Search results for: cumulative exposure model
17374 Intergenerational Trauma: Patterns of Child Abuse and Neglect Across Two Generations in a Barbados Cohort
Authors: Rebecca S. Hock, Cyralene P. Bryce, Kevin Williams, Arielle G. Rabinowitz, Janina R. Galler
Abstract:
Background: Findings have been mixed regarding whether offspring of parents who were abused or neglected as children have a greater risk of experiencing abuse or neglect themselves. In addition, many studies on this topic are restricted to physical abuse and take place in a limited number of countries, representing a small segment of the world's population. Methods: We examined relationships between childhood maltreatment history assessed in a subset (N=68) of the original longitudinal birth cohort (G1) of the Barbados Nutrition Study and their now-adult offspring (G2) (N=111) using the Childhood Trauma Questionnaire-Short Form (CTQ-SF). We used Pearson correlations to assess relationships between parent and offspring CTQ-SF total and subscale scores (physical, emotional, and sexual abuse; physical and emotional neglect). Next, we ran multiple regression analyses, using the parental CTQ-SF total score and the parental Sexual Abuse score as primary predictors separately in our models of G2 CTQ-SF (total and subscale scores). Results: G1 total CTQ-SF scores were correlated with G2 offspring Emotional Neglect and total scores. G1 Sexual Abuse history was significantly correlated with G2 Emotional Abuse, Sexual Abuse, Emotional Neglect, and Total Score. In fully-adjusted regression models, parental (G1) total CTQ-SF scores remained significantly associated with G2 offspring reports of Emotional Neglect, and parental (G1) Sexual Abuse was associated with offspring (G2) reports of Emotional Abuse, Physical Abuse, Emotional Neglect, and overall CTQ-SF scores. Conclusions: Our findings support a link between parental exposure to childhood maltreatment and their offspring's self-reported exposure to childhood maltreatment. Of note, there was not an exact correspondence between the subcategory of maltreatment experienced from one generation to the next. Compared with other subcategories, G1 Sexual Abuse history was the most likely to predict G2 offspring maltreatment. Further studies are needed to delineate underlying mechanisms and to develop intervention strategies aimed at preventing intergenerational transmission.Keywords: trauma, family, adolescents, intergenerational trauma, child abuse, child neglect, global mental health, North America
Procedia PDF Downloads 8417373 European Standardization in Nanotechnologies and Relation with International Work: The Standardization Can Help Industry and Regulators in Developing Safe Products
Authors: Patrice Conner
Abstract:
Nanotechnologies have enormous potential to contribute to human flourishing in responsible and sustainable ways. They are rapidly developing field of science, technology and innovation. As enabling technologies, their full scope of applications is potentially very wide. Major implications are expected in many areas, e.g. healthcare, information and communication technologies, energy production and storage, materials science/chemical engineering, manufacturing, environmental protection, consumer products, etc. However, nanotechnologies are unlikely to realize their full potential unless their associated societal and ethical issues are adequately attended. Namely nanotechnologies and nanoparticles may expose humans and the environment to new health risks, possibly involving quite different mechanisms of interference with the physiology of human and environmental species. One of the building blocks of the ‘safe, integrated and responsible’ approach is standardization. Both the Economic and Social Committee and the European Parliament have highlighted the importance to be attached to standardization as a means to accompany the introduction on the market of nanotechnologies and nanomaterials, and a means to facilitate the implementation of regulation. ISO and CEN have respectively started in 2005 and 2006 to deal with selected topics related to this emerging and enabling technology. In the beginning of 2010, EC DG ‘Enterprise and Industry’ addressed the mandate M/461 to CEN, CENELEC and ETSI for standardization activities regarding nanotechnologies and nanomaterials. Thus CEN/TC 352 ‘Nanotechnologies’ has been asked to take the leadership for the coordination in the execution of M/461 (46 topics to be standardized) and to contact relevant European and International Technical committees and interested stakeholders as appropriate (56 structures have been identified). Prior requests from M/461 deal with characterization and exposure of nanomaterials and any matters related to Health, Safety and Environment. Answers will be given to: - What are the structures and how they work? - Where are we right now and how work is going from now onwards? - How CEN’s work and targets deal with and interact with global matters in this field?Keywords: characterization, environmental protection, exposure, health risks, nanotechnologies, responsible and sustainable ways, safety
Procedia PDF Downloads 18817372 Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study
Authors: Laidi Maamar, Hanini Salah
Abstract:
The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model.Keywords: artificial neural network, global solar radiation, solar energy, prediction, Algeria
Procedia PDF Downloads 49817371 Interplay of Physical Activity, Hypoglycemia, and Psychological Factors: A Longitudinal Analysis in Diabetic Youth
Authors: Georges Jabbour
Abstract:
Background and aims: This two-year follow-up study explores the long-term sustainability of physical activity (PA) levels in young people with type 1 diabetes, focusing on the relationship between PA, hypoglycemia, and behavioral scores. The literature highlights the importance of PA and its health benefits, as well as the barriers to engaging in PA practices. Studies have shown that individuals with high levels of vigorous physical activity have higher fear of hypoglycemia (FOH) scores and more hypoglycemia episodes. Considering that hypoglycemia episodes are a major barrier to physical activity, and many studies reported a negative association between PA and high FOH scores, it cannot be guaranteed that those experiencing hypoglycemia over a long period will remain active. Building on that, the present work assesses whether high PA levels, despite elevated hypoglycemia risk, can be maintained over time. The study tracks PA levels at one and two years, correlating them with hypoglycemia instances and Fear of Hypoglycemia (FOH) scores. Materials and methods: A self-administered questionnaire was completed by 61 youth with T1D, and their PA was assessed. Hypoglycemia episodes, fear of hypoglycemia scores and HbA1C levels were collected. All assessments were realized at baseline (visit 0: V0), one year (V1) and two years later (V2). For the purpose of the present work, we explore the relationships between PA levels, hypoglycemia episodes, and FOH scores at each time point. We used multiple linear regression to model the mean outcomes for each exposure of interest. Results: Findings indicate no changes in total moderate to vigorous PA (MVPA) and VPA levels among visits, and HbA1c (%) was negatively correlated with the total amount of VPA per day in minutes (β= -0.44; p=0.01, β= -0.37; p=0.04, and β= -0.66; p=0.01 for V0, V1, and V2, respectively). Our linear regression model reported a significant negative correlation between VPA and FOH across the visits (β=-0.59, p=0.01; β= -0.44, p=0.01; and β= -0.34, p=0.03 for V0, V1, and V2, respectively), and HbA1c (%) was influenced by both the number of hypoglycemic episodes and FOH score at V2 (β=0.48; p=0.02 and β=0.38; p=0.03, respectively). Conclusion: The sustainability of PA levels and HbA1c (%) in young individuals with type 1 diabetes is influenced by various factors, including fear of hypoglycemia. Understanding these complex interactions is essential for developing effective interventions to promote sustained PA levels in this population. Our results underline the necessity of a multi-strategic approach to promoting active lifestyles among diabetic youths. This approach should synergize PA enhancement with vigilant glucose monitoring and effective FOH management.Keywords: physical activity, hypoglycemia, fear of hypoglycemia, youth
Procedia PDF Downloads 2617370 Checking Energy Efficiency by Simulation Tools: The Case of Algerian Ksourian Models
Authors: Khadidja Rahmani, Nahla Bouaziz
Abstract:
Algeria is known for its rich heritage. It owns an immense historical heritage with a universal reputation. Unfortunately, this wealth is withered because of abundance. This research focuses on the Ksourian model, which constitutes a large portion of this wealth. In fact, the Ksourian model is not just a witness to a great part of history or a vernacular culture, but also it includes a panoply of assets in terms of energetic efficiency. In this context, the purpose of our work is to evaluate the performance of the old techniques which are derived from the Ksourian model , and that using the simulation tools. The proposed method is decomposed in two steps; the first consists of isolate and reintroduce each device into a basic model, then run a simulation series on acquired models. And this in order to test the contribution of each of these dialectal processes. In another scale of development, the second step consists of aggregating all these processes in an aboriginal model, then we restart the simulation, to see what it will give this mosaic on the environmental and energetic plan .The model chosen for this study is one of the ksar units of Knadsa city of Bechar (Algeria). This study does not only show the ingenuity of our ancestors in their know-how, and their adapting power to the aridity of the climate, but also proves that their conceptions subscribe in the current concerns of energy efficiency, and respond to the requirements of sustainable development.Keywords: dialectal processes, energy efficiency, evaluation, Ksourian model, simulation tools
Procedia PDF Downloads 19517369 Seismic Response of Moment Resisting Steel Frame with Hysteresis Envelope Model of Joints
Authors: Krolo Paulina
Abstract:
The seismic response of moment-resisting steel frames depends on the behavior of the joints, especially when they are considered as ductile zones. The aim of this research is to provide a realistic assessment of the moment-resisting steel frame behavior under seismic loading using nonlinear static pushover analysis (N2 method). The hysteresis behavior of the joints in the frame model was described using a new hysteresis envelope model. The obtained seismic response was compared with the results of the seismic analysis obtained for the same steel frame that takes into account the monotonic model of the joints.Keywords: beam-to-column joints, hysteresis envelope model, moment-resisting frame, nonlinear static pushover analysis, N2 method
Procedia PDF Downloads 26517368 Models of Copyrights System
Authors: A. G. Matveev
Abstract:
The copyrights system is a combination of different elements. The number, content and the correlation of these elements are different for different legal orders. The models of copyrights systems display this system in terms of the interaction of economic and author's moral rights. Monistic and dualistic models are the most popular ones. The article deals with different points of view on the monism and dualism in copyright system. A specific model of the copyright in Switzerland in the XXth century is analyzed. The evolution of a French dualistic model of copyright is shown. The author believes that one should talk not about one, but rather about a number of dualism forms of copyright system.Keywords: copyright, exclusive copyright, economic rights, author's moral rights, rights of personality, monistic model, dualistic model
Procedia PDF Downloads 42017367 Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method
Authors: Ho Young Son, Bu Seog Ju, Woo Young Jung
Abstract:
This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures.Keywords: seismic, numerical analysis, FEM, weir, boundary condition
Procedia PDF Downloads 45217366 Sliding Mode Controller for Active Suspension System on a Passenger Car Model
Authors: Nouby M. Ghazaly, Ahmed O. Moaaz, Mostafa Makrahy
Abstract:
The main purpose of a car suspension system is to reduce the vibrations resulting from road roughness. The main objective of this research paper is to decrease vibration and improve passenger comfort through controlling car suspension system using sliding mode control techniques. The mathematical model for passive and active suspensions systems for quarter car model which subject to excitation from different road profiles is obtained. The active suspension system is synthesized based on sliding mode control for a quarter car model. The performance of the sliding mode control is determined through computer simulations using MATLAB and SIMULINK toolbox. The simulated results plotted in time domain, and root mean square values. It is found that active suspension system using sliding mode control improves the ride comfort and decrease vibration.Keywords: quarter car model, active suspension system, sliding mode control, road profile
Procedia PDF Downloads 30917365 Predicting Daily Patient Hospital Visits Using Machine Learning
Authors: Shreya Goyal
Abstract:
The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.Keywords: machine learning, SVM, HIPAA, data
Procedia PDF Downloads 6517364 Resolution and Experimental Validation of the Asymptotic Model of a Viscous Laminar Supersonic Flow around a Thin Airfoil
Authors: Eddegdag Nasser, Naamane Azzeddine, Radouani Mohammed, Ensam Meknes
Abstract:
In this study, we are interested in the asymptotic modeling of the two-dimensional stationary supersonic flow of a viscous compressible fluid around wing airfoil. The aim of this article is to solve the partial differential equations of the flow far from the leading edge and near the wall using the triple-deck technique is what brought again in precision according to the principle of least degeneration. In order to validate our theoretical model, these obtained results will be compared with the experimental results. The comparison of the results of our model with experimentation has shown that they are quantitatively acceptable compared to the obtained experimental results. The experimental study was conducted using the AF300 supersonic wind tunnel and a NACA Reduced airfoil model with two pressure Taps on extrados. In this experiment, we have considered the incident upstream supersonic Mach number over a dissymmetric NACA airfoil wing. The validation and the accuracy of the results support our model.Keywords: supersonic, viscous, triple deck technique, asymptotic methods, AF300 supersonic wind tunnel, reduced airfoil model
Procedia PDF Downloads 24017363 Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis
Authors: Beata Jackowska-Zduniak
Abstract:
We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by numerical examples of the model dynamics. This system of equations describes normal activity of the thyroid and also a couple of types of malfunctions (e.g. hyperthyroidism).Keywords: mathematical modeling, ordinary differential equations, endocrine system, delay differential equation
Procedia PDF Downloads 33617362 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.Keywords: control system, hydroponics, machine learning, reinforcement learning
Procedia PDF Downloads 18517361 Mobile Schooling for the Most Vulnerable Children on the Street: An Innovation
Authors: Md. Shakhawat Ullah Chowdhury
Abstract:
Mobile school is an innovative methodology in non-formal education to increase access to education for children during conflict through theatre for education for appropriate basic education to children during conflict. The continuous exposure to harsh environments and the nature of the lifestyles of children in conflict make them vulnerable. However, the mobile school initiative takes into consideration the mobile lifestyle of children in conflict. Schools are provided considering the pocket area of the street children with portable chalkboards, tin of books and materials as communities move. Teaching is multi-grade to ensure all children in the community benefit. The established mobile schools, while focused on basic literacy and numeracy skills according to traditions of the communities. The school teachers are selected by the community and trained by a theatre activist. These teachers continue to live and move with the community and provide continuous education for children in conflict. The model proposed a holistic team work to deliver education focused services to the street children’s pocket area where the team is mobile. The team consists of three members –an educator (theatre worker), a psychological counsellor and paramedics. The mobile team is responsible to educate street children and also play dramas which specially produce on the basis of national curriculum and awareness issues for street children. Children enjoy play and learn about life skills and basic literacy and numeracy skills which may be a pillar of humanitarian aid during conflict.Keywords: vulnerable, children in conflict, mobile schooling, child-friendly
Procedia PDF Downloads 43317360 Prediction of Coronary Heart Disease Using Fuzzy Logic
Authors: Elda Maraj, Shkelqim Kuka
Abstract:
Coronary heart disease causes many deaths in the world. Unfortunately, this problem will continue to increase in the future. In this paper, a fuzzy logic model to predict coronary heart disease is presented. This model has been developed with seven input variables and one output variable that was implemented for 30 patients in Albania. Here fuzzy logic toolbox of MATLAB is used. Fuzzy model inputs are considered as cholesterol, blood pressure, physical activity, age, BMI, smoking, and diabetes, whereas the output is the disease classification. The fuzzy sets and membership functions are chosen in an appropriate manner. Centroid method is used for defuzzification. The database is taken from University Hospital Center "Mother Teresa" in Tirana, Albania.Keywords: coronary heart disease, fuzzy logic toolbox, membership function, prediction model
Procedia PDF Downloads 16117359 A Boundary Fitted Nested Grid Model for Tsunami Computation along Penang Island in Peninsular Malaysia
Authors: Md. Fazlul Karim, Ahmad Izani Md. Ismail, Mohammed Ashaque Meah
Abstract:
This paper focuses on the development of a 2-D Boundary Fitted and Nested Grid (BFNG) model to compute the tsunami propagation of Indonesian tsunami 2004 along the coastal region of Penang in Peninsular Malaysia. In the presence of a curvilinear coastline, boundary fitted grids are suitable to represent the model boundaries accurately. On the other hand, when large gradient of velocity within a confined area is expected, the use of a nested grid system is appropriate to improve the numerical accuracy with the least grid numbers. This paper constructs a shallow water nested and orthogonal boundary fitted grid model and presents computational results of the tsunami impact on the Penang coast due to the Indonesian tsunami of 2004. The results of the numerical simulations are compared with available data.Keywords: boundary fitted nested model, tsunami, Penang Island, 2004 Indonesian Tsunami
Procedia PDF Downloads 32317358 The Status of BIM Adoption in Six Continents
Authors: Wooyoung Jung, Ghang Lee
Abstract:
This paper paper reports the worldwide status of building information modeling (BIM) adoption from the perspectives of the engagement level, the Hype Cycle model, the technology diffusion model, and BIM-uses. An online survey was distributed, and 156 experts from six continents responded. Overall, North America was the most advanced continent, followed by Oceania and Europe. Countries in Asia perceived their phase mainly as slope of enlightenment (mature) in the Hype Cycle model. In the technology diffusion model, the main BIM-users worldwide were “early majority” (third phase), but those in the Middle East/Africa and South America were “early adopters” (second phase). In addition, the more advanced the country, the more number of BIM services employed in general. In summary, North America, Europe, Oceania, and Asia were advancing rapidly toward the mature stage of BIM, whereas the Middle East/Africa and South America were still in the early phase. The simple indexes used in this study may be used to track the worldwide status of BIM adoption in long-term surveys.Keywords: BIM adoption, BIM services, hype cycle model, technology diffusion model
Procedia PDF Downloads 55717357 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions
Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal
Abstract:
We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport
Procedia PDF Downloads 44217356 Impact of Chemical Flooding on Displacement Efficiency in Shallow Carbonate Marine Reservoir (Case Study)
Authors: Tarek Duzan, Walid Eddib
Abstract:
The marine shallow carbonate reservoir (G- Eocene) is one of the biggest mature water drive reservoir of Waha Oil Company. The cumulative oil produced up to date is about to eighty percent of the booked original oil in place at ninety five percent of Water cut. However, the company believes that there is a good amount of remaining oil left need to be recovered. Many laboratory studies have been conducted to see the possibility drain the commercial oil left behind using two types of gases, namely, carbone dioxide and enriched hydrocarbon gas injection. The conclusions of those cases were inconclusive Technically and Economically. Therefore, the company has decided to verify another Tertiary Recovery (EOR) technique that may be applied to the interested reservoir. A global screening criteria and quick Laboratory chemical tests have been conducted by using many types of chemical injection into real rock samples. The outcomes were unique economically and provide a significant increase in the commercial oil left. Finally, the company has started conducting a sector pilot plan before proceeding with a full plan. There are many wellbores available to use in a potential field Enhanced Oil Recovery.Keywords: chemical lab. test, ASP, rock types, oil samples, and global screening criteria
Procedia PDF Downloads 13817355 Prevalence and Risk Factors of Low Back Disorder among Waste Collection Workers: A Systematic Review
Authors: Benedicta Asante, Catherine Trask, Brenna Bath
Abstract:
Background: Waste Collection Workers’ (WCWs) activities contribute greatly to the recycling sector and are an important component of the waste management industry. As the recycling sector evolves, there is the increase in reports of injuries, particularly for common and debilitating musculoskeletal disorders such as low back disorder (LBD). WCWs are likely exposed to diverse work-related hazards that could contribute to LBD. However, there is currently no summary of the state of knowledge on the prevalence and risk factors of LBD within this workforce. Method: A comprehensive search was conducted in Ovid Medline, EMBASE, and Global Health e-publications with search term categories ‘low back disorder’ and ‘waste collection workers’. Two reviewers screened articles at title, abstract, and full-text stages. Data were extracted on study design, sampling strategy, socio-demographics, geographical region, and exposure definition, the definition of LBD, response rate, statistical techniques, LBD prevalence and risk factors. The risk of bias was assessed with a standardized tool. Results: The search of three databases generated 79 studies. Thirty-two studies met the study inclusion criteria for both title and abstract; only thirteen full-text articles met the study criteria and underwent data extraction. The majority of articles reported a 12-month prevalence of LBD between 16-74%. Although none of the included studies quantified relationships between risk factors and LBD, the suggested risk factors for LBD among WCWs included: awkward posture; lifting; pulling; pushing; repetitive motions; work duration; and physical loads. Conclusion: LBD is a major occupational health issue among WCWs. In light of these risks and future growth in this industry, further research should focus on the investigation of risk factors, with more focus on ergonomic exposure assessment, and LBD prevention efforts.Keywords: low back pain, scavenger, waste pickers, waste collection workers
Procedia PDF Downloads 25317354 A Model to Assist Military Mission Planners in Identifying and Assessing Variables Impacting Food Security
Authors: Lynndee Kemmet
Abstract:
The U.S. military plays an increasing role in supporting political stability efforts, and this includes efforts to prevent the food insecurity that can trigger political and social instability. This paper presents a model that assists military commanders in identifying variables that impact food production and distribution in their areas of operation (AO), in identifying connections between variables and in assessing the impacts of those variables on food production and distribution. Through use of the model, military units can better target their data collection efforts and can categorize and analyze data within the data categorization framework most widely-used by military forces—PMESII-PT (Political, Military, Economic, Infrastructure, Information, Physical Environment and Time). The model provides flexibility of analysis in that commanders can target analysis to be highly focused on a specific PMESII-PT domain or variable or conduct analysis across multiple PMESII-PT domains. The model is also designed to assist commanders in mapping food systems in their AOs and then identifying components of those systems that must be strengthened or protected.Keywords: food security, food system model, political stability, US Military
Procedia PDF Downloads 19517353 New Segmentation of Piecewise Moving-Average Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
This paper addresses the problem of the signal segmentation within a Bayesian framework by using reversible jump MCMC algorithm. The signal is modelled by piecewise constant Moving-Average (MA) model where the numbers of segments, the position of change-point, the order and the coefficient of the MA model for each segment are unknown. The reversible jump MCMC algorithm is then used to generate samples distributed according to the joint posterior distribution of the unknown parameters. These samples allow calculating some interesting features of the posterior distribution. The performance of the methodology is illustrated via several simulation results.Keywords: piecewise, moving-average model, reversible jump MCMC, signal segmentation
Procedia PDF Downloads 22717352 A Study on Automotive Attack Database and Data Flow Diagram for Concretization of HEAVENS: A Car Security Model
Authors: Se-Han Lee, Kwang-Woo Go, Gwang-Hyun Ahn, Hee-Sung Park, Cheol-Kyu Han, Jun-Bo Shim, Geun-Chul Kang, Hyun-Jung Lee
Abstract:
In recent years, with the advent of smart cars and the expansion of the market, the announcement of 'Adventures in Automotive Networks and Control Units' at the DEFCON21 conference in 2013 revealed that cars are not safe from hacking. As a result, the HEAVENS model considering not only the functional safety of the vehicle but also the security has been suggested. However, the HEAVENS model only presents a simple process, and there are no detailed procedures and activities for each process, making it difficult to apply it to the actual vehicle security vulnerability check. In this paper, we propose an automated attack database that systematically summarizes attack vectors, attack types, and vulnerable vehicle models to prepare for various car hacking attacks, and data flow diagrams that can detect various vulnerabilities and suggest a way to materialize the HEAVENS model.Keywords: automotive security, HEAVENS, car hacking, security model, information security
Procedia PDF Downloads 36217351 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 8617350 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis
Authors: J. Ritonja, B. Grcar
Abstract:
For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator
Procedia PDF Downloads 24517349 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA
Procedia PDF Downloads 30417348 Further Investigation of α+12C and α+16O Elastic Scattering
Authors: Sh. Hamada
Abstract:
The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both 12C and 16O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+12C and α+16O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (Nr). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data.Keywords: density distribution, double folding, elastic scattering, nuclear rainbow, optical model
Procedia PDF Downloads 23717347 Computational Model of Human Cardiopulmonary System
Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek
Abstract:
The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine
Procedia PDF Downloads 18017346 Functional Instruction Set Simulator (ISS) of a Neural Network (NN) IP with Native BF-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A Functional Model to mimic the functional correctness of a Neural Network Compute Accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of gcc compilers to BF-16 datatype, which we addressed with a native BF-16 generator integrated to our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex Neural Network Accelerator design by proposing a Functional Model-based scoreboard or Software model using SystemC. The proposed Functional Model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT bringing up micro-steps of execution.Keywords: ISA (instruction set architecture), NN (neural network), TLM (transaction-level modeling), GEMM (general matrix multiplication)
Procedia PDF Downloads 8617345 A Study on the False Alarm Rates of MEWMA and MCUSUM Control Charts When the Parameters Are Estimated
Authors: Umar Farouk Abbas, Danjuma Mustapha, Hamisu Idi
Abstract:
It is now a known fact that quality is an important issue in manufacturing industries. A control chart is an integrated and powerful tool in statistical process control (SPC). The mean µ and standard deviation σ parameters are estimated. In general, the multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) are used in the detection of small shifts in joint monitoring of several correlated variables; the charts used information from past data which makes them sensitive to small shifts. The aim of the paper is to compare the performance of Shewhart xbar, MEWMA, and MCUSUM control charts in terms of their false rates when parameters are estimated with autocorrelation. A simulation was conducted in R software to generate the average run length (ARL) values of each of the charts. After the analysis, the results show that a comparison of the false alarm rates of the charts shows that MEWMA chart has lower false alarm rates than the MCUSUM chart at various levels of parameter estimated to the number of ARL0 (in control) values. Also noticed was that the sample size has an advert effect on the false alarm of the control charts.Keywords: average run length, MCUSUM chart, MEWMA chart, false alarm rate, parameter estimation, simulation
Procedia PDF Downloads 222