Search results for: performance criteria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15056

Search results for: performance criteria

1166 Motivation and Self-Concept in Language Learning: An Exploratory Study of English Language Learners

Authors: A. van Staden, M. M. Coetzee

Abstract:

Despite numerous efforts to increase the literacy level of South African learners, for example, through the implementation of educational policies such as the Revised National Curriculum statement, advocating mother-tongue instruction (during a child's formative years), in reality, the majority of South African children are still being educated in a second language (in most cases English). Moreover, despite the fact that a significant percentage of our country's budget is spent on the education sector and that both policy makers and educationalists have emphasized the importance of learning English in this globalized world, the poor overall academic performance and English literacy level of a large number of school leavers are still a major concern. As we move forward in an attempt to comprehend the nuances of English language and literacy development in our country, it is imperative to explore both extrinsic and intrinsic factors that contribute or impede the effective development of English as a second language. In the present study, the researchers set out to investigate how intrinsic factors such as motivation and self-concept contribute to or affect English language learning amongst high school learners in South Africa. Emanating from the above the main research question that guided this research is the following: Is there a significant relationship between high school learners' self-concept, motivation, and English second language performances? In order to investigate this hypothesis, this study utilized quantitative research methodology to investigate the interplay of self-concept and motivation in English language learning. For this purpose, we sampled 201 high school learners from various schools in South Africa. Methods of data gathering inter alia included the following: A biographical questionnaire; the Academic Motivational Scale and the Piers-Harris Self-Concept Scale. Pearson Product Moment Correlation Analyses yielded significant correlations between L2 learners' motivation and their English language proficiency, including demonstrating positive correlations between L2 learners' self-concept and their achievements in English. Accordingly, researchers have argued that the learning context, in which students learn English as a second language, has a crucial influence on students' motivational levels. This emphasizes the important role the teacher has to play in creating learning environments that will enhance L2 learners' motivation and improve their self-concepts.

Keywords: motivation, self-concept, language learning, English second language learners (L2)

Procedia PDF Downloads 268
1165 Using Action Based Research to Examine the Effects of Co-Teaching on Middle School and High School Student Achievement in Math and Language Arts

Authors: Kathleen L. Seifert

Abstract:

Students with special needs are expected to achieve the same academic standards as their general education peers, yet many students with special needs are pulled-out of general content instruction. Because of this, many students with special needs are denied content knowledge from a content expert and instead receive content instruction in a more restrictive setting. Collaborative teaching, where a general education and special education teacher work alongside each other in the same classroom, has become increasingly popular as a means to meet the diverse needs of students in America’s public schools. The idea behind co-teaching is noble; to ensure students with special needs receive content area instruction from a content expert while also receiving the necessary supports to be successful. However, in spite of this noble effort, the effects of co-teaching are not always positive. The reasons why have produced several hypotheses, one of which has to do with lack of proper training and implementation of effective evidence-based co-teaching practices. In order to examine the effects of co-teacher training, eleven teaching pairs from a small mid-western school district in the United States participated in a study. The purpose of the study was to examine the effects of co-teacher training on middle and high school student achievement in Math and Language Arts. A local university instructor provided teachers with training in co-teaching via a three-day workshop. In addition, co-teaching pairs were given the opportunity for direct observation and feedback using the Co-teaching Core Competencies Observation Checklist throughout the academic year. Data are in the process of being collected on both the students enrolled in the co-taught classes as well as on the teachers themselves. Student data compared achievement on standardized assessments and classroom performance across three domains: 1. General education students compared to students with special needs in co-taught classrooms, 2. Students with special needs in classrooms with and without co-teaching, 3. Students in classrooms where teachers were given observation and feedback compared to teachers who refused the observation and feedback. Teacher data compared the perceptions of the co-teaching initiative between teacher pairs who received direct observation and feedback from those who did not. The findings from the study will be shared with the school district and used for program improvement.

Keywords: collabortive teaching, collaboration, co-teaching, professional development

Procedia PDF Downloads 119
1164 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances

Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm

Abstract:

ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.

Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances

Procedia PDF Downloads 375
1163 An Experimental Investigation of Chemical Enhanced Oil Recovery (Ceor) for Fractured Carbonate Reservoirs, Case Study: Kais Formation on Wakamuk Field

Authors: Jackson Andreas Theo Pola, Leksono Mucharam, Hari Oetomo, Budi Susanto, Wisnu Nugraha

Abstract:

About half of the world oil reserves are located in carbonate reservoirs, where 65% of the total carbonate reservoirs are oil wet and 12% intermediate wet [1]. Oil recovery in oil wet or mixed wet carbonate reservoirs can be increased by dissolving surfactant to injected water to change the rock wettability from oil wet to more water wet. The Wakamuk Field operated by PetroChina International (Bermuda) Ltd. and PT. Pertamina EP in Papua, produces from main reservoir of Miocene Kais Limestone. First production commenced on August, 2004 and the peak field production of 1456 BOPD occurred in August, 2010. It was found that is a complex reservoir system and until 2014 cumulative oil production was 2.07 MMBO, less than 9% of OOIP. This performance is indicative of presence of secondary porosity, other than matrix porosity which is of low average porosity 13% and permeability less than 7 mD. Implementing chemical EOR in this case is the best way to increase oil production. However, the selected chemical must be able to lower the interfacial tension (IFT), reduce oil viscosity, and alter the wettability; thus a special chemical treatment named SeMAR has been proposed. Numerous laboratory tests such as phase behavior test, core compatibility test, mixture viscosity, contact angle measurement, IFT, imbibitions test and core flooding were conducted on Wakamuk field samples. Based on the spontaneous imbibitions results for Wakamuk field core