Search results for: artificial inoculation
877 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach
Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim
Abstract:
De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantationKeywords: De novo malignancy, bilirubin, data mining, transplantation
Procedia PDF Downloads 105876 Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV
Authors: Mohammed Qasim, Kyoung-Dae Kim
Abstract:
In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator’s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs.Keywords: artificial potential function, autonomous collision avoidance, teleoperation, quadrotor
Procedia PDF Downloads 399875 Using AI Based Software as an Assessment Aid for University Engineering Assignments
Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth
Abstract:
As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)
Procedia PDF Downloads 123874 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: convolution neural network, deep learning, malaria, thin blood smears
Procedia PDF Downloads 131873 A Bioinspired Anti-Fouling Coating for Implantable Medical Devices
Authors: Natalie Riley, Anita Quigley, Robert M. I. Kapsa, George W. Greene
Abstract:
As the fields of medicine and bionics grow rapidly in technological advancement, the future and success of it depends on the ability to effectively interface between the artificial and the biological worlds. The biggest obstacle when it comes to implantable, electronic medical devices, is maintaining a ‘clean’, low noise electrical connection that allows for efficient sharing of electrical information between the artificial and biological systems. Implant fouling occurs with the adhesion and accumulation of proteins and various cell types as a result of the immune response to protect itself from the foreign object, essentially forming an electrical insulation barrier that often leads to implant failure over time. Lubricin (LUB) functions as a major boundary lubricant in articular joints, a unique glycoprotein with impressive anti-adhesive properties that self-assembles to virtually any substrate to form a highly ordered, ‘telechelic’ polymer brush. LUB does not passivate electroactive surfaces which makes it ideal, along with its innate biocompatibility, as a coating for implantable bionic electrodes. It is the aim of the study to investigate LUB’s anti-fouling properties and its potential as a safe, bioinspired material for coating applications to enhance the performance and longevity of implantable medical devices as well as reducing the frequency of implant replacement surgeries. Native, bovine-derived LUB (N-LUB) and recombinant LUB (R-LUB) were applied to gold-coated mylar surfaces. Fibroblast, chondrocyte and neural cell types were cultured and grown on the coatings under both passive and electrically stimulated conditions to test the stability and anti-adhesive property of the LUB coating in the presence of an electric field. Lactate dehydrogenase (LDH) assays were conducted as a directly proportional cell population count on each surface along with immunofluorescent microscopy to visualize cells. One-way analysis of variance (ANOVA) with post-hoc Tukey’s test was used to test for statistical significance. Under both passive and electrically stimulated conditions, LUB significantly reduced cell attachment compared to bare gold. Comparing the two coating types, R-LUB reduced cell attachment significantly compared to its native counterpart. Immunofluorescent micrographs visually confirmed LUB’s antiadhesive property, R-LUB consistently demonstrating significantly less attached cells for both fibroblasts and chondrocytes. Preliminary results investigating neural cells have so far demonstrated that R-LUB has little effect on reducing neural cell attachment; the study is ongoing. Recombinant LUB coatings demonstrated impressive anti-adhesive properties, reducing cell attachment in fibroblasts and chondrocytes. These findings and the availability of recombinant LUB brings into question the results of previous experiments conducted using native-derived LUB, its potential not adequately represented nor realized due to unknown factors and impurities that warrant further study. R-LUB is stable and maintains its anti-fouling property under electrical stimulation, making it suitable for electroactive surfaces.Keywords: anti-fouling, bioinspired, cell attachment, lubricin
Procedia PDF Downloads 124872 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic
Authors: N. Drir, L. Barazane, M. Loudini
Abstract:
It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.Keywords: maximum power point tracking, neural networks, photovoltaic, P&O
Procedia PDF Downloads 340871 An Aesthetic Spatial Turn - AI and Aesthetics in the Physical, Psychological, and Symbolic Spaces of Brand Advertising
Authors: Yu Chen
Abstract:
