Search results for: coupled neurons
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1703

Search results for: coupled neurons

323 Knowledge Capital and Manufacturing Firms’ Innovation Management: Exploring the Impact of Transboundary Investment and Assimilative Capacity.

Authors: Suleman Bawa, Ayiku Emmanuel Lartey

Abstract:

Purpose - This paper aims to examine the association between knowledge capital and multinational firms’ innovation management. We again explored the impact of transboundary investment and assimilative capacity between knowledge capital and multinational firms’ innovation management. The vital position of knowledge capital and multinational firms’ innovation management in today’s increasingly volatile environment coupled with fierce competition has been extensively acknowledged by academics and industry investment capitals. Design/methodology/approach - The theoretical association model and an empirical correlation analysis were constructed based on relevant research using data collected from 19 multinational firms in Ghana as the subject, and path analysis was constructed using SPSS 22.0 and AMOS 24.0 to test the formulated hypotheses. Findings - Varied conclusions are drawn consequential from theoretical inferences and empirical tests. For multinational firms, knowledge capital relics positively significant to multinational firms’ innovation management. Multinational firms with advanced knowledge capital likely spawn greater corporations’ innovation management. Second, transboundary investment efficiently intermediates the association between knowledge physical capital, knowledge interactive capital, and corporations’ innovation management. At the same time, this impact is insignificant between knowledge of empirical capital and corporations’ innovation management. Lastly, the impact of transboundary investment and assimilative capacity on the association between knowledge capital and corporations’ innovation management is established. We summarized the implications for managers based on our outcomes. Research limitations/implications - Multinational firms must dynamically build knowledge capital to augment corporations’ innovation management. Conversely, knowledge capital motivates multinational firms to implement transboundary investment and cultivate assimilative capacity. Accordingly, multinational firms can efficiently exploit diverse information to augment their corporate innovation management. Practical implications – This paper presents a comprehensive justification of knowledge capital and manufacturing firms’ innovation management by exploring the impact of transboundary investment and assimilative capacity within the manufacturing industry, its sequential progress, and its associated challenges. Originality/value – This paper is amongst the first to find empirical results to back knowledge capital and manufacturing firms’ innovation management by exploring the impact of transboundary investment and assimilative capacity within the manufacturing industry. Additionally, aligning knowledge as a coordinative instrument is a significant input to our discernment in this area.

Keywords: knowledge capital, transboundary investment, innovation management, assimilative capacity

Procedia PDF Downloads 43
322 Becoming Academic in the Entrepreneurial University: Researcher Identities and Research Impact Development

Authors: Victoria G. Mountford-Brown

Abstract:

The concept of the Entrepreneurial University and emphasis on higher education institutions as both hives of innovation and as producers of future innovators accord special significance to the role of academic researchers in future economic and social prosperity. Researcher development in the UK has embedded an emphasis or ‘enterprise lens’ on developing the capabilities of researchers to support a stable economy whilst providing solutions to societal challenges. However, the notion of the ‘entrepreneurial university’ and what that represents to many academics is met with tension and (dis)engagement in the premises of the ‘knowledge economy’ or ‘academic capitalism.’ Set in a landscape of UK higher education wherein the increasing emphasis on research impact, coupled with increasing competition for scarce funding, has created a ‘climate of performativity’. This research seeks to better understand the ways in which academic identities are (re)constructed in the everyday experiences of doctoral (PGR) and early career researchers (ECRs) as they navigate what is referred to by some as the ‘academic hunger games’. These daily pressures and high expectations of success are part of the identity work PGRs/ECRs undergo. This is often fraught with tension and struggles to adapt to the research environment suggesting a reason for imposter phenomenon to be rife in academia – particularly (but not exclusively) in the early stages of development. This pilot study involves qualitative semi-structured exploratory interviews with a mixed gendered sample of participants from a variety of subject disciplines who have taken part in an intensive 3-day innovation and enterprise program for PGR and ECRs premised on developing personal and research impact. The research seeks to better understand the processes of identity formation of becoming academic and offers a commentary on the notions of ‘imposter phenomenon’ and the exchange and development of resources or capital needed to ‘play the game’ in academia in the context of the ‘entrepreneurial university’. It explores ongoing (re)constructions of what it means to be an academic and the different ways in which social identities may embody and challenge the development of entrepreneurial academic identities. As such, it aims to contribute to our understanding of the innovation ecosystem of academia and the prosperity of academic researchers.

Keywords: entreprenruial development, higher education, identities, researcher development

Procedia PDF Downloads 74
321 Levels of Heavy Metals and Arsenic in Sediment and in Clarias Gariepinus, of Lake Ngami

Authors: Nashaat Mazrui, Oarabile Mogobe, Barbara Ngwenya, Ketlhatlogile Mosepele, Mangaliso Gondwe

Abstract:

Over the last several decades, the world has seen a rapid increase in activities such as deforestation, agriculture, and energy use. Subsequently, trace elements are being deposited into our water bodies, where they can accumulate to toxic levels in aquatic organisms and can be transferred to humans through fish consumption. Thus, though fish is a good source of essential minerals and omega-3 fatty acids, it can also be a source of toxic elements. Monitoring trace elements in fish is important for the proper management of aquatic systems and the protection of human health. The aim of this study was to determine concentrations of trace elements in sediment and muscle tissues of Clarias gariepinus at Lake Ngami, in the Okavango Delta in northern Botswana, during low floods. The fish were bought from local fishermen, and samples of muscle tissue were acid-digested and analyzed for iron, zinc, copper, manganese, molybdenum, nickel, chromium, cadmium, lead, and arsenic using inductively coupled plasma optical emission spectroscopy (ICP-OES). Sediment samples were also collected and analyzed for the elements and for organic matter content. Results show that in all samples, iron was found in the greatest amount while cadmium was below the detection limit. Generally, the concentrations of elements in sediment were higher than in fish except for zinc and arsenic. While the concentration of zinc was similar in the two media, arsenic was almost 3 times higher in fish than sediment. To evaluate the risk to human health from fish consumption, the target hazard quotient (THQ) and cancer risk for an average adult in Botswana, sub-Saharan Africa, and riparian communities in the Okavango Delta was calculated for each element. All elements were found to be well below regulatory limits and do not pose a threat to human health except arsenic. The results suggest that other benthic feeding fish species could potentially have high arsenic levels too. This has serious implications for human health, especially riparian households to whom fish is a key component of food and nutrition security.

