, and Asia were advancing rapidly toward the mature stage of BIM, whereas the Middle East/Africa and South America were still in the early phase. The simple indexes used in this study may be used to track the worldwide status of BIM adoption in long-term surveys.Keywords: BIM adoption, BIM services, hype cycle model, technology diffusion model
Procedia PDF Downloads 55917923 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions
Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal
Abstract:
We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport
Procedia PDF Downloads 44217922 A Model to Assist Military Mission Planners in Identifying and Assessing Variables Impacting Food Security
Authors: Lynndee Kemmet
Abstract:
The U.S. military plays an increasing role in supporting political stability efforts, and this includes efforts to prevent the food insecurity that can trigger political and social instability. This paper presents a model that assists military commanders in identifying variables that impact food production and distribution in their areas of operation (AO), in identifying connections between variables and in assessing the impacts of those variables on food production and distribution. Through use of the model, military units can better target their data collection efforts and can categorize and analyze data within the data categorization framework most widely-used by military forces—PMESII-PT (Political, Military, Economic, Infrastructure, Information, Physical Environment and Time). The model provides flexibility of analysis in that commanders can target analysis to be highly focused on a specific PMESII-PT domain or variable or conduct analysis across multiple PMESII-PT domains. The model is also designed to assist commanders in mapping food systems in their AOs and then identifying components of those systems that must be strengthened or protected.Keywords: food security, food system model, political stability, US Military
Procedia PDF Downloads 19617921 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation
Procedia PDF Downloads 22717920 A Study on Automotive Attack Database and Data Flow Diagram for Concretization of HEAVENS: A Car Security Model
Authors: Se-Han Lee, Kwang-Woo Go, Gwang-Hyun Ahn, Hee-Sung Park, Cheol-Kyu Han, Jun-Bo Shim, Geun-Chul Kang, Hyun-Jung Lee
Abstract:
In recent years, with the advent of smart cars and the expansion of the market, the announcement of 'Adventures in Automotive Networks and Control Units' at the DEFCON21 conference in 2013 revealed that cars are not safe from hacking. As a result, the HEAVENS model considering not only the functional safety of the vehicle but also the security has been suggested. However, the HEAVENS model only presents a simple process, and there are no detailed procedures and activities for each process, making it difficult to apply it to the actual vehicle security vulnerability check. In this paper, we propose an automated attack database that systematically summarizes attack vectors, attack types, and vulnerable vehicle models to prepare for various car hacking attacks, and data flow diagrams that can detect various vulnerabilities and suggest a way to materialize the HEAVENS model.Keywords: automotive security, HEAVENS, car hacking, security model, information security
Procedia PDF Downloads 36717919 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 8717918 Optimizing Residential Housing Renovation Strategies at Territorial Scale: A Data Driven Approach and Insights from the French Context
Authors: Rit M., Girard R., Villot J., Thorel M.
Abstract:
In a scenario of extensive residential housing renovation, stakeholders need models that support decision-making through a deep understanding of the existing building stock and accurate energy demand simulations. To address this need, we have modified an optimization model using open data that enables the study of renovation strategies at both territorial and national scales. This approach provides (1) a definition of a strategy to simplify decision trees from theoretical combinations, (2) input to decision makers on real-world renovation constraints, (3) more reliable identification of energy-saving measures (changes in technology or behaviour), and (4) discrepancies between currently planned and actually achieved strategies. The main contribution of the studies described in this document is the geographic scale: all residential buildings in the areas of interest were modeled and simulated using national data (geometries and attributes). These buildings were then renovated, when necessary, in accordance with the environmental objectives, taking into account the constraints applicable to each territory (number of renovations per year) or at the national level (renovation of thermal deficiencies (Energy Performance Certificates F&G)). This differs from traditional approaches that focus only on a few buildings or archetypes. This model can also be used to analyze the evolution of a building stock as a whole, as it can take into account both the construction of new buildings and their demolition or sale. Using specific case studies of French territories, this paper highlights a significant discrepancy between the strategies currently advocated by decision-makers and those proposed by our optimization model. This discrepancy is particularly evident in critical metrics such as the relationship between the number of renovations per year and achievable climate targets or the financial support currently available to households and the remaining costs. In addition, users are free to seek optimizations for their building stock across a range of different metrics (e.g., financial, energy, environmental, or life cycle analysis). These results are a clear call to re-evaluate existing renovation strategies and take a more nuanced and customized approach. As the climate crisis moves inexorably forward, harnessing the potential of advanced technologies and data-driven methodologies is imperative.Keywords: residential housing renovation, MILP, energy demand simulations, data-driven methodology
Procedia PDF Downloads 6817917 Heterogeneous Reactions to Digital Opportunities: A Field Study
Authors: Bangaly Kaba
Abstract:
In the global information society, the importance of the Internet cannot be overemphasized. Africa needs access to the powerful information and communication tools of the Internet in order to obtain the resources and efficiency essential for sustainable development. Unfortunately, in 2013, the data from Internetworldstats showed only 15% of African populations have access to Internet. This relative low Internet penetration rate signals a problem that may threaten the economic development, governmental efficiency, and ultimately the global competitiveness of African countries. Many initiatives were undertaken to bring the benefits of the global information revolution to the people of Africa, through connection to the Internet and other Global Information Infrastructure technologies. The purpose is to understand differences between socio-economically advantaged and disadvantaged internet users. From that, we will determine what prevents disadvantaged groups from benefiting from Internet usage. Data were collected through a survey from Internet users in Ivory Coast. The results reveal that Personal network exposure, Self-efficacy and Availability are the key drivers of continued use intention for the socio-economically disadvantaged group. The theoretical and practical implications are also described.Keywords: digital inequality, internet, integrative model, socio-economically advantaged and disadvantaged, use continuance, Africa