In line with existing philosophical approaches, this research proposes a conceptual model with an innovative spatial vision and aesthetic principles for Artificial Intelligence (AI) application in brand advertising. The model first identifies the major constituencies in contemporary advertising on three spatial levels—physical, psychological, and symbolic. The model further incorporates the relationships among AI, aesthetics, branding, and advertising and their interactions with the major actors in all spaces. It illustrates that AI may follow the aesthetic principles-- beauty, elegance, and simplicity-- to reinforce brand identity and consistency in advertising, to collaborate with stakeholders, and to satisfy different advertising objectives on each level. It proposes that, with aesthetic guidelines, AI may assist consumers to emerge into the physical, psychological, and symbolic advertising spaces and helps transcend the tangible advertising messages to meaningful brand symbols. Conceptually, the research illustrates that even though consumers’ engagement with brand mostly begins with physical advertising and later moves to psychological-symbolic, AI-assisted advertising should start with the understanding of brand symbolic-psychological and consumer aesthetic preferences before the physical design to better resonate. Limits of AI and future AI functions in advertising are discussed.Keywords: AI, spatial, aesthetic, brand advertising
Procedia PDF Downloads 80870 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection
Authors: Leah Ning
Abstract:
This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.Keywords: breast cancer detection, AI, machine learning, algorithm
Procedia PDF Downloads 92869 The Dependence of the Liquid Application on the Coverage of the Sprayed Objects in Terms of the Characteristics of the Sprayed Object during Spraying
Authors: Beata Cieniawska, Deta Łuczycka, Katarzyna Dereń
Abstract:
When assessing the quality of the spraying procedure, three indicators are used: uneven distribution of precipitation of liquid sprayed, degree of coverage of sprayed surfaces, and deposition of liquid spraying However, there is a lack of information on the relationship between the quality parameters of the procedure. Therefore, the research was carried out at the Institute of Agricultural Engineering of Wrocław University of Environmental and Life Sciences. The aim of the study was to determine the relationship between the degree of coverage of sprayed surfaces and the deposition of liquid in the aspect of the parametric characteristics of the protected plant using selected single and double stream nozzles. Experiments were conducted under laboratory conditions. The carrier of nozzles acted as an independent self-propelled sprayer used for spraying, whereas the parametric characteristics of plants were determined using artificial plants as the ratio of the vertical projection surface and the horizontal projection surface. The results and their analysis showed a strong and very strong correlation between the analyzed parameters in terms of the characteristics of the sprayed object.Keywords: degree of coverage, deposition of liquid, nozzle, spraying
Procedia PDF Downloads 337868 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare
Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams
Abstract:
The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph
Procedia PDF Downloads 175867 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 129866 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization
Authors: Roman Major, Klaudia Trembecka- Wojciga, Juergen Markus Lackner, Boguslaw Major
Abstract:
The future and the development of science is therefore seen in interdisciplinary areas such as bio medical engineering. Self-assembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as micro structure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.Keywords: bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings
Procedia PDF Downloads 478865 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management
Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix
Abstract:
A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings
Procedia PDF Downloads 371864 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 61863 Impact of Similarity Ratings on Human Judgement
Authors: Ian A. McCulloh, Madelaine Zinser, Jesse Patsolic, Michael Ramos
Abstract:
Recommender systems are a common artificial intelligence (AI) application. For any given input, a search system will return a rank-ordered list of similar items. As users review returned items, they must decide when to halt the search and either revise search terms or conclude their requirement is novel with no similar items in the database. We present a statistically designed experiment that investigates the impact of similarity ratings on human judgement to conclude a search item is novel and halt the search. 450 participants were recruited from Amazon Mechanical Turk to render judgement across 12 decision tasks. We find the inclusion of ratings increases the human perception that items are novel. Percent similarity increases novelty discernment when compared with star-rated similarity or the absence of a rating. Ratings reduce the time to decide and improve decision confidence. This suggests the inclusion of similarity ratings can aid human decision-makers in knowledge search tasks.Keywords: ratings, rankings, crowdsourcing, empirical studies, user studies, similarity measures, human-centered computing, novelty in information retrieval
Procedia PDF Downloads 137862 Experimental Testing of a Synthetic Mulch to Reduce Runoff and Evaporative Water Losses
Authors: Yasmeen Saleem, Pedro Berliner, Nurit Agam
Abstract:
The most severe limitation for plant production in arid areas is water. Rainfall events are rare but can have pulses of high intensity. As a result, crusts are formed, which decreases infiltration into the soil, and results additionally in erosive losses of soil. Direct evaporation of water from the wetted soil can account for large fractions of the water stored in the soil. Different kinds of mulches have been used to decrease the loss of water in arid and semi-arid region. This study aims to evaluate the effect of polystyrene styrofoam pellets mulch on soil infiltration, runoff, and evaporation as a more efficient and economically viable mulch alternative. Polystyrene styrofoam pellets of two sizes (0.5 and 1 cm diameter) will be placed on top of the soil in two mulch layer depths (1 and 2 cm), in addition to the non-mulched treatment. The rainfall simulator will be used as an artificial source of rain. The preliminary results in the prototype experiment indicate that polystyrene styrofoam pellets decreased runoff, increased soil-water infiltration. We are still testing the effect of these pellets on decreasing the soil-water evaporation.Keywords: synthetic mulch, runoff, evaporation, infiltration
Procedia PDF Downloads 123861 Parametric Study of Ball and Socket Joint for Bio-Mimicking Exoskeleton
Authors: Mukesh Roy, Basant Singh Sikarwar, Ravi Prakash, Priya Ranjan, Ayush Goyal
Abstract:
More than 11% of people suffer from weakness in the bone resulting in inability in walking or climbing stairs or from limited upper body and limb immobility. This motivates a fresh bio-mimicking solution to the design of an exo-skeleton to support human movement in the case of partial or total immobility either due to congenital or genetic factors or due to some accident or due to geratological factors. A deeper insight and detailed understanding is required into the workings of the ball and socket joints. Our research is to mimic ball and socket joints to design snugly fitting exoskeletons. Our objective is to design an exoskeleton which is comfortable and the presence of which is not felt if not in use. Towards this goal, a parametric study is conducted to provide detailed design parameters to fabricate an exoskeleton. This work builds up on real data of the design of the exoskeleton, so that the designed exo-skeleton will be able to provide required strength and support to the subject.Keywords: bio-mimicking, exoskeleton, ball joint, socket joint, artificial limb, patient rehabilitation, joints, human-machine interface, wearable robotics
Procedia PDF Downloads 296860 Liquid Crystal Elastomers as Light-Driven Star-Shaped Microgripper
Authors: Indraj Singh, Xuan Lee, Yu-Chieh Cheng
Abstract:
Scientists are very keen on biomimetic research that mimics biological species to micro-robotic devices with the novel functionalities and accessibility. The source of inspiration is the complexity, sophistication, and intelligence of the biological systems. In this work, we design a light-driven star-shaped microgripper, an autonomous soft device which can change the shape under the external stimulus such as light. The design is based on light-responsive Liquid Crystal Elastomers which fabricated onto the polymer coated aligned substrate. The change in shape, controlled by the anisotropicity and the molecular orientation of the Liquid Crystal Elastomer, based on the external stimulus. This artificial star-shaped microgripper is capable of autonomous closure and capable to grab the objects in response to an external stimulus. This external stimulus-responsive materials design, based on soft active smart materials, provides a new approach to autonomous, self-regulating optical systems.Keywords: liquid crystal elastomers, microgripper, smart materials, robotics
Procedia PDF Downloads 141859 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 275858 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms
Authors: Divya Agarwal, Pushpendra S. Bharti
Abstract:
Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.Keywords: path planning, obstacle avoidance, autonomous mobile robots, algorithms
Procedia PDF Downloads 233857 The Effect of Artificial Intelligence on Decoration Designs
Authors: Ayed Mouris Gad Elsayed Khalil
Abstract:
This research focuses on historical techniques associated with the Lajevardin and Haft-Rangi production methods in tile production, with particular attention to identifying techniques for applying gold leaf to the surface of these historical glazed tiles. In this context, the history of the production of glazed, gilded and glazed Lajevardin ceramics from the Khwarizmanshahid and Mongol periods (11th to 13th centuries) was first evaluated in order to better understand the context and history of the methods of historical enameling. After a historical overview of glazed ceramic production techniques and the adoption of these techniques by civilizations, we focused on the niche production methods of glazes and Lajevardin glazes, two categories of decoration commonly found on tiles. A general method for classifying the different types of gold tiles was then introduced, applicable to tiles from to the Safavid period (16th-17th centuries). These categories include gold glazed Lajevardina tiles, haft rangi gold tiles, gold glazed monolithic tiles and gold mosaic tiles.Keywords: ethnicity, multi-cultural, jewelry, craft techniquemycenaean, ceramic, provenance, pigmentAmorium, glass bracelets, image, Byzantine empire
Procedia PDF Downloads 57856 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption
Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed
Abstract:
In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.Keywords: optimization, neural networks, real-time scheduling, low-power consumption
Procedia PDF Downloads 372855 Outdoor Thermal Environment Measurement and Simulations in Traditional Settlements in Taiwan
Authors: Tzu-Ping Lin, Shing-Ru Yang
Abstract:
Climate change has a significant impact on human living environment, while the traditional settlement may suffer extreme thermal stress due to its specific building type and living behavior. This study selected Lutaoyang, which is the largest settlement in mountainous areas of Tainan County, for the investigation area. The microclimate parameters, such as air temperature, relative humidity, wind speed, and mean radiant temperature. The micro climate parameters were also simulated by the ENVI-met model. The results showed the banyan tree area providing good thermal comfort condition due to the shading. On the contrary, the courtyard (traditionally for the crops drying) surrounded by low rise building and consisted of artificial pavement contributing heat stress especially in summer noon. In the climate change simulations, the courtyard will become very hot and are not suitable for residents activities. These analytical results will shed light on the sustainability related to thermal environment in traditional settlements and develop adaptive measure towards sustainable development under the climate change challenges.Keywords: thermal environment, traditional settlement, ENVI-met, Taiwan
Procedia PDF Downloads 479854 Vertical Urban Design Guideline and Its Application to Measure Human Cognition and Emotions
Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma
Abstract:
This research addresses the need for a comprehensive framework that can guide the design and assessment of multi-level public spaces and public realms and their impact on the built environment. The study aims to understand and measure the neural mechanisms involved in this process. By doing so, it can lay the foundation for vertical and volumetric urbanism and ensure consistency and excellence in the field while also supporting scientific research methods for urban design with cognitive neuroscientists. To investigate these aspects, the paper focuses on the neighborhood scale in Hong Kong, specifically examining multi-level public spaces and quasi-public spaces within both commercial and residential complexes. The researchers use predictive Artificial Intelligence (AI) as a methodology to assess and comprehend the applicability of the urban design framework for vertical and volumetric urbanism. The findings aim to identify the factors that contribute to successful public spaces within a vertical living environment, thus introducing a new typology of public spaces.Keywords: vertical urbanism, scientific research methods, spatial cognition, urban design guideline
Procedia PDF Downloads 86853 Effect of Exercise on Sexual Behavior and Semen Quality of Sahiwal Bulls
Authors: Abdelrasoul, Khalid Ahmed Elrabie
Abstract:
The study was conducted on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to determine the effect of exercise on the sexual behavior and semen quality. Fourteen Sahiwal bulls were classified into two groups of seven each. Group-1, bulls were exercised by walking in a bull exerciser once a week one hour before semen collection, whereas bulls in group-2 were exercised daily. Sexual behavior and semen quality traits studied were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-2 showed significantly (p < 0.01) higher value in RT (sec), DMT (sec), TTTM (sec), ES, PS, ITS, LS, semen volume, semen color density and mass activity.Keywords: exercise, Sahiwal bulls, semen quality, sexual behavior
Procedia PDF Downloads 327852 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 514851 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria
Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi
Abstract:
In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network
Procedia PDF Downloads 116850 The Use of Modern Technologies and Computers in the Archaeological Surveys of Sistan in Eastern Iran
Authors: Mahyar MehrAfarin
Abstract:
The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.Keywords: Iran, sistan, archaeological surveys, computer use, modern technologies
Procedia PDF Downloads 82849 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam
Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee
Abstract:
In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model
Procedia PDF Downloads 476848 Imports of Intermediate Inputs: A Study of the Main Research Streams
Authors: Marta Fernández Olmos, Jorge Fleta, Talia Gómez
Abstract:
This article shares the results of a temporal analysis of the literature on imports of intermediate inputs based on review techniques. The aim of this paper is to identify the main lines of research, their trends, topics, and the research agenda. The internationalization field has attracted considerable scholars and practitioners’ attention in recent years and has grown, rapidly, resulting in a large body of knowledge scattered in different areas of specialization. However, there are no studies that are entirely restricted to imports, intermediate inputs and innovation performance. The performance analysis provided an updated overview of the evolution of the importing literature from 1970 to 2022 and quantitatively identified the most productive and influential journals, articles, authors, and countries. The results show that the current topics are mainly based on modes of importing, innovation performance of importing intermediate imports and collaborations. Future lines of research are identified from topics with lower co-occurrence, such as artificial intelligence, entrepreneurship, and alternative business models such as multinational enterprises (MNEs) versus non-MNEs.Keywords: imports, intermediate inputs, innovation performance, review
Procedia PDF Downloads 76