Keywords: Arsenic, African sharp tooth cat fish, Okavango delta, trace elements

Procedia PDF Downloads 170
320 Geochemical and Petrological Survey in Northern Ethiopia Basement Rocks for Investigation of Gold and Base Metal Mineral Potential in Finarwa, Southeast Tigray, Ethiopia

Authors: Siraj Beyan Mohamed, Woldia University

Abstract:

The study is accompanied in northern Ethiopian basement rocks, Finarwa area, and its surrounding areas, south eastern Tigray. From the field observations, the geology of the area haven been described and mapped based on mineral composition, texture, structure, and colour of both fresh and weather rocks. Inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) have conducted to analysis gold and base metal mineralization. The ore mineral under microscope are commonly base metal sulphides pyrrhotite, Chalcopyrite, pentilanditeoccurring in variable proportions. Galena, chalcopyrite, pyrite, and gold mineral are hosted in quartz vein. Pyrite occurs both in quartz vein and enclosing rocks as a primary mineral. The base metal sulfides occur as disseminated, vein filling, and replacement. Geochemical analyses result determination of the threshold of geochemical anomalies is directly related to the identification of mineralization information. From samples, stream sediment samples and the soil samples indicated that the most promising mineralization occur in the prospect area are gold(Au), copper (Cu), and zinc (Zn). This is also supported by the abundance of chalcopyrite and sphalerite in some highly altered samples. The stream sediment geochemical survey data shows relatively higher values for zinc compared to Pb and Cu. The moderate concentration of the base metals in some of the samples indicates availability base metal mineralization in the study area requiring further investigation. The rock and soil geochemistry shows the significant concentration of gold with maximum value of 0.33ppm and 0.97 ppm in the south western part of the study area. In Finarwa, artisanal gold mining has become an increasingly widespread economic activity of the local people undertaken by socially differentiated groups with a wide range of education levels and economic backgrounds incorporating a wide variety of ‘labour intensive activities without mechanisation.

Keywords: gold, base metal, anomaly, threshold

Procedia PDF Downloads 74
319 Analysing the Perception of Climate Hazards on Biodiversity Conservation in Mining Landscapes within Southwestern Ghana

Authors: Salamatu Shaibu, Jan Hernning Sommer

Abstract:

Integrating biodiversity conservation practices in mining landscapes ensures the continual provision of various ecosystem services to the dependent communities whilst serving as ecological insurance for corporate mining when purchasing reclamation security bonds. Climate hazards such as long dry seasons, erratic rainfall patterns, and extreme weather events contribute to biodiversity loss in addition to the impact due to mining. Both corporate mining and mine-fringe communities perceive the effect of climate on biodiversity from the context of the benefits they accrue, which motivate their conservation practices. In this study, pragmatic approaches including semi-structured interviews, field visual observation, and review were used to collect data on corporate mining employees and households of fringing communities in the southwestern mining hub. The perceived changes in the local climatic conditions and the consequences on environmental management practices that promote biodiversity conservation were examined. Using a thematic content analysis tool, the result shows that best practices such as concurrent land rehabilitation, reclamation ponds, artificial wetlands, land clearance, and topsoil management are directly affected by prolonging long dry seasons and erratic rainfall patterns. Excessive dust and noise generation directly affect both floral and faunal diversity coupled with excessive fire outbreaks in rehabilitated lands and nearby forest reserves. Proposed adaptive measures include engaging national conservation authorities to promote reforestation projects around forest reserves. National government to desist from using permit for mining concessions in forest reserves, engaging local communities through educational campaigns to control forest encroachment and burning, promoting community-based resource management to promote community ownership, and provision of stricter environmental legislation to compel corporate, artisanal, and small scale mining companies to promote biodiversity conservation.

Keywords: biodiversity conservation, climate hazards, corporate mining, mining landscapes

Procedia PDF Downloads 187
318 Development of a Rice Fortification Technique Using Vacuum Assisted Rapid Diffusion for Low Cost Encapsulation of Fe and Zn

Authors: R. A. C. H. Seneviratne, M. Gunawardana, R. P. N. P. Rajapakse

Abstract:

To address the micronutrient deficiencies in the Asian region, the World Food Program in its current mandate highlights the requirement of employing efficient fortification of micronutrients in rice, under the program 'Scaling-up Rice Fortification in Asia'. The current industrial methods of rice fortification with micronutrients are not promising due to poor permeation or retention of fortificants. This study was carried out to develop a method to improve fortification of micronutrients in rice by removing the air barriers for diffusing micronutrients through the husk. For the purpose, soaking stage of paddy was coupled with vacuum (- 0.6 bar) for different time periods. Both long and short grain varieties of paddy (BG 352 and BG 358, respectively) initially tested for water uptake during hot soaking (70 °C) under vacuum (28.5 and 26.15%, respectively) were significantly (P < 0.05) higher than that of non-vacuum conditions (25.24 and 25.45% respectively), exhibiting the effectiveness of water diffusion into the rice grains through the cleared pores under negative pressure. To fortify the selected micronutrients (iron and zinc), paddy was vacuum-soaked in Fe2+ or Zn2+ solutions (500 ppm) separately for one hour, and continued soaking for another 3.5 h without vacuum. Significantly (P<0.05) higher amounts of Fe2+ and Zn2+ were observed throughout the soaking period, in both short and long grain varieties of rice compared to rice treated without vacuum. To achieve the recommended limits of World Food Program standards for fortified iron (40-48 mg/kg) and zinc (60-72 mg/kg) in rice, soaking was done with different concentrations of Fe2+ or Zn2+ for varying time periods. For both iron and zinc fortifications, hot soaking (70 °C) in 400 ppm solutions under vacuum (- 0.6 bar) during the first hour followed by 2.5 h under atmospheric pressure exhibited the optimum fortification (Fe2+: 46.59±0.37 ppm and Zn2+: 67.24±1.36 ppm) with a greater significance (P < 0.05) compared to the controls (Fe2+: 38.84±0.62 ppm and Zn2+: 52.55±0.55 ppm). This finding was further confirmed by the XRF images, clearly showing a greater fixation of Fe2+ and Zn2+ in the rice grains under vacuum treatment. Moreover, there were no significant (P>0.05) differences among both Fe2+ and Zn2+ contents in fortified rice even after polishing and washing, confirming their greater retention. A seven point hedonic scale showed that the overall acceptability for both iron and zinc fortified rice were significantly (P < 0.05) higher than the parboiled rice without fortificants. With all the drawbacks eliminated, per kilogram cost will be less than US$ 1 for both iron and zinc fortified rice. The new method of rice fortification studied and developed in this research, can be claimed as the best method in comparison to other rice fortification methods currently deployed.

Keywords: fortification, vacuum assisted diffusion, micronutrients, parboiling

Procedia PDF Downloads 230
317 Impact of Land-Use and Climate Change on the Population Structure and Distribution Range of the Rare and Endangered Dracaena ombet and Dobera glabra in Northern Ethiopia

Authors: Emiru Birhane, Tesfay Gidey, Haftu Abrha, Abrha Brhan, Amanuel Zenebe, Girmay Gebresamuel, Florent Noulèkoun

Abstract:

Dracaena ombet and Dobera glabra are two of the most rare and endangered tree species in dryland areas. Unfortunately, their sustainability is being compromised by different anthropogenic and natural factors. However, the impacts of ongoing land use and climate change on the population structure and distribution of the species are less explored. This study was carried out in the grazing lands and hillside areas of the Desa'a dry Afromontane forest, northern Ethiopia, to characterize the population structure of the species and predict the impact of climate change on their potential distributions. In each land-use type, abundance, diameter at breast height, and height of the trees were collected using 70 sampling plots distributed over seven transects spaced one km apart. The geographic coordinates of each individual tree were also recorded. The results showed that the species populations were characterized by low abundance and unstable population structure. The latter was evinced by a lack of seedlings and mature trees. The study also revealed that the total abundance and dendrometric traits of the trees were significantly different between the two land uses. The hillside areas had a denser abundance of bigger and taller trees than the grazing lands. Climate change predictions using the MaxEnt model highlighted that future temperature increases coupled with reduced precipitation would lead to significant reductions in the suitable habitats of the species in northern Ethiopia. The species' suitable habitats were predicted to decline by 48–83% for D. ombet and 35–87% for D. glabra. Hence, to sustain the species populations, different strategies should be adopted, namely the introduction of alternative livelihoods (e.g., gathering NTFP) to reduce the overexploitation of the species for subsistence income and the protection of the current habitats that will remain suitable in the future using community-based exclosures. Additionally, the preservation of the species' seeds in gene banks is crucial to ensure their long-term conservation.

Keywords: grazing lands, hillside areas, land-use change, MaxEnt, range limitation, rare and endangered tree species

Procedia PDF Downloads 60
316 Portable and Parallel Accelerated Development Method for Field-Programmable Gate Array (FPGA)-Central Processing Unit (CPU)- Graphics Processing Unit (GPU) Heterogeneous Computing

Authors: Nan Hu, Chao Wang, Xi Li, Xuehai Zhou

Abstract:

The field-programmable gate array (FPGA) has been widely adopted in the high-performance computing domain. In recent years, the embedded system-on-a-chip (SoC) contains coarse granularity multi-core CPU (central processing unit) and mobile GPU (graphics processing unit) that can be used as general-purpose accelerators. The motivation is that algorithms of various parallel characteristics can be efficiently mapped to the heterogeneous architecture coupled with these three processors. The CPU and GPU offload partial computationally intensive tasks from the FPGA to reduce the resource consumption and lower the overall cost of the system. However, in present common scenarios, the applications always utilize only one type of accelerator because the development approach supporting the collaboration of the heterogeneous processors faces challenges. Therefore, a systematic approach takes advantage of write-once-run-anywhere portability, high execution performance of the modules mapped to various architectures and facilitates the exploration of design space. In this paper, A servant-execution-flow model is proposed for the abstraction of the cooperation of the heterogeneous processors, which supports task partition, communication and synchronization. At its first run, the intermediate language represented by the data flow diagram can generate the executable code of the target processor or can be converted into high-level programming languages. The instantiation parameters efficiently control the relationship between the modules and computational units, including two hierarchical processing units mapping and adjustment of data-level parallelism. An embedded system of a three-dimensional waveform oscilloscope is selected as a case study. The performance of algorithms such as contrast stretching, etc., are analyzed with implementations on various combinations of these processors. The experimental results show that the heterogeneous computing system with less than 35% resources achieves similar performance to the pure FPGA and approximate energy efficiency.

Keywords: FPGA-CPU-GPU collaboration, design space exploration, heterogeneous computing, intermediate language, parameterized instantiation

Procedia PDF Downloads 84
315 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler

Authors: Ruth Diego, Luis M. Romeo, Antonio Morán

Abstract:

In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.

Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas

Procedia PDF Downloads 81
314 Access to Natural Resources in the Cameroonian Part of the Logone Basin: A Driver and Mitigation Tool to Ethnical Conflicts

Authors: Bonguen Onouck Rolande Carole, Ndongo Barthelemy

Abstract:

The climate change effects on the Lake Chad, coupled with population growth, have pushed large masses of people of various origins towards the lower part of the lower Logonewatershed in search of the benefits of environmental services, causing pressure on the environment and its resources. Economic services are therefore threatened, and the decrease in resources contributes to the deterioration of the social wellbeing resulting to conflicts among/between local communities, immigrants, displaced people, and foreigners. This paper is an information contribution on ethnical conflicts drivers in the area and the provided local management mechanisms such can help mitigate present or future conflicts in similar areas. It also prints out the necessity to alleviate water access deficit and encourage good practices for the population wellbeing. In order to meet the objective, in 2018, through the interface of the World Bank-Cameroon project-PULCI, data were collected on the field directly by discussing with the population and visiting infrastructures, indirectly by a questionnaire survey. Two administrative divisions were chosen (Logoneet Chari, Mayo-Danay) in which targeted localities were Zina, Mazera, Lahai, Andirni near the Waza Park and Yagoua, Tekele, Pouss, respectively. Due to some sociocultural and religious reasons, some information were acquired through the traditional chiefs. A desk study analysis based on resources access and availability conflicts history, and management mechanism was done. As results, roots drivers of ethnical conflicts are struggles over natural resources access, and the possibility of conflicts increases as the scarcity and vulnerabilities persist, creating more sociocultural gaps and tensions. The mitigation mechanisms though fruitful, are limited. There is poor documentation on the topic, the resources management policies of this basin are unsuitable and ineffective for some. Therefore, the restoration of environmental and ecosystems, the mitigation of climate change effects, and food insecurity are the challenges that must be met to alleviate conflicts in these localities.

Keywords: ethnic, communities, conflicts, mitigation mechanisms, natural resources, logone basin

Procedia PDF Downloads 78
313 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet

Abstract:

The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.

Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines

Procedia PDF Downloads 151
312 Biochar from Empty Fruit Bunches Generated in the Palm Oil Extraction and Its Nutrients Contribution in Cultivated Soils with Elaeis guineensis in Casanare, Colombia

Authors: Alvarado M. Lady G., Ortiz V. Yaylenne, Quintero B. Quelbis R.

Abstract:

The oil palm sector has seen significant growth in Colombia after the insertion of policies to stimulate the use of biofuels, which eventually contributes to the reduction of greenhouse gases (GHG) that deteriorate not only the environment but the health of people. However, the policy of using biofuels has been strongly questioned by the impacts that can generate; an example is the increase of other more harmful GHGs like the CH₄ that underlies the amount of solid waste generated. Casanare's department is estimated be one of the major producers of palm oil of the country given that has recently expanded its sowed area, which implies an increase in waste generated primarily in the industrial stage. For this reason, the following study evaluated the agronomic potential of the biochar obtained from empty fruit bunches and its nutritional contribution in cultivated soils with Elaeis guineensis in Casanare, Colombia. The biochar was obtained by slow pyrolysis of the clusters in a retort oven at an average temperature of 190 °C and a residence time of 8 hours. The final product was taken to the laboratory for its physical and chemical analysis as well as a soil sample from a cultivation of Elaeis guineensis located in Tauramena-Casanare. With the results obtained plus the bibliographical reports of the nutrient demand in this cultivation, the possible nutritional contribution of the biochar was determined. It is estimated that the cultivation requirements of nitrogen is 12.1 kg.ha⁻¹, potassium is 59.3 kg.ha⁻¹, magnesium is -31.5 kg.ha⁻¹ and phosphorus is 5.6 kg.ha⁻¹ obtaining a biochar contribution of 143.1 kg.ha⁻¹, 1204.5 kg.ha⁻¹, 39.2 kg.ha⁻¹ and 71.6 kg.ha⁻¹ respectively. The incorporation of biochar into the soil would significantly improve the concentrations of N, P, K and Mg, nutrients considered important in the yield of palm oil, coupled with the importance of nutrient recycling in agricultural production systems sustainable. The biochar application improves the physical properties of soils, mainly in the humidity retention. On the other hand, it regulates the availability of nutrients for plants absorption, with economic savings in the application of synthetic fertilizers and water by irrigation. It also becomes an alternative to manage agricultural waste, reducing the involuntary emissions of greenhouse gases to the environment by decomposition in the field, reducing the CO₂ content in the atmosphere.

Keywords: biochar, nutrient recycling, oil palm, pyrolysis

Procedia PDF Downloads 135
311 Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass.

Keywords: acoustic emission, borosilicate-crown glass, surface roughness, ultra high precision grinding

Procedia PDF Downloads 274
310 Assessment of Selected Marine Organisms from Malaysian Coastal Areas for Inhibitory Activity against the Chikungunya Virus

Authors: Yik Sin Chan, Nam Weng Sit, Fook Yee Chye, van Ofwegen Leen, de Voogd Nicole, Kong Soo Khoo

Abstract:

Chikungunya fever is an arboviral disease transmitted by the Aedes mosquitoes. It has resulted in epidemics of the disease in tropical countries in the Indian Ocean and South East Asian regions. The recent spread of this disease to the temperate countries such as France and Italy, coupled with the absence of vaccines and effective antiviral drugs make chikungunya fever a worldwide health threat. This study aims to investigate the anti-chikungunya virus activity of selected marine organism samples collected from Malaysian coastal areas, including seaweeds (Caulerpa racemosa, Caulerpa sertularioides and Kappaphycus alvarezii), a soft coral (Lobophytum microlobulatum) and a sponge (Spheciospongia vagabunda). Following lyophilization (oven drying at 40C for K. alvarezii) and grinding to powder form, each sample was subjected to sequential solvent extraction using hexane, chloroform, ethyl acetate, ethanol, methanol and distilled water in order to extract bioactive compounds. The antiviral activity was evaluated using monkey kidney epithelial (Vero) cells infected with the virus (multiplicity of infection=1). The cell viability was determined by Neutral Red uptake assay. 70% of the 30 extracts showed weak inhibitory activity with cell viability ≤30%. Seven of the extracts exhibited moderate inhibitory activity (cell viability: 31%-69%). These were the chloroform, ethyl acetate, ethanol and methanol extracts of C. racemosa; chloroform and ethyl acetate extracts of L. microlobulatum; and the chloroform extract of C. sertularioides. Only the hexane and ethanol extracts of L. microlobulatum showed strong inhibitory activity against the virus, resulting in cell viabilities (mean±SD; n=3) of 73.3±2.6% and 79.2±0.9%, respectively. The corresponding mean 50% effective concentrations (EC50) for the extracts were 14.2±0.2 and 115.3±1.2 µg/mL, respectively. The ethanol extract of the soft coral L. microlobulatum appears to hold the most promise for further characterization of active principles as it possessed greater selectivity index (SI>5.6) compared to the hexane extract (SI=2.1).

Keywords: antiviral, seaweed, sponge, soft coral, vero cell

Procedia PDF Downloads 263
309 Non Destructive Ultrasound Testing for the Determination of Elastic Characteristics of AlSi7Zn3Cu2Mg Foundry Alloy

Authors: A. Hakem, Y. Bouafia

Abstract:

Characterization of materials used for various mechanical components is of great importance in their design. Several studies were conducted by various authors in order to improve their physical and/or chemical properties in general and mechanical or metallurgical properties in particular. The foundry alloy AlSi7Zn3Cu2Mg is one of the main components constituting the various mechanisms for the implementation of applications and various industrial projects. Obtaining a reliable product is not an easy task; several results proposed by different authors show sometimes results that can contradictory. Due to their high mechanical characteristics, these alloys are widely used in engineering. Silicon improves casting properties and magnesium allows heat treatment. It is thus possible to obtain various degrees of hardening and therefore interesting compromise between tensile strength and yield strength, on one hand, and elongation, on the other hand. These mechanical characteristics can be further enhanced by a series of mechanical treatments or heat treatments. Their light weight coupled with high mechanical characteristics, aluminum alloys are very much used in cars and aircraft industry. The present study is focused on the influence of heat treatments which cause significant micro structural changes, usually hardening by variation of annealing temperatures by increments of 10°C and 20°C on the evolution of the main elastic characteristics, the resistance, the ductility and the structural characteristics of AlSi7Zn3Cu2Mg foundry alloy cast in sand by gravity. These elastic properties are determined in three directions for each specimen of dimensions 200x150x20 mm³ by the ultrasonic method based on acoustic or elastic waves. The hardness, the micro hardness and the structural characteristics are evaluated by a non-destructive method. The aim of this work is to study the hardening ability of AlSi7Zn3Cu2Mg alloy by considering ten states. To improve the mechanical properties obtained with the raw casting, one should use heat treatment for structural hardening; the addition of magnesium is necessary to increase the sensitivity to this specific heat treatment: Treatment followed by homogenization which generates a diffusion of atoms in a substitution solid solution inside a hardening furnace at 500°C during 8h, followed immediately by quenching in water at room temperature 20 to 25°C, then an ageing process for 17h at room temperature and at different annealing temperature (150, 160, 170, 180, 190, 240, 200, 220 and 240°C) for 20h in an annealing oven. The specimens were allowed to cool inside the oven.

Keywords: aluminum, foundry alloy, magnesium, mechanical characteristics, silicon

Procedia PDF Downloads 240
308 A Parametric Investigation into the Free Vibration and Flutter Characteristics of High Aspect Ratio Aircraft Wings Using Polynomial Distributions of Stiffness and Mass Properties

Authors: Ranjan Banerjee, W. D. Gunawardana

Abstract:

The free vibration and flutter analysis plays a major part in aircraft design which is indeed, a mandatory requirement. In particular, high aspect ratio transport airliner wings are prone to free vibration and flutter problems that must be addressed during the design process as demanded by the airworthiness authorities. The purpose of this paper is to carry out a detailed free vibration and flutter analysis for a wide range of high aspect ratio aircraft wings and generate design curves to provide useful visions and understandings of aircraft design from an aeroelastic perspective. In the initial stage of the investigation, the bending and torsional stiffnesses of a number of transport aircraft wings are looked at and critically examined to see whether it is possible to express the stiffness distributions in polynomial form, but in a sufficiently accurate manner. A similar attempt is made for mass and mass moment of inertia distributions of the wing. Once the choice of stiffness and mass distributions in polynomial form is made, the high aspect ratio wing is idealised by a series of bending-torsion coupled beams from a structural standpoint. Then the dynamic stiffness method is applied to compute the natural frequencies and mode shape of the wing. Next the wing is idealised aerodynamically and to this end, unsteady aerodynamic of Theodorsen type is employed to represent the harmonically oscillating wing. Following this step, a normal mode method through the use of generalised coordinates is applied to formulate the flutter problem. In essence, the generalised mass, stiffness and aerodynamic matrices are combined to obtain the flutter matrix which is subsequently solved in the complex domain to determine the flutter speed and flutter frequency. In the final stage of the investigation, an exhaustive parametric study is carried out by varying significant wing parameters to generate design curves which help to predict the free vibration and flutter behaviour of high aspect ratio transport aircraft wings in a generic manner. It is in the aeroelastic context of aircraft design where the results are expected to be most useful.

Keywords: high-aspect ratio wing, flutter, dynamic stiffness method, free vibration, aeroelasticity

Procedia PDF Downloads 262
307 Nitriding of Super-Ferritic Stainless Steel by Plasma Immersion Ion Implantation in Radio Frequency and Microwave Plasma System

Authors: H. Bhuyan, S. Mändl, M. Favre, M. Cisternas, A. Henriquez, E. Wyndham, M. Walczak, D. Manova

Abstract:

The 470 Li-24 Cr and 460Li-21 Cr are two alloys belonging to the next generation of super-ferritic nickel free stainless steel grades, containing titanium (Ti), niobium (Nb) and small percentage of carbon (C) and nitrogen (N). The addition of Ti and Nb improves in general the corrosion resistance while the low interstitial content of C and N assures finer precipitates and greater ductility compared to conventional ferritic grades. These grades are considered an economic alternative to AISI 316L and 304 due to comparable or superior corrosion. However, since 316L and 304 can be nitrided to improve the mechanical surface properties like hardness and wear; it is hypothesize that the tribological properties of these super-ferritic stainless steels grades can also be improved by plasma nitriding. Thus two sets of plasma immersion ion implantation experiments have been carried out, one with a high pressure capacitively coupled radio frequency plasma at PUC Chile and the other using a low pressure microwave plasma at IOM Leipzig, in order to explore further improvements in the mechanical properties of 470 Li-24 Cr and 460Li-21 Cr steel. Nitrided and unnitrided substrates have been subsequently investigated using different surface characterization techniques including secondary ion mass spectroscopy, scanning electron microscopy, energy dispersive x-ray analysis, Vickers hardness, wear resistance, as well as corrosion test. In most of the characterizations no major differences have been observed for nitrided 470 Li-24 Cr and 460Li-21 Cr. Due to the ion bombardment, an increase in the surface roughness is observed for higher treatment temperature, independent of the steel types. The formation of chromium nitride compound takes place only at a treatment temperature around 4000C-4500C, or above. However, corrosion properties deteriorate after treatment at higher temperatures. The physical characterization results show up to 25 at.% of nitrogen for a diffusion zone of 4-6 m, and a 4-5 times increase in hardness for different experimental conditions. The samples implanted with temperature higher than 400 °C presented a wear resistance around two orders of magnitude higher than the untreated substrates. The hardness is apparently affected by the different roughness of the samples and their different profile of nitrogen.

Keywords: ion implantation, plasma, RF and microwave plasma, stainless steel

Procedia PDF Downloads 446
306 Spatial Distribution and Source Identification of Trace Elements in Surface Soil from Izmir Metropolitan Area

Authors: Melik Kara, Gulsah Tulger Kara

Abstract:

The soil is a crucial component of the ecosystem, and in industrial and urban areas it receives large amounts of trace elements from several sources. Therefore, accumulated pollutants in surface soils can be transported to different environmental components, such as deep soil, water, plants, and dust particles. While elemental contamination of soils is caused mainly by atmospheric deposition, soil also affects the air quality since enriched trace elemental contents in atmospheric particulate matter originate from resuspension of polluted soils. The objectives of this study were to determine the total and leachate concentrations of trace elements in soils of city area in Izmir and characterize their spatial distribution and to identify the possible sources of trace elements in surface soils. The surface soil samples were collected from 20 sites. They were analyzed for total element concentrations and leachate concentrations. Analyses of trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hf, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). The elemental concentrations were calculated along with overall median, kurtosis, and skewness statistics. Elemental composition indicated that the soil samples were dominated by crustal elements such as Si, Al, Fe, Ca, K, Mg and the sea salt element, Na which is typical for Aegean region. These elements were followed by Ti, P, Mn, Ba and Sr. On the other hand, Zn, Cr, V, Pb, Cu, and Ni (which are anthropogenic based elements) were measured as 61.6, 39.4, 37.9, 26.9, 22.4, and 19.4 mg/kg dw, respectively. The leachate element concentrations were showed similar sorting although their concentrations were much lower than total concentrations. In the study area, the spatial distribution patterns of elemental concentrations varied among sampling sites. The highest concentrations were measured in the vicinity of industrial areas and main roads. To determine the relationships among elements and to identify the possible sources, PCA (Principal Component Analysis) was applied to the data. The analysis resulted in six factors. The first factor exhibited high loadings of Co, K, Mn, Rb, V, Al, Fe, Ni, Ga, Se, and Cr. This factor could be interpreted as residential heating because of Co, K, Rb, and Se. The second factor associated positively with V, Al, Fe, Na, Ba, Ga, Sr, Ti, Se, and Si. Therefore, this factor presents mixed city dust. The third factor showed high loadings with Fe, Ni, Sb, As, Cr. This factor could be associated with industrial facilities. The fourth factor associated with Cu, Mo, Zn, Sn which are the marker elements of traffic. The fifth factor presents crustal dust, due to its high correlation with Si, Ca, and Mg. The last factor is loaded with Pb and Cd emitted from industrial activities.

Keywords: trace elements, surface soil, source apportionment, Izmir

Procedia PDF Downloads 115
305 Examining the Relationship Between Job Stress And Burnout Among Academic Staff During The Covid-19 Pandemic; The Importance Of Emotional Intelligence

Authors: Parisa Gharibi Khoshkar

Abstract:

The global outbreak of Covid-19 forced a swift shift in the education sector, transitioning from traditional in-person settings to remote online setups in a short period. This abrupt change, coupled with health risks and other stressors such as the lack of social interaction, has had a negative impact on academic staff, leading to increased job-related stress and psychological pressures that can result in burnout. To address this, the current research aims to investigate the relationship between job stress and burnout among academic staff in Hebron, Palestine. Furthermore, this study examines the moderating role of emotional intelligence to gain a deeper understanding of its effects in reducing burnout among academic staff and teachers. This research posits that emotional intelligence plays a vital role in helping individuals manage job-related stress and anxiety, thereby preventing burnout. Using a self-administered questionnaire, the study gathered data from 185 samples comprising teachers and administrative staff from two universities in Hebron. The data was analyzed using moderated regression analysis, ANOVA model, and interaction plots. The findings indicate that work-related stress has a direct and significant influence on burnout. Moreover, the current results highlight that emotional intelligence serves as a key determinant in managing the negative effects of the pandemic-induced stress that can lead to burnout among individuals. Given the high-demand nature of the education sector, this research strongly recommends that school authorities take proactive measures to provide much-needed support to academic staff, enabling them to better cope with job stress and fostering an environment that prioritizes individuals' wellbeing. The results of this study hold practical implications for both scholars and practitioners, as they highlight the importance of emotional intelligence in managing stress and anxiety effectively. Understanding the significance of emotional intelligence can aid in implementing targeted interventions and support systems to promote the well-being and resilience of academic staff amidst challenging circumstances.

Keywords: job stress, burnout, employee wellbeing, emotional intelligence, industrial organizational psychology, human resource management, organizational psychology

Procedia PDF Downloads 40
304 Agro-Morphological Traits Based Genetic Diversity Analysis of ‘Ethiopian Dinich’ Plectranthus edulis (Vatke) Agnew Populations Collected from Diverse Agro-Ecologies in Ethiopia

Authors: Fekadu Gadissa, Kassahun Tesfaye, Kifle Dagne, Mulatu Geleta

Abstract:

‘Ethiopian dinich’ also called ‘Ethiopian potato’ is one of the economically important ‘orphan’ edible tuber crops indigenous to Ethiopia. We evaluated the morphological and agronomic traits performances of 174 samples from Ethiopia at multiple locations using 12 qualitative and 16 quantitative traits, recorded at the correct growth stages. We observed several morphotypes and phenotypic variations for qualitative traits along with a wide range of mean performance values for all quantitative traits. Analysis of variance for each quantitative trait showed a highly significant (p<0.001) variation among the collections with eventually non-significant variation for environment-traits interaction for all but flower length. A comparatively high phenotypic and genotypic coefficient of variation was observed for plant height, days to flower initiation, days to 50% flowering and tuber number per hill. Moreover, the variability and coefficients of variation due to genotype-environment interaction was nearly zero for all the traits except flower length. High genotypic coefficients of variation coupled with a high estimate of broad sense heritability and high genetic advance as a percent of collection mean were obtained for tuber weight per hill, number of primary branches per plant, tuber number per hill and number of plants per hill. Association of tuber yield per hectare of land showed a large magnitude of positive phenotypic and genotypic correlation with those traits. Principal components analysis revealed 76% of the total variation for the first six principal axes with high factor loadings again from tuber number per hill, number of primary branches per plant and tuber weight. The collections were grouped into four clusters with the weak region (zone) of origin based pattern. In general, there is high genetic-based variability for ‘Ethiopian dinich’ improvement and conservation. DNA based markers are recommended for further genetic diversity estimation for use in breeding and conservation.

Keywords: agro-morphological traits, Ethiopian dinich, genetic diversity, variance components

Procedia PDF Downloads 166
303 Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry

Authors: V. Sai Geethika, Sai Snehitha Yadavalli, Swati Ghosh Acharyya

Abstract:

This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously.

Keywords: Arsenic(III), Chromium(III), glassy carbon electrode, Mercury (II), square wave anodic stripping voltammetry

Procedia PDF Downloads 64
302 Assessment of Interior Environmental Quality and Airborne Infectious Risk in a Commuter Bus Cabin by Using Computational Fluid Dynamics with Computer Simulated Person

Authors: Yutaro Kyuma, Sung-Jun Yoo, Kazuhide Ito

Abstract:

A commuter bus remains important as a means to network public transportation between railway stations and terminals within cities. In some cases, the boarding time becomes longer, and the boarding rate tends to be higher corresponding to the development of urban cities. The interior environmental quality, e.g. temperature and air quality, in a commuter bus is relatively heterogeneous and complex compared to that of an indoor environment in buildings due to several factors: solar radiative heat – which comes from large-area windows –, inadequate ventilation rate caused by high density of commuters, and metabolic heat generation from travelers themselves. In addition to this, under conditions where many passengers ride in the enclosed space, contact and airborne infectious risk have attracted considerable attention in terms of public health. From this point of view, it is essential to develop the prediction method for assessment of interior environmental quality and infection risk in commuter bus cabins. In this study, we developed a numerical commuter bus model integrated with computer simulated persons to reproduce realistic indoor environment conditions with high occupancy during commuting. Here, computer simulated persons were newly designed considering different types of geometries, e.g., standing position, seating position, and individual differences. Here we conducted coupled computational fluid dynamics (CFD) analysis with radiative heat transfer analysis under steady state condition. Distributions of heterogeneous air flow patterns, temperature, and moisture surrounding the human body under some different ventilation system were analyzed by using CFD technique, and skin surface temperature distributions were analyzed using thermoregulation model that integrated into computer simulated person. Through these analyses, we discussed the interior environmental quality in specific commuter bus cabins. Further, inhaled air quality of each passenger was also analyzed. This study may have possibility to design the ventilation system in bus for improving thermal comfort of occupants.

Keywords: computational fluid dynamics, CFD, computer simulated person, CSP, contaminant, indoor environment, public health, ventilation

Procedia PDF Downloads 230
301 Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite

Authors: Rong Li, Brian D. Wirth, Bing Liu

Abstract:

Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors.

Keywords: graphite damage cascade, molecular dynamics, cascade morphology, cascade distribution

Procedia PDF Downloads 134
300 Different Stages for the Creation of Electric Arc Plasma through Slow Rate Current Injection to Single Exploding Wire, by Simulation and Experiment

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

This work simulates the voltage drop and resistance of the explosion of copper wires of diameters 25, 40, and 100 µm surrounded by 1 bar nitrogen exposed to a 150 A current and before plasma formation. The absorption of electrical energy in an exploding wire is greatly diminished when the plasma is formed. This study shows the importance of considering radiation and heat conductivity in the accuracy of the circuit simulations. The radiation of the dense plasma formed on the wire surface is modeled with the Net Emission Coefficient (NEC) and is mixed with heat conductivity through PLASIMO® software. A time-transient code for analyzing wire explosions driven by a slow current rise rate is developed. It solves a circuit equation coupled with one-dimensional (1D) equations for the copper electrical conductivity as a function of its physical state and Net Emission Coefficient (NEC) radiation. At first, an initial voltage drop over the copper wire, current, and temperature distribution at the time of expansion is derived. The experiments have demonstrated that wires remain rather uniform lengthwise during the explosion and can be simulated utilizing 1D simulations. Data from the first stage are then used as the initial conditions of the second stage, in which a simplified 1D model for high-Mach-number flows is adopted to describe the expansion of the core. The current was carried by the vaporized wire material before it was dispersed in nitrogen by the shock wave. In the third stage, using a three-dimensional model of the test bench, the streamer threshold is estimated. Electrical breakdown voltage is calculated without solving a full-blown plasma model by integrating Townsend growth coefficients (TdGC) along electric field lines. BOLSIG⁺ and LAPLACE databases are used to calculate the TdGC at different mixture ratios of nitrogen/copper vapor. The simulations show both radiation and heat conductivity should be considered for an adequate description of wire resistance, and gaseous discharges start at lower voltages than expected due to ultraviolet radiation and the exploding shocks, which may have ionized the nitrogen.

Keywords: exploding wire, Townsend breakdown mechanism, streamer, metal vapor, shock waves

Procedia PDF Downloads 64
299 Design of the Ice Rink of the Future

Authors: Carine Muster, Prina Howald Erika

Abstract:

Today's ice rinks are important energy consumers for the production and maintenance of ice. At the same time, users demand that the other rooms should be tempered or heated. The building complex must equally provide cooled and heated zones, which does not translate as carbon-zero ice rinks. The study provides an analysis of how the civil engineering sector can significantly impact minimizing greenhouse gas emissions and optimizing synergies across an entire ice rink complex. The analysis focused on three distinct aspects: the layout, including the volumetric layout of the premises present in an ice rink; the materials chosen that can potentially use the most ecological structural approach; and the construction methods based on innovative solutions to reduce carbon footprint. The first aspect shows that the organization of the interior volumes and defining the shape of the rink play a significant role. Its layout makes the use and operation of the premises as efficient as possible, thanks to the differentiation between heated and cooled volumes while optimising heat loss between the different rooms. The sprayed concrete method, which is still little known, proves that it is possible to achieve the strength of traditional concrete for the structural aspect of the load-bearing and non-load-bearing walls of the ice rink by using materials excavated from the construction site and providing a more ecological and sustainable solution. The installation of an empty sanitary space underneath the ice floor, making it independent of the rest of the structure, provides a natural insulating layer, preventing the transfer of cold to the rest of the structure and reducing energy losses. The addition of active pipes as part of the foundation of the ice floor, coupled with a suitable system, gives warmth in the winter and storage in the summer; this is all possible thanks to the natural heat in the ground. In conclusion, this study provides construction recommendations for future ice rinks with a significantly reduced energy demand, using some simple preliminary design concepts. By optimizing the layout, materials, and construction methods of ice rinks, the civil engineering sector can play a key role in reducing greenhouse gas emissions and promoting sustainability.

Keywords: climate change, energy optimization, green building, sustainability

Procedia PDF Downloads 44
298 Reviving Sustainable Architecture in Non-Wester Culture

Authors: Khaled Asfour

Abstract:

Going for LEED certification is the latest concern in Egyptian practice that only materialized during the last 4 years. Egyptian Consultant Group (ECG) together with Credit Agricole had the vision to design a headquarters (Cairo) that delivers a serious sustainable design. The bank is a strong advocator of “green banking” and supports renewable energy and energy saving projects. Their HQ in Cairo has passed all the hurdles to become the first platinum LEED certificate holder in Egypt. With this design Egyptian practice has finally re-engaged in a serious way with its long-standing traditions in sustainable architecture. Perhaps the closest to our memory is the medieval houses of Cairo. Few centuries later these qualities disappeared with the advent of Modern Movement that focused more on standard modernist image making than real localized quality of living environments. The first person to note this disappearance was Hassan Fathy half a century ago. Despite international applaud for his efforts he had no effect on prevailing local practice that continued senselessly adopting recycled modernist templates. The Egyptian society was not ready to accept any reference to historic architecture. Disciples of Hassan Fathy, few decades later sought, of tackling the lack of interest in green architecture in a different way. Mohamed Awad introduced in his design sustainable ideals inspired from traditional architecture rather than recycling directly historic forms and images. Despite success, this approach did not go far enough to influence the prevailing practice. Since year 2000 Egyptian economy was ebbing and flowing dramatically. This staggering fluctuation coupled by energy crisis has disillusioned architects and clients on the issue of modern image making. No more shining architecture under the sun with high running cost of fossil fuel. They sought of adopting contemporary green measures that offer pleasant living while saving on energy. A revival is on its way but is very slow and timid. The paper will present this problem of reviving sustainable architecture. How this process can be accelerated in order to give stronger impact on current practice will be addressed through the works of Mario Cucinella and Norman Foster.

Keywords: LEED certification, Hasan Fathy, Medieval architecture, Mario Cucinella, Norman Foster

Procedia PDF Downloads 467
297 Hepatitis B, Hepatitis C and HIV Infections and Associated Risk Factors among Substance Abusers in Mekelle Substance Users Treatment and Rehabilitation Centers, Tigrai, Northern Ethiopia

Authors: Tadele Araya, Tsehaye Asmelash, Girmatsion Fiseha

Abstract:

Background: Hepatitis B virus (HBV), Hepatitis C virus (HCV) and Human Immunodeficiency Virus (HIV) constitute serious healthcare problems worldwide. Blood-borne pathogens HBV, HCV and HIV are commonly associated with infections among substance or Injection Drug Users (IDUs). The objective of this study was to determine the prevalence of HBV, HCV, and HIV infections among substance users in Mekelle Substance users Treatment and Rehabilitation Centers. Methods: A cross-sectional study design was used from Dec 2020 to Sep / 2021 to conduct the study. A total of 600 substance users were included. Data regarding the socio-demographic, clinical and sexual behaviors of the substance users were collected using a structured questionnaire. For laboratory analysis, 5-10 ml of venous blood was taken from the substance users. The laboratory analysis was performed by Enzyme-Linked Immunosorbent Assay (ELISA) at Mekelle University, Department of Medical Microbiology and Immunology Research Laboratory. The Data was analyzed using SPSS and Epi-data. The association of variables with HBV, HCV and HIV infections was determined using multivariate analysis and a P value < 0.05 was considered statistically significant. Result: The overall prevalence rate of HBV, HCV and HIV infections were 10%, 6.6%, and 7.5%, respectively. The mean age of the study participants was 28.12 ± 6.9. A higher prevalence of HBV infection was seen in participants who were users of drug injections and in those who were infected with HIV. HCV was comparatively higher in those who had a previous history of unsafe surgical procedures than their counterparts. Homeless participants were highly exposed to HCV and HIV infections than their counterparts. The HBV/HIV Co-infection prevalence was 3.5%. Those doing unprotected sexual practices [P= 0.03], Injection Drug users [P= 0.03], those who had an HBV-infected person in their family [P=0.02], infected with HIV [P= 0.025] were statistically associated with HBV infection. HCV was significantly associated with Substance users and previous history of unsafe surgical procedures [p=0.03, p=0.04), respectively. HIV was significantly associated with unprotected sexual practices and being homeless [p=0.045, p=0.05) respectively. Conclusion-The highly prevalent viral infection was HBV compared to others. There was a High prevalence of HBV/HIV co-infection. The presence of HBV-infected persons in a family, unprotected sexual practices and sharing of needles for drug injection were the risk factors associated with HBV, HIV, and HCV. Continuous health education and screening of the viral infection coupled with medical and psychological treatment is mandatory for the prevention and control of the infections.

Keywords: hepatitis b virus, hepatitis c virus, HIV, substance users

Procedia PDF Downloads 61
296 Revolution and Political Opposition in Contemporary Arabic Poetry: A Thematic Study of Two Poems by Muzaffar Al-Nawwab

Authors: Nasser Y. Athamneh

Abstract:

Muzaffar al-Nawwab (1934--) is a modern Iraqi poet, critic, and painter, well-known to Arab youth of the second half of the 20th century for his revolutionary spirit and political activism. For the greater part of his relatively long life, al-Nawwab was wanted 'dead or alive,' so to speak, by most of the Arab regimes and authorities due to his scathing, and at times unsparingly obscene attacks on them. Hence it is that the Arab masses found in his poetry the rebellious expression of their own anger and frustration, stifled by fear for their physical safety. Thus, al-Nawwab’s contemporary Arab audience loved and embraced him both as an Arab exile and as a poet. They memorized and celebrated his poems and transmitted them secretly by word of mouth and on compact cassette tapes. He himself recited his own poetry and had it recorded on compact cassette tapes for fans to smuggle from one Arab country to the other. The themes of al-Nawwab’s poems are varied, but the most predominant among them is political opposition. In most of his poems, al-Nawwab takes up politics as the major theme. Yet, he often represents it coupled with the leitmotifs of women and wine. Indeed he oscillates almost systematically between political commitment to the revolutionary cause of the masses of his nation and homeland on the one hand and love for women and wine on the other. For the persona in al-Nawwab’s poetry, love-longing for the woman and devotion to the cause of revolution and Pan-Arabism are interrelated; each of them readily evokes the other. In this paper, an attempt is made at investigating the treatment and representation of the theme of revolution and political opposition in some of al-Nawwab’s poems. This investigation will be conducted through close reading and textual analysis of representative sections of the poetic texts under consideration in the paper. The primary texts for the study are selected passages from two representative poems, namely, 'The Night Song of the Bow Strings' (Watariyyaat Layliyyah) and 'In Wine and Sorrow My Heart [Is Immersed]' (bil-khamri wa bil-huzni fu’aady). Other poems and extracts from al-Nawwab’s poetic works will be drawn upon as secondary texts to clarify the arguments in the paper and support its thesis. The discussions and textual analysis of the texts under consideration are meant to show that revolution and undaunted political opposition is a predominant theme in al-Nawwab’s poetry, often represented through the use of the leitmotifs of women and wine.

Keywords: Arabic poetry, Muzaffar al-Nawwab, politics, revolution

Procedia PDF Downloads 118
295 Experimental Quantification of the Intra-Tow Resin Storage Evolution during RTM Injection

Authors: Mathieu Imbert, Sebastien Comas-Cardona, Emmanuelle Abisset-Chavanne, David Prono

Abstract:

Short cycle time Resin Transfer Molding (RTM) applications appear to be of great interest for the mass production of automotive or aeronautical lightweight structural parts. During the RTM process, the two components of a resin are mixed on-line and injected into the cavity of a mold where a fibrous preform has been placed. Injection and polymerization occur simultaneously in the preform inducing evolutions of temperature, degree of cure and viscosity that furthermore affect flow and curing. In order to adjust the processing conditions to reduce the cycle time, it is, therefore, essential to understand and quantify the physical mechanisms occurring in the part during injection. In a previous study, a dual-scale simulation tool has been developed to help determining the optimum injection parameters. This tool allows tracking finely the repartition of the resin and the evolution of its properties during reactive injections with on-line mixing. Tows and channels of the fibrous material are considered separately to deal with the consequences of the dual-scale morphology of the continuous fiber textiles. The simulation tool reproduces the unsaturated area at the flow front, generated by the tow/channel difference of permeability. Resin “storage” in the tows after saturation is also taken into account as it may significantly affect the repartition and evolution of the temperature, degree of cure and viscosity in the part during reactive injections. The aim of the current study is, thanks to experiments, to understand and quantify the “storage” evolution in the tows to adjust and validate the numerical tool. The presented study is based on four experimental repeats conducted on three different types of textiles: a unidirectional Non Crimp Fabric (NCF), a triaxial NCF and a satin weave. Model fluids, dyes and image analysis, are used to study quantitatively, the resin flow in the saturated area of the samples. Also, textiles characteristics affecting the resin “storage” evolution in the tows are analyzed. Finally, fully coupled on-line mixing reactive injections are conducted to validate the numerical model.

Keywords: experimental, on-line mixing, high-speed RTM process, dual-scale flow

Procedia PDF Downloads 149
294 Development of a Multi-User Country Specific Food Composition Table for Malawi

Authors: Averalda van Graan, Joelaine Chetty, Malory Links, Agness Mwangwela, Sitilitha Masangwi, Dalitso Chimwala, Shiban Ghosh, Elizabeth Marino-Costello

Abstract:

Food composition data is becoming increasingly important as dealing with food insecurity and malnutrition in its persistent form of under-nutrition is now coupled with increasing over-nutrition and its related ailments in the developing world, of which Malawi is not spared. In the absence of a food composition database (FCDB) inherent to our dietary patterns, efforts were made to develop a country-specific FCDB for nutrition practice, research, and programming. The main objective was to develop a multi-user, country-specific food composition database, and table from existing published and unpublished scientific literature. A multi-phased approach guided by the project framework was employed. Phase 1 comprised a scoping mission to assess the nutrition landscape for compilation activities. Phase 2 involved training of a compiler and data collection from various sources, primarily; institutional libraries, online databases, and food industry nutrient data. Phase 3 subsumed evaluation and compilation of data using FAO and IN FOODS standards and guidelines. Phase 4 concluded the process with quality assurance. 316 Malawian food items categorized into eight food groups for 42 components were captured. The majority were from the baby food group (27%), followed by a staple (22%) and animal (22%) food group. Fats and oils consisted the least number of food items (2%), followed by fruits (6%). Proximate values are well represented; however, the percent missing data is huge for some components, including Se 68%, I 75%, Vitamin A 42%, and lipid profile; saturated fat 53%, mono-saturated fat 59%, poly-saturated fat 59% and cholesterol 56%. A multi-phased approach following the project framework led to the development of the first Malawian FCDB and table. The table reflects inherent Malawian dietary patterns and nutritional concerns. The FCDB can be used by various professionals in nutrition and health. Rising over-nutrition, NCD, and changing diets challenge us for nutrient profiles of processed foods and complete lipid profiles.

Keywords: analytical data, dietary pattern, food composition data, multi-phased approach

Procedia PDF Downloads 65