Search results for: response surface method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27080

Search results for: response surface method

13190 Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova

Abstract:

In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.

Keywords: supported copper-manganese catalysts, CO, VOCs oxidation, combustion of exhaust gases

Procedia PDF Downloads 280
13189 Assessment of Water Quality Based on Physico-Chemical and Microbiological Parameters in Batllava Lake, Case Study Kosovo

Authors: Albana Kashtanjeva-Bytyçi, Idriz Vehapi, Rifat Morina, Osman Fetoshi

Abstract:

The purpose of this study is to determine the water quality in Batllava Leka through which a part of the population of the Prishtina region is supplied with drinking water. Batllava Leka is a lake built in the 70s. This lake is located in the village of Btlava in the municipality of Podujeva, with coordinates 42 ° 49′33 ″ V 21 ° 18′25 ″ L, with an area of 3.07 km2. Water supply is from the river Brvenica- Batllavë. In order to take preventive measures and improve water quality, we have conducted periodic/monthly monitoring of water quality in Lake Batllava, through microbiological and physico-chemical indicators. The monitoring was carried out during the period December 2020 - December 2021. Samples were taken at three sampling sites: at the entrance of the lake, in the middle and at the overflow, on two levels, water surface and at a depth of 30 cm. The microbiological parameters analyzed are: total coliforms, fecal coliforms, fecal streptococci, aerobic mesophilic bacteria and actinomycetes. Within the physico-chemical parameters: Dissolved Oxygen, Saturation with O2, water temperature, pH value, electrical conductivity, total soluble matter, total suspended matter, turbidity, chemical oxygen demand, biochemical oxygen demand, total organic carbon, nitrate, total hardness, hardness of calcium, calcium, magnesium, ammonium ion, chloride, sulfates, flourine, M-alkalines, bicarbonates and heavy metals, such as: Fe, Pb, Mn, Cu, Cd. The results showed that most of the physico-chemical and microbiological parameters are within the limit allowed by the WHO, except in the case of the rainiest season that exceeded some parameters.

Keywords: batllava lake, monitoring of water, physico-chemical, microbiological, heavy metals

Procedia PDF Downloads 103
13188 Influence of Flight Design on Discharging Profiles of Granular Material in Rotary Dryer

Authors: I. Benhsine, M. Hellou, F. Lominé, Y. Roques

Abstract:

During the manufacture of fertilizer, it is necessary to add water for granulation purposes. The water content is then removed or reduced using rotary dryers. They are commonly used to dry wet granular materials and they are usually fitted with lifting flights. The transport of granular materials occurs when particles cascade from the lifting flights and fall into the air stream. Each cascade consists of a lifting and a falling cycle. Lifting flights are thus of great importance for the transport of granular materials along the dryer. They also enhance the contact between solid particles and the air stream. Optimization of the drying process needs an understanding of the behavior of granular materials inside a rotary dryer. Different approaches exist to study the movement of granular materials inside the dryer. Most common of them are based on empirical formulations or on study the movement of the bulk material. In the present work, we are interested in the behavior of each particle in the cross section of the dryer using Discrete Element Method (DEM) to understand. In this paper, we focus on studying the hold-up, the cascade patterns, the falling time and the falling length of the particles leaving the flights. We will be using two segment flights. Three different profiles are used: a straight flight (180° between both segments), an angled flight (with an angle of 150°), and a right-angled flight (90°). The profile of the flight affects significantly the movement of the particles in the dryer. Changing the flight angle changes the flight capacity which leads to different discharging profile of the flight, thus affecting the hold-up in the flight. When the angle of the flight is reduced, the range of the discharge angle increases leading to a more uniformed cascade pattern in time. The falling length and the falling time of the particles also increase up to a maximum value then they start decreasing. Moreover, the results show an increase in the falling length and the falling time up to 70% and 50%, respectively, when using a right-angled flight instead of a straight one.

Keywords: discrete element method, granular materials, lifting flight, rotary dryer

Procedia PDF Downloads 322
13187 Implementing 3D Printing for 3D Digital Modeling in the Classroom

Authors: Saritdikhun Somasa

Abstract:

3D printing fabrication has empowered many artists in many fields. Artists who work in stop motion, 3D modeling, toy design, product design, sculpture, and fine arts become one-stop shop operations–where they can design, prototype, and distribute their designs for commercial or fine art purposes. The author has developed a digital sculpting course that fosters digital software, peripheral hardware, and 3D printing with traditional sculpting concept techniques to address the complexities of this multifaceted process, allowing the students to produce complex 3d-printed work. The author will detail the preparation and planning for pre- to post-process 3D printing elements, including software, materials, space, equipment, tools, and schedule consideration for small to medium figurine design statues in a semester-long class. In addition, the author provides insight into teaching challenges in the non-studio space that requires students to work intensively on post-printed models to assemble parts, finish, and refine the 3D printed surface. Even though this paper focuses on the 3D printing processes and techniques for small to medium design statue projects for the Digital Media program, the author hopes the paper will benefit other fields of study such as craft practices, product design, and fine-arts programs. Other schools that might implement 3D printing and fabrication in their programs will find helpful information in this paper, such as a teaching plan, choices of equipment and materials, adaptation for non-studio spaces, and putting together a complete and well-resolved project for students.

Keywords: 3D digital modeling, 3D digital sculpting, 3D modeling, 3D printing, 3D digital fabrication

Procedia PDF Downloads 100
13186 Study of NGL Feed Price Calculation for a Typical NGL Fractionation Plant

Authors: Simin Eydivand, Ali Ghanadieslami, Reza Amiri

Abstract:

Natural gas liquids (NGLs) are light hydrocarbons that are dissolved in associated or non‐associated natural gas in a hydrocarbon reservoir and are produced within a gas stream. There are different ways to calculate the price of NGL. In this study, a spreadsheet calculation method is used for calculation of NGL price with an attractive economy of IRR 25%. For a typical NGL Plant with 3,200,000 t/y capacity of investment and operation of 90% capacity to have IRR 25%, the price of NGL is calculated 277 $/t.

Keywords: natural gas liquid, NGL, LPG, price, NGL fractionation, NF, investment, IRR, NPV

Procedia PDF Downloads 400
13185 Influence of Conjugated Linoleic Acid on Hormones of Axis of Female Reproduction System Involved in Ovulation Process

Authors: Hamidreza Khodaei, Ali Daryabeigi Zand

Abstract:

Ovulation is a physiologic process with an inflammatory response that depends on a coordinated activity of gonadotropins and steroid hormones, and inflammatory mediators such as cytokines, prostaglandins, leptin, nitric oxide (NO), etc. Conjugated linoleic acid (CLA) is composed of polyunsaturated fatty acids (PUFA) found in dairy products, beef, and lamb. There is strong evidence that dietary CLA affects mediators involved in ovulation. The objective of this study is to evaluate the impacts of various doses of dietary CLA on systemic and local hormones and parameters involved in ovulation. In this case-control research, 80 (50 ± 2-day old) female mice were randomly divided into 4 groups (C as control treatment and T1, T2 and T3 are considered as the treatment groups). There were four replicates in each group, and there were five mice in every replicate (20 mice, in total). The mice in the control group were fed with no CLA in their diet, but the ones in the treatment group received 0.1, 0.3 and 0.5g/kg of CLA (replacing corn oil in the diet), respectively for four months. After that, blood samples were obtained from the tails of animals that displayed estrus signs and estradiol (E2), progesterone (P4), LH, FSH, NO, leptin and TNFα were measured. In addition, the impacts of CLA on the ovarian production of prostaglandins (PGs) and NO were studied. The data were analyzed by SAS software. CLA considerably decreased serum levels of FSH (p < 0.05), LH, estradiol, NO, leptin and TNFα (p < 0.01). In addition, CLA decreased progesterone levels, but this effect was statistically not significant. The significantly adverse effects of CLA were observed in the ovarian production of PGE2 and PGF2α (p < 0.01). It seems that CLA may play an important role in reducing the ovulation rate in mice as CLA negatively affected female reproduction and it had adverse effects on systemic and local hormones involved in ovulation.

Keywords: conjugated linoleic acid, nitric oxide, ovary, ovulation, prostaglandin, gonadotropin

Procedia PDF Downloads 207
13184 Topology Enhancement of a Straight Fin Using a Porous Media Computational Fluid Dynamics Simulation Approach

Authors: S. Wakim, M. Nemer, B. Zeghondy, B. Ghannam, C. Bouallou

Abstract:

Designing the optimal heat exchanger is still an essential objective to be achieved. Parametrical optimization involves the evaluation of the heat exchanger dimensions to find those that best satisfy certain objectives. This method contributes to an enhanced design rather than an optimized one. On the contrary, topology optimization finds the optimal structure that satisfies the design objectives. The huge development in metal additive manufacturing allowed topology optimization to find its way into engineering applications especially in the aerospace field to optimize metal structures. Using topology optimization in 3d heat and mass transfer problems requires huge computational time, therefore coupling it with CFD simulations can reduce this it. However, existed CFD models cannot be coupled with topology optimization. The CFD model must allow creating a uniform mesh despite the initial geometry complexity and also to swap the cells from fluid to solid and vice versa. In this paper, a porous media approach compatible with topology optimization criteria is developed. It consists of modeling the fluid region of the heat exchanger as porous media having high porosity and similarly the solid region is modeled as porous media having low porosity. The switching from fluid to solid cells required by topology optimization is simply done by changing each cell porosity using a user defined function. This model is tested on a plate and fin heat exchanger and validated by comparing its results to experimental data and simulations results. Furthermore, this model is used to perform a material reallocation based on local criteria to optimize a plate and fin heat exchanger under a constant heat duty constraint. The optimized fin uses 20% fewer materials than the first while the pressure drop is reduced by about 13%.

Keywords: computational methods, finite element method, heat exchanger, porous media, topology optimization

Procedia PDF Downloads 150
13183 Preparation, Solid State Characterization of Etraverine Co-Crystals with Improved Solubility for the Treatment of Human Immunodeficiency Virus

Authors: B. S. Muddukrishna, Karthik Aithal, Aravind Pai

Abstract:

Introduction: Preparation of binary cocrystals of Etraverine (ETR) by using Tartaric Acid (TAR) as a conformer was the main focus of this study. Etravirine is a Class IV drug, as per the BCS classification system. Methods: Cocrystals were prepared by slow evaporation technique. A mixture of total 500mg of ETR: TAR was weighed in molar ratios of 1:1 (371.72mg of ETR and 128.27mg of TAR). Saturated solution of Etravirine was prepared in Acetone: Methanol (50:50) mixture in which tartaric acid is dissolved by sonication and then this solution was stirred using a magnetic stirrer until the solvent got evaporated. Shimadzu FTIR – 8300 system was used to acquire the FTIR spectra of the cocrystals prepared. Shimadzu thermal analyzer was used to achieve DSC measurements. X-ray diffractometer was used to obtain the X-ray powder diffraction pattern. Shake flask method was used to determine the equilibrium dynamic solubility of pure, physical mixture and cocrystals of ETR. USP buffer (pH 6.8) containing 1% of Tween 80 was used as the medium. The pure, physical mixture and the optimized cocrystal of ETR were accurately weighed sufficient to maintain the sink condition and were filled in hard gelatine capsules (size 4). Electrolab-Tablet Dissolution tester using basket apparatus at a rotational speed of 50 rpm and USP phosphate buffer (900 mL, pH = 6.8, 37 ˚C) + 1% Tween80 as a media, was used to carry out dissolution. Shimadzu LC-10 series chromatographic system was used to perform the analysis with PDA detector. An Hypersil BDS C18 (150mm ×4.6 mm ×5 µm) column was used for separation with mobile phase comprising of a mixture of ace¬tonitrile and phosphate buffer 20mM, pH 3.2 in the ratio 60:40 v/v. The flow rate was 1.0mL/min and column temperature was set to 30°C. The detection was carried out at 304 nm for ETR. Results and discussions: The cocrystals were subjected to various solid state characterization and the results confirmed the formation of cocrystals. The C=O stretching vibration (1741cm-1) in tartaric acid was disappeared in the cocrystal and the peak broadening of primary amine indicates hydrogen bond formation. The difference in the melting point of cocrystals when compared to pure Etravirine (265 °C) indicates interaction between the drug and the coformer which proves that first ordered transformation i.e. melting endotherm has disappeared. The difference in 2θ values of pure drug and cocrystals indicates the interaction between the drug and the coformer. Dynamic solubility and dissolution studies were also conducted by shake flask method and USP apparatus one respectively and 3.6 fold increase in the dynamic solubility were observed and in-vitro dissolution study shows four fold increase in the solubility for the ETR: TAR (1:1) cocrystals. The ETR: TAR (1:1) cocrystals shows improved solubility and dissolution as compared to the pure drug which was clearly showed by solid state characterization and dissolution studies.

Keywords: dynamic solubility, Etraverine, in vitro dissolution, slurry method

Procedia PDF Downloads 346
13182 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility

Authors: Dicko Ali Hamadi, Tong-Yette Nicolas, Gilles Benjamin, Faure Francois, Palombi Olivier

Abstract:

A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.

Keywords: hybrid, modeling, fast simulation, lumbar spine

Procedia PDF Downloads 304
13181 Performances of Ashwagandha (Withania somnifera Duanal) as Affected by Method of Planting and Source of Nutrients

Authors: Ewon Kaliyadasa, U. L. B. Jayasinghe, S. E. Peiris

Abstract:

Ashwagandha (Withania sominifera Duanal) is an important medicinal herb belongs to family Solanaceae. This plant has raised its popularity after discovering anti stress and sex stimulating properties that mainly due to the presence of biologically active alkaloid compounds. Therefore it is vital to adapt to a proper agro technological package that ensure optimum growth of ashwagandha to obtain the finest quality without degrading pharmacologically active constituents. Organic and inorganic fertilizer mixtures were combined with direct seeding and transplanting as four different treatments in this study. Tuber fresh and dry weights were recorded up to twelve months starting from two months after sowing (MAS) while shoot height, root length, number of leaves, shoot fresh and dry weights and root: shoot ratio up to 6MAS. Results revealed that growth of ashwagandha was not affected significantly by method of planting or type of fertilizer or its combinations during most of the harvests. However, tubers harvested at 6MAS recorded the highest dry tuber weight per plant in all four treatments compared to early harvests where two direct seeded treatments are the best. Chemical comparison of these two treatments, direct seeding coupled with organic and inorganic fertilizer shown that direct seeding with organic treatment recorded the highest values for alkaloid and withaferine A content with lower percentage of fiber. Further these values are in concurring with the values of commercially available tuber samples. Having considered all facts, 6MAS can be recommended as the best harvesting stage to obtain high quality tubers of ashwagandha under local conditions.

Keywords: alkaloids, direct seeding, dry tuber weight, inorganic fertilizer, organic fertilizer, transplanting, withaferine a

Procedia PDF Downloads 339
13180 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions

Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel

Abstract:

A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.

Keywords: automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings

Procedia PDF Downloads 124
13179 The Effects of Placement and Cross-Section Shape of Shear Walls in Multi-Story RC Buildings with Plan Irregularity on Their Seismic Behavior by Using Nonlinear Time History Analyses

Authors: Mohammad Aminnia, Mahmood Hosseini

Abstract:

Environmental and functional conditions sometimes necessitate the architectural plan of the building to be asymmetric, and this result in an asymmetric structure. In such cases, finding an optimal pattern for locating the components of the lateral load bearing system, including shear walls, in the building’s plan is desired. In case of shear walls, in addition to the location, the shape of the wall cross-section is also an effective factor. Various types of shear wall and their proper layout might come effective in better stiffness distribution and more appropriate seismic response of the building. Several studies have been conducted in the context of analysis and design of shear walls; however, few studies have been performed on making decisions for the location and form of shear walls in multi-story buildings, especially those with irregular plan. In this study, an attempt has been made to obtain the most reliable seismic behavior of multi-story reinforced concrete vertically chamfered buildings by using more appropriate shear walls form and arrangement in 7-, 10-, 12-, and 15-story buildings. The considered forms and arrangements include common rectangular walls and L-, T-, U- and Z-shaped plan, located as the core or in the outer frames of the building structure. Comparison of seismic behaviors of the buildings, including maximum roof displacement, and particularly the formation of plastic hinges and their distribution in the buildings’ structures, have been done based on the results of a series of nonlinear time history analyses by using a set of selected earthquake records. Results show that shear walls with U-shaped cross-section, placed as the building central core, and also walls with Z-shaped cross-section, placed at the corners give the building more reliable seismic behavior.

Keywords: vertically chamfered buildings, non-linear time history analyses, l-, t-, u- and z-shaped plan walls

Procedia PDF Downloads 254
13178 Effect of Different Temperatures and Cold Storage on Pupaes Apanteles gelechiidivoris Marsh (Hymenoptera: Braconidae) Parasitoid of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae)

Authors: Jessica Morales Perdomo, Daniel Rodriguez Caicedo, Fernando Cantor Rincon

Abstract:

Tuta absoluta known as the tomato leaf miner, is one of the main pests in tomato crops in South America and the main pest in many European countries. Apanteles gelechiidivoris is a parasitoid of third instar Tuta absoluta larvae. Our studies have demonstrated that this parasitoid can cause up to 80% mortality of T. absoluta larvae in the field. We investigated cold storage of A. gelechiidivoris pupae as a method of mass production of this parasitoid. This storage method does not interfere with biological characteristics of the parasitoid. In this study, we evaluated the effect of different temperatures (4, 8 and 12°C) and different time duration (7, 14, 21 or 28 days) of cold storage on biological parameters of A. gelechiidivoris pupae and adults. The biological parameters of the parasitoid evaluated were: adult emergence time, lifespan, parasitism percentage and sex ratio. We found that the adult emergence time was delayed when the parasitoid pupae were stored at 4°C and 8°C. The shortest adult emergence was recorded when pupae were stored for seven days. The lowest adult emergence was found for pupae stored at 4°C and decreased significantly as the days of storage increased. We found high percentages of adult emergence when pupae were stored at 8°C and 12°C for seven days. Adult lifespan decreased with increasing days of cold storage. Adults emerging from pupae stored at 8°C during seven and 14 days showed the longest lifespan (nine days). The lowest parasitism rate was recorded at 4°C at every time point. The highest percentage of parasitism (80%) was found at 8°C during seven days of storage. The treatments had no effect on adults the sex ratio. The results suggest that A. gelechiidivoris pupae can be stored for up to 14 days at 8°C without affecting the efficacy of the parasitoid in the field.

Keywords: biological control, cold storage, massive rearing, quality control

Procedia PDF Downloads 366
13177 Association between Levels of Volatile Organic Compound Metabolites and Cigarette Smoking-Related Urothelial Carcinoma

Authors: Chi-Jung Chung, Chao-Hsiang Chang, Chiu-Shong Liu, Sheng-Wei Li, Mu-Chi Chung, Ting-Jie Wen, Hui-Ling Lee

Abstract:

Cigarette smoke contains volatile organic compounds (VOCs), such as acrylamide, 1,3-butadiene, and benzene. This study aimed to explore the associations between the urinary levels of cotinine and VOC metabolites and the risk of urothelial carcinoma (UC). A hospital-based case–control study involving two groups matched on the basis of age ( ± 3 years) and gender was designed. UC was clinically diagnosed through urological examinations and pathologically verified. Smoking-related information was collected through questionnaires and face-to-face interviews with all study participants. Urine samples were collected for the analysis of the urinary levels of VOC metabolites, cotinine, and 8-hydroxydeoxygua- nosine (8-OHdG), which was selected as a proxy of oxidative stress. Multiple logistic regressions were applied to estimate the risk of UC. The urinary cotinine and 8-OHdG levels of the UC group were higher than those of the control group. The urinary levels of VOC metabolites, including N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N- acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine, N-acetyl-S- (4- hydroxy-2-buten-1-yl)-Lcysteine-3, trans, trans-muconic acid (t,t- MA), and S-phenylmercapturic acid (SPMA) increased as the urinary levels of cotinine increased. Relevant dose-response relationships between the risk of UC risk and the urinary levels of AAMA , t,t-MA, SPMA, and 8-OHdG were found after adjusting for potential risk factors. The UC risk of participants with high urinary levels of cotinine, AAMA, t,t-MA, SPMA, and 8-OHdG were 3.5–6-fold higher than those of other participants. Increased urinary levels of VOC metabolites were associated with smoking-related UC risk. The development of UC should be explored in large-scale in vitro or in vivo studies with the repeated measurement of VOC metabolites.

Keywords: volatile organic compound, urothelial carcinoma, cotinine, 8-hydroxydeoxyguanosine

Procedia PDF Downloads 137
13176 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models

Authors: R. Hellmuth

Abstract:

The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.

Keywords: building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 103
13175 Geothermal Energy Potential Estimates of Niger Delta Basin from Recent Studies

Authors: Olumide J. Adedapo

Abstract:

In this work, geothermal energy resource maps of the Niger Delta Basin were constructed using borehole thermal log data from over 300 deep wells. Three major geothermal anomalies were delineated and quantitatively interpreted in both onshore and offshore parts of the Niger Delta. The geothermal maps present the distribution of geothermal energy stored in the sedimentary rock mass in two ways: the accessible resources in depth interval 0-4000 m and static geothermal energy resources stored in the complete sedimentary infill of the basin (from the ground surface to the basement). The first map shows two major onshore anomalies, one in the north (with maximum energy values, 800 GJ/m2), another in the east to northeastern part (maximum energy values of 1250–1500 GJ/m2). Another two major anomalies occur offshore, one in the south with values of 750-1000 GJ/m2, occurring at about 100 km seawards and the other, in the southwest offshore with values 750-1250 GJ/m2, still at about 100 km from the shore. A second map of the Niger Delta shows a small anomaly in the northern part with the maximum value of 1500 GJ/m2 and a major anomaly occurring in the eastern part of the basin, onshore, with values of 2000-3500 GJ/m2. Offshore in the south and southwest anomalies in the total sedimentary rock mass occur with highest values up to 4000GJ/m2, with the southwestern anomaly extending west to the shore. It is much of interest to note the seaward–westward extension of these anomalies both in size, configuration, and magnitude for the geothermal energy in the total sedimentary thickness to the underlying basement. These anomalous fields show the most favourable locations and areas for further work on geothermal energy resources.

Keywords: geothermal energy, offshore, Niger delta, basin

Procedia PDF Downloads 209
13174 Size Effects on Structural Performance of Concrete Gravity Dams

Authors: Mehmet Akköse

Abstract:

Concern about seismic safety of concrete dams have been growing around the world, partly because the population at risk in locations downstream of major dams continues to expand and also because it is increasingly evident that the seismic design concepts in use at the time most existing dams were built were inadequate. Most of the investigations in the past have been conducted on large dams, typically above 100m high. A large number of concrete dams in our country and in other parts of the world are less than 50m high. Most of these dams were usually designed using pseudo-static methods, ignoring the dynamic characteristics of the structure as well as the characteristics of the ground motion. Therefore, it is important to carry out investigations on seismic behavior this category of dam in order to assess and evaluate the safety of existing dams and improve the knowledge for different high dams to be constructed in the future. In this study, size effects on structural performance of concrete gravity dams subjected to near and far-fault ground motions are investigated including dam-water-foundation interaction. For this purpose, a benchmark problem proposed by ICOLD (International Committee on Large Dams) is chosen as a numerical application. Structural performance of the dam having five different heights is evaluated according to damage criterions in USACE (U.S. Army Corps of Engineers). It is decided according to their structural performance if non-linear analysis of the dams requires or not. The linear elastic dynamic analyses of the dams to near and far-fault ground motions are performed using the step-by-step integration technique. The integration time step is 0.0025 sec. The Rayleigh damping constants are calculated assuming 5% damping ratio. The program NONSAP modified for fluid-structure systems with the Lagrangian fluid finite element is employed in the response calculations.

Keywords: concrete gravity dams, Lagrangian approach, near and far-fault ground motion, USACE damage criterions

Procedia PDF Downloads 267
13173 Chemical and Physical Properties and Biocompatibility of Ti–6Al–4V Produced by Electron Beam Rapid Manufacturing and Selective Laser Melting for Biomedical Applications

Authors: Bing–Jing Zhao, Chang-Kui Liu, Hong Wang, Min Hu

Abstract:

Electron beam rapid manufacturing (EBRM) or Selective laser melting is an additive manufacturing process that uses 3D CAD data as a digital information source and energy in the form of a high-power laser beam or electron beam to create three-dimensional metal parts by fusing fine metallic powders together.Object:The present study was conducted to evaluate the mechanical properties ,the phase transformation,the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM,SLM and forging technique.Method: Ti-6Al-4V alloy standard test pieces were manufactured by EBRM, SLM and forging technique according to AMS4999,GB/T228 and ISO 10993.The mechanical properties were analyzed by universal test machine. The phase transformation was analyzed by X-ray diffraction and scanning electron microscopy. The corrosivity was analyzed by electrochemical method. The biocompatibility was analyzed by co-culturing with mesenchymal stem cell and analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Results: The mechanical properties, the phase transformation, the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM、SLM were similar to forging and meet the mechanical property requirements of AMS4999 standard. a­phase microstructure for the EBM production contrast to the a’­phase microstructure of the SLM product. Mesenchymal stem cell adhesion and differentiation were well. Conclusion: The property of the Ti-6Al-4V alloy manufactured by EBRM and SLM technique can meet the medical standard from this study. But some further study should be proceeded in order to applying well in clinical practice.

Keywords: 3D printing, Electron Beam Rapid Manufacturing (EBRM), Selective Laser Melting (SLM), Computer Aided Design (CAD)

Procedia PDF Downloads 452
13172 Mother as Troubles Teller: A Discourse Analytic Case Study of Mother-Adolescent Daughter Interaction

Authors: Domenica L. DelPrete

Abstract:

Viewed as a type of rapport-talk, troubles telling is a common conversational practice among female friends who wish to establish connection, show empathy, or share a disconcerting experience. This study shows how troubles talk between a mother and her adolescent daughter has a different interactional outcome. Specifically, it reveals how discursive interaction with an adolescent daughter becomes increasingly volatile when the mother steps out of the role of nurturer and into the role of troubles teller. Naturally occurring interactions between a mother and her 15-year-old daughter were videotaped in their family home over a two-week period. The data were primarily analyzed from an interactional sociolinguistic perspective, using conversation analytic techniques for transcriptions and discursive analysis. The following questions guided this research: (1) How are troubles telling discursively accomplished in the everyday talk of a mother and her adolescent daughter? and (2) What topic prompts the mother to engage in troubles talk? The data show that the mother engages her daughter in troubles to talk on issues related to body image and physical appearance and does so by (1) repeated questioning, (2) not accepting the daughter’s response as adequate, and (3) proffering self-deprecation. Findings reveal that engaging an adolescent daughter in a conversational practice reserved for female friendship groups creates a negative connection and relational disharmony. Since 'telling one’s troubles' assumes an egalitarian relationship between individuals, mother’s trouble telling creates a peer-like interaction that the adolescent daughter repeatedly resists. This study also proposes a discursive consciousness raising, which hopes to enhance communication between mothers and daughters by revealing the signals that show an adolescent daughter’s unwillingness to participate in troubles talk. Being in tune to these cues may prompt mothers to hesitate before pursuing a topic that will not garner the positive interactional outcome they seek.

Keywords: discursive interaction, maternal roles, mother-daughter interaction, troubles telling

Procedia PDF Downloads 124
13171 Large Scale Method to Assess the Seismic Vulnerability of Heritage Buidings: Modal Updating of Numerical Models and Vulnerability Curves

Authors: Claire Limoge Schraen, Philippe Gueguen, Cedric Giry, Cedric Desprez, Frédéric Ragueneau

Abstract:

Mediterranean area is characterized by numerous monumental or vernacular masonry structures illustrating old ways of build and live. Those precious buildings are often poorly documented, present complex shapes and loadings, and are protected by the States, leading to legal constraints. This area also presents a moderate to high seismic activity. Even moderate earthquakes can be magnified by local site effects and cause collapse or significant damage. Moreover the structural resistance of masonry buildings, especially when less famous or located in rural zones has been generally lowered by many factors: poor maintenance, unsuitable restoration, ambient pollution, previous earthquakes. Recent earthquakes prove that any damage to these architectural witnesses to our past is irreversible, leading to the necessity of acting preventively. This means providing preventive assessments for hundreds of structures with no or few documents. In this context we want to propose a general method, based on hierarchized numerical models, to provide preliminary structural diagnoses at a regional scale, indicating whether more precise investigations and models are necessary for each building. To this aim, we adapt different tools, being developed such as photogrammetry or to be created such as a preprocessor starting from pictures to build meshes for a FEM software, in order to allow dynamic studies of the buildings of the panel. We made an inventory of 198 baroque chapels and churches situated in the French Alps. Then their structural characteristics have been determined thanks field surveys and the MicMac photogrammetric software. Using structural criteria, we determined eight types of churches and seven types for chapels. We studied their dynamical behavior thanks to CAST3M, using EC8 spectrum and accelerogramms of the studied zone. This allowed us quantifying the effect of the needed simplifications in the most sensitive zones and choosing the most effective ones. We also proposed threshold criteria based on the observed damages visible in the in situ surveys, old pictures and Italian code. They are relevant in linear models. To validate the structural types, we made a vibratory measures campaign using vibratory ambient noise and velocimeters. It also allowed us validating this method on old masonry and identifying the modal characteristics of 20 churches. Then we proceeded to a dynamic identification between numerical and experimental modes. So we updated the linear models thanks to material and geometrical parameters, often unknown because of the complexity of the structures and materials. The numerically optimized values have been verified thanks to the measures we made on the masonry components in situ and in laboratory. We are now working on non-linear models redistributing the strains. So we validate the damage threshold criteria which we use to compute the vulnerability curves of each defined structural type. Our actual results show a good correlation between experimental and numerical data, validating the final modeling simplifications and the global method. We now plan to use non-linear analysis in the critical zones in order to test reinforcement solutions.

Keywords: heritage structures, masonry numerical modeling, seismic vulnerability assessment, vibratory measure

Procedia PDF Downloads 489
13170 Directional Implicit Functions in Nonsmooth Analysis

Authors: Murzabekova Gulden

Abstract:

Directional implicit functions for underdetermined nonsmooth systems in terms of the new tool of the Nonsmooth analysis - exhausters are considered. A method for finding an implicit function for underdetermined nonsmooth systems is proposed.

Keywords: implicit function, exhauster, nonsmooth systems

Procedia PDF Downloads 240
13169 Development of a Novel Nanobiosystem for the Selective Nanophotothermolysis of Meticilin Resistant Staphyloccocous Aureus Using Anti-MRSA Antibody Functionalized Gold Nanoparticles

Authors: Lucian Mocan, Cristian Matea, Flaviu A. Tabaran, Teodora Mocan, Cornel Iancu

Abstract:

Introduction: Due to antibiotic resistance, systemic infections caused by Meticilin resistant Staphyloccocous Aureus (MRSA) are the main cause of millions of deaths each year. Development of new active biomolecules that are highly effective and refractory to antibiotic resistance may open new avenues in the field of antimicrobial therapy. In this research, we have focused on the development of a novel nanobiosystem with high affinity for MRSA microorganism to mediate its selective laser thermal ablation. Materials and Methods: Gold nanoparticles (15nm in diameter) linked to a specific antibody against MRSA surface were selectively delivered (at various concentrations and incubation times) and internalized into MRSA microorganism following the treatment these multidrug-resistant bacteria were irradiated using a 2w, 808 nm LASER. Results and Discussions: The post-irradiation necrotic rate ranged from 51.2% (for 1 mg/L) to 87.3% (for 50 mg/L) at 60 seconds (p<0.001), while at 30 minute the necrotic rate increased from 64.3% (1 mg/L) to 92.1% (50 mg/L), p value<0.001. Significantly lower apoptotic rates were obtained in irradiated MRSA treated with GNPs only (control) treated for 60 seconds and 30 minutes at concentrations ranging from 1 mg/L to 50 mg/L. We show here that the optimal LASER mediated the necrotic effect of MRSA after incubation with anti-MRSA-Ab was obtained at a concentration of 50 mg/L. Conclusion: In the presented research, we obtained a very efficacious pulse laser mode treatment of individual MRSA agents with minimal effects on the surrounding medium, providing highly localized destruction only for MRSA microorganism.

Keywords: MRSA, photothermolysis, antibiotic resistance, gold nanoparticles

Procedia PDF Downloads 431
13168 Slope Stability Assessment in Metasedimentary Deposit of an Opencast Mine: The Case of the Dikuluwe-Mashamba (DIMA) Mine in the DR Congo

Authors: Dina Kon Mushid, Sage Ngoie, Tshimbalanga Madiba, Kabutakapua Kakanda

Abstract:

Slope stability assessment is still the biggest challenge in mining activities and civil engineering structures. The slope in an opencast mine frequently reaches multiple weak layers that lead to the instability of the pit. Faults and soft layers throughout the rock would increase weathering and erosion rates. Therefore, it is essential to investigate the stability of the complex strata to figure out how stable they are. In the Dikuluwe-Mashamba (DIMA) area, the lithology of the stratum is a set of metamorphic rocks whose parent rocks are sedimentary rocks with a low degree of metamorphism. Thus, due to the composition and metamorphism of the parent rock, the rock formation is different in hardness and softness, which means that when the content of dolomitic and siliceous is high, the rock is hard. It is softer when the content of argillaceous and sandy is high. Therefore, from the vertical direction, it appears as a weak and hard layer, and from the horizontal direction, it seems like a smooth and hard layer in the same rock layer. From the structural point of view, the main structures in the mining area are the Dikuluwe dipping syncline and the Mashamba dipping anticline, and the occurrence of rock formations varies greatly. During the folding process of the rock formation, the stress will concentrate on the soft layer, causing the weak layer to be broken. At the same time, the phenomenon of interlayer dislocation occurs. This article aimed to evaluate the stability of metasedimentary rocks of the Dikuluwe-Mashamba (DIMA) open-pit mine using limit equilibrium and stereographic methods Based on the presence of statistical structural planes, the stereographic projection was used to study the slope's stability and examine the discontinuity orientation data to identify failure zones along the mine. The results revealed that the slope angle is too steep, and it is easy to induce landslides. The numerical method's sensitivity analysis showed that the slope angle and groundwater significantly impact the slope safety factor. The increase in the groundwater level substantially reduces the stability of the slope. Among the factors affecting the variation in the rate of the safety factor, the bulk density of soil is greater than that of rock mass, the cohesion of soil mass is smaller than that of rock mass, and the friction angle in the rock mass is much larger than that in the soil mass. The analysis showed that the rock mass structure types are mostly scattered and fragmented; the stratum changes considerably, and the variation of rock and soil mechanics parameters is significant.

Keywords: slope stability, weak layer, safety factor, limit equilibrium method, stereography method

Procedia PDF Downloads 256
13167 The Introduction of a Tourniquet Checklist to Identify and Record Tourniquet Related Complications

Authors: Akash Soogumbur

Abstract:

Tourniquets are commonly used in orthopaedic surgery to provide hemostasis during procedures on the upper and lower limbs. However, there is a risk of complications associated with tourniquet use, such as nerve damage, skin necrosis, and compartment syndrome. The British Orthopaedic Association (BOAST) guidelines recommend the use of tourniquets at a pressure of 300 mmHg or less for a maximum of 2 hours. Research Aim: The aim of this study was to evaluate the effectiveness of a tourniquet checklist in improving compliance with the BOAST guidelines. Methodology: This was a retrospective study of all orthopaedic procedures performed at a single institution over a 12-month period. The study population included patients who had a tourniquet applied during surgery. Data were collected from the patients' medical records, including the duration of tourniquet use, the pressure used, and the method of exsanguination. Findings: The results showed that the use of the tourniquet checklist significantly improved compliance with the BOAST guidelines. Prior to the introduction of the checklist, compliance with the guidelines was 83% for the duration of tourniquet use and 73% for pressure used. After the introduction of the checklist, compliance increased to 100% for both duration of tourniquet use and pressure used. Theoretical Importance: The findings of this study suggest that the use of a tourniquet checklist can be an effective way to improve compliance with the BOAST guidelines. This is important because it can help to reduce the risk of complications associated with tourniquet use. Data Collection: Data were collected from the patients' medical records. The data included the following information: Patient demographics, procedure performed, duration of tourniquet use, pressure used, method of exsanguination. Analysis Procedures: The data were analyzed using descriptive statistics. The compliance with the BOAST guidelines was calculated as the percentage of patients who met the guidelines for the duration of tourniquet use and pressure used. Question Addressed: The question addressed by this study was whether the use of a tourniquet checklist could improve compliance with the BOAST guidelines. Conclusion: The results of this study suggest that the use of a tourniquet checklist can be an effective way to improve compliance with the BOAST guidelines. This is important because it can help to reduce the risk of complications associated with tourniquet use.

Keywords: tourniquet, pressure, duration, complications, surgery

Procedia PDF Downloads 64
13166 Investigating Effective Factors on the Organizational Pathology of Knowledge Production in Islamic Azad University

Authors: Davoud Maleki, Neda Zamani

Abstract:

The purpose of this research was to investigate the factors affecting the organizational pathology of knowledge production in Islamic Azad University. The present research method is quantitative. It was a survey type and applied research in terms of its purpose. The statistical population of the present study included all full-time professors of the Islamic Azad Universities in the North, South, East, West and Central regions, including the Islamic Azad Universities of Sari, Isfahan, Kerman, Khorramabad and Shiraz, and their total number was 1389, based on the Cochran formula. 305 people were selected as the sample size by random sampling method. The research tool was a researcher-made questionnaire, whose validity was calculated from the professors' point of view and its reliability was calculated based on Cronbach's alpha and was 0.89. For data analysis, confirmatory factor analysis and structural equations were used with Smart3 Pls software. The findings showed that the variables of strategy, structure and process directly and the variable of strategy explained indirectly through the variables of structure and process 96.8% of the pathology of knowledge production. Also, structure 49.6% and process variable 58.4% explain the pathology of knowledge production. 38% of knowledge production changes related to the direct effect of strategy, 39% of knowledge production changes Related to the effect of structure, 32% of the changes in knowledge production are related to the direct effect of the process, 70.5% of the changes related to the structure are related to the direct effect of the strategy, 36.5% of the changes related to the process are related to the direct effect of the strategy, 46.3 Percentage of process variable changes It is related to the direct effect of the structure. According to the obtained results, it can be acknowledged that the pathology model of knowledge production in Islamic Azad University can be used as an effective model in the pathology of knowledge production and can improve the scientific level of knowledge producers.

Keywords: pathology of knowledge production, strategic issues, process issues, Islamic Azad University

Procedia PDF Downloads 10
13165 E-learning resources for radiology training: Is an ideal program available?

Authors: Eric Fang, Robert Chen, Ghim Song Chia, Bien Soo Tan

Abstract:

Objective and Rationale: Training of radiology residents hinges on practical, on-the-job training in all facets and modalities of diagnostic radiology. Although residency is structured to be comprehensive, clinical exposure depends on the case mix available locally and during the posting period. To supplement clinical training, there are several e-learning resources available to allow for greater exposure to radiological cases. The objective of this study was to survey residents and faculty on the usefulness of these e-learning resources. Methods: E-learning resources were shortlisted with input from radiology residents, Google search and online discussion groups, and screened by their purported focus. Twelve e-learning resources were found to meet the criteria. Both radiology residents and experienced radiology faculty were then surveyed electronically. The e-survey asked for ratings on breadth, depth, testing capability and user-friendliness for each resource, as well as for rankings for the top 3 resources. Statistical analysis was performed using SAS 9.4. Results: Seventeen residents and fifteen faculties completed an e-survey. Mean response rate was 54% ± 8% (Range: 14- 96%). Ratings and rankings were statistically identical between residents and faculty. On a 5-point rating scale, breadth was 3.68 ± 0.18, depth was 3.95 ± 0.14, testing capability was 2.64 ± 0.16 and user-friendliness was 3.39 ± 0.13. Top-ranked resources were STATdx (first), Radiopaedia (second) and Radiology Assistant (third). 9% of responders singled out R-ITI as potentially good but ‘prohibitively costly’. Statistically significant predictive factors for higher rankings are familiarity with the resource (p = 0.001) and user-friendliness (p = 0.006). Conclusion: A good e-learning system will complement on-the-job training with a broad case base, deep discussion and quality trainee evaluation. Based on our study on twelve e-learning resources, no single program fulfilled all requirements. The perception and use of radiology e-learning resources depended more on familiarity and user-friendliness than on content differences and testing capability.

Keywords: e-learning, medicine, radiology, survey

Procedia PDF Downloads 330
13164 Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration

Authors: MyungGu Yeo, JongHan Ha, Gi-Hoon Yang, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications.

Keywords: bioink, cell-laden scaffold, micro/nanofibers, poly(caprolactone)

Procedia PDF Downloads 377
13163 Effect of Stress Relief of the Footbath Using Bio-Marker in Japan

Authors: Harumi Katayama, Mina Suzuki, Taeko Muramatsu, Yui Shimogawa, Yoshimi Mizushima, Mitsuo Hiramatsu, Kimitsugu Nakamura, Takeshi Suzue

Abstract:

Purpose: There are very often footbaths in the hot-spring area as culture from old days in Japan. This culture moderately supported mental and physical health among people. In Japanese hospitals, nurses provide footbath for severe patients to mental comfortable. However, there are only a few evidences effect of footbath for mental comfortable. In this presentation, we show the effect of stress relief of the footbath using biomarker among 35 college students in volunteer. Methods: The experiment was designed in two groups of the footbath group and the simple relaxation group randomly. As mental load, Kraepelin test was given to the students beforehand. Ultra-weak chemiluminescence (UCL) in saliva and self-administered liner scale measurable emotional state were measured on four times concurrently; there is before and after the mental load, after the stress relief, and 30 minutes after the stress relief. The scale that measured emotional state was consisted of 7 factors; there is excitement, relaxation, vigorous, fatigue, tension, calm, and sleepiness with 22 items. ANOVA was calculated effect of the footbath for stress relief. Results: The level of UCL (photons/100sec) was significantly increased in response on both groups after mental load. After the two types of stress relief, UCL (photons/100sec) of footbath group was significantly decreased compared to simple relaxation group. Score of sleepiness and relaxation were significantly increased after the stress relief in the footbath group than the simple relaxation group. However, score of excitement, vigorous, tension, and calm were exhibit the same degree of decrease after the stress relief on both group. Conclusion: It was suggested that salivary UCL may be a sensitive biomarker for mild stress relief as nursing care. In the future, we will measure using UCL to evaluate as stress relief for inpatients, outpatients, or general public as the subjects.

Keywords: bio-marker, footbath, Japan, stress relief

Procedia PDF Downloads 327
13162 Mediation Analysis of the Efficacy of the Nimotuzumab-Cisplatin-Radiation (NCR) Improve Overall Survival (OS): A HPV Negative Oropharyngeal Cancer Patient (HPVNOCP) Cohort

Authors: Akshay Patil

Abstract:

Objective: Mediation analysis identifies causal pathways by testing the relationships between the NCR, the OS, and an intermediate variable that mediates the relationship between the Nimotuzumab-cisplatin-radiation (NCR) and OS. Introduction: In randomized controlled trials, the primary interest is in the mechanisms by which an intervention exerts its effects on the outcomes. Clinicians are often interested in how the intervention works (or why it does not work) through hypothesized causal mechanisms. In this work, we highlight the value of understanding causal mechanisms in randomized trial by applying causal mediation analysis in a randomized trial in oncology. Methods: Data was obtained from a phase III randomized trial (Subgroup of HPVNOCP). NCR is reported to significantly improve the OS of patients locally advanced head and neck cancer patients undergoing definitive chemoradiation. Here, based on trial data, the mediating effect of NCR on patient overall survival was systematically quantified through progression-free survival(PFS), disease free survival (DFS), Loco-regional failure (LRF), and the disease control rate (DCR), Overall response rate (ORR). Effects of potential mediators on the HR for OS with NCR versus cisplatin-radiation (CR) were analyzed by Cox regression models. Statistical analyses were performed using R software Version 3.6.3 (The R Foundation for Statistical Computing) Results: Effects of potential mediator PFS was an association between NCR treatment and OS, with an indirect-effect (IE) 0.76(0.62 – 0.95), which mediated 60.69% of the treatment effect. Taking into account baseline confounders, the overall adjusted hazard ratio of death was 0.64 (95% CI: 0.43 – 0.96; P=0.03). The DFS was also a significant mediator and had an IE 0.77 (95% CI; 0.62-0.93), 58% mediated). Smaller mediation effects (maximum 27%) were observed for LRF with IE 0.88(0.74 – 1.06). Both DCR and ORR mediated 10% and 15%, respectively, of the effect of NCR vs. CR on the OS with IE 0.65 (95% CI; 0.81 – 1.08) and 0.94(95% CI; 0.79 – 1.04). Conclusion: Our findings suggest that PFS and DFS were the most important mediators of the OS with nimotuzumab to weekly cisplatin-radiation in HPVNOCP.

Keywords: mediation analysis, cancer data, survival, NCR, HPV negative oropharyngeal

Procedia PDF Downloads 139
13161 Serum Interlukin-8 and Immunomodulation in Beta Thalassemia Patients

Authors: Shahira El Shafie, Hanaa Eldash, Engy Ghabbour, Mohamed Eid

Abstract:

Several immunologic defects can be found in patients with beta-thalassemia, among which the impairment of neutrophil phagocytic function is of utmost importance. Attention has been directed to the role of proinflammatory cytokines in neutrophil chemotaxis and phagocytosis. Interleukin-8 (IL-8) is an important chemotactic and activation peptide for neutrophils; changes in IL-8 level and potential correlation with neutrophil function can be relevant to immunomodulation pathophysiology in beta-thalassemia patients. This case-control study aimed to evaluate IL-8 level and to assess granulocyte recruitment, as markers of immunomodulation, in poly-transfused thalassemia patients attending Fayoum University Hospitals. The study was conducted on 50 patients with ß thalassemia and 32 age-matched controls. 21/50 patients were transfused more than ten times, and 29/50 were transfused in a lower frequency. Patients and controls were subjected to thorough history taking and clinical examination, measurement of IL-8 level using human IL-8 ELISA kit, and Rebuck skin window technique (RSWT) to assess granulocyte recruitment. Our data showed statistically significant higher levels of IL-8 in ß thalassemia patients compared to control with a much higher difference in patients transfused more than ten times. Neutrophil recruitment was significantly lower in ß thalassemia patients compared to control at 4 hours and 24 hours test time. Although IL-8, the main chemotactic pro-inflammatory cytokine showed a higher level in thalassemia patients, neutrophils recruitment was significantly lower, especially in those receiving more than ten transfusion times. Our findings suggest a possible role of other neutrophil chemotactic factors, defective neutrophil response, or increased IL-8 as compensation of abnormal function. We recommend the use of IL-8 and Rebuck skin window technique as useful markers of immunomodulation in thalassemia and further study for these biomarkers to assess their clinical implications and impact on the management of thalassemia patients.

Keywords: beta-thalassemia, Interleukin-8, Rebuck skin window technique, immunomodulation

Procedia PDF Downloads 183