Procedia PDF Downloads 46917916 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA
Procedia PDF Downloads 30717915 Further Investigation of α+12C and α+16O Elastic Scattering
Authors: Sh. Hamada
Abstract:
The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both 12C and 16O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+12C and α+16O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (Nr). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data.Keywords: density distribution, double folding, elastic scattering, nuclear rainbow, optical model
Procedia PDF Downloads 23717914 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme
Authors: Cavidan Yakupoglu, Kurt Rohloff
Abstract:
In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE
Procedia PDF Downloads 16317913 Computational Model of Human Cardiopulmonary System
Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek
Abstract:
The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine
Procedia PDF Downloads 18317912 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)
Procedia PDF Downloads 8717911 Political Coercion from Within: Theoretical Convergence in the Strategies of Terrorist Groups, Insurgencies, and Social Movements
Authors: John Hardy
Abstract:
The early twenty-first century national security environment has been characterized by political coercion. Despite an abundance of political commentary on the various forms of non-state coercion leveraged against the state, there is a lack of literature which distinguishes between the mechanisms and the mediums of coercion. Frequently non-state movements seeking to coerce the state are labelled by their tactics, not their strategies. Terrorists, insurgencies and social movements are largely defined by the ways in which they seek to influence the state, rather than by their political aims. This study examines the strategies of coercion used by non-state actors against states. This approach includes terrorist groups, insurgencies, and social movements who seek to coerce state politics. Not all non-state actors seek political coercion, so not all examples of different group types are considered. This approach also excludes political coercion by states, focusing on the non-state actor as the primary unit of analysis. The study applies a general theory of political coercion, which is defined as attempts to change the policies or action of a polity against its will, to the strategies employed by terrorist groups, insurgencies, and social movements. This distinguishes non-state actors’ strategic objectives from their actions and motives, which are variables that are often used to differentiate between types of non-state actors and the labels commonly used to describe them. It also allows for a comparative analysis of theoretical perspectives from the disciplines of terrorism, insurgency and counterinsurgency, and social movements. The study finds that there is a significant degree of overlap in the way that different disciplines conceptualize the mechanism of political coercion by non-state actors. Studies of terrorism and counterterrorism focus more on the notions of cost tolerance and collective punishment, while studies of insurgency focus on a contest of legitimacy between actors, and social movement theory tend to link political objectives, social capital, and a mechanism of influence to leverage against the state. Each discipline has a particular vernacular for the mechanism of coercion, which is often linked to the means of coercion, but they converge on three core theoretical components of compelling a polity to change its policies or actions: exceeding resistance to change, using political or violent punishments, and withholding legitimacy or consent from a government.Keywords: counter terrorism, homeland security, insurgency, political coercion, social movement theory, terrorism
Procedia PDF Downloads 17717910 Prediction of Bubbly Plume Characteristics Using the Self-Similarity Model
Authors: Li Chen, Alex Skvortsov, Chris Norwood
Abstract:
Gas releasing into water can be found in for many industrial situations. This process results in the formation of bubbles and acoustic emission which depends upon the bubble characteristics. If the bubble creation rates (bubble volume flow rate) are of interest, an inverse method has to be used based on the measurement of acoustic emission. However, there will be sound attenuation through the bubbly plume which will influence the measurement and should be taken into consideration in the model. The sound transmission through the bubbly plume depends on the characteristics of the bubbly plume, such as the shape and the bubble distributions. In this study, the bubbly plume shape is modelled using a self-similarity model, which has been normally applied for a single phase buoyant plume. The prediction is compared with the experimental data. It has been found the model can be applied to a buoyant plume of gas-liquid mixture. The influence of the gas flow rate and discharge nozzle size is studied.Keywords: bubbly plume, buoyant plume, bubble acoustics, self-similarity model
Procedia PDF Downloads 28817909 End-to-End Spanish-English Sequence Learning Translation Model
Authors: Vidhu Mitha Goutham, Ruma Mukherjee
Abstract:
The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation
Procedia PDF Downloads 17617908 Interoperable Design Coordination Method for Sharing Communication Information Using Building Information Model Collaboration Format
Authors: Jin Gang Lee, Hyun-Soo Lee, Moonseo Park
Abstract:
The utilization of BIM and IFC allows project participants to collaborate across different areas by consistently sharing interoperable product information represented in a model. Comments or markups generated during the coordination process can be categorized as communication information, which can be shared in less standardized manner. It can be difficult to manage and reuse such information compared to the product information in a model. The present study proposes an interoperable coordination method using BCF (the BIM Collaboration Format) for managing and sharing the communication information during BIM based coordination process. A management function for coordination in the BIM collaboration system is developed to assess its ability to share the communication information in BIM collaboration projects. This approach systematically links communication information during the coordination process to the building model and serves as a type of storage system for retrieving knowledge created during BIM collaboration projects.Keywords: design coordination, building information model, BIM collaboration format, industry foundation classes
Procedia PDF Downloads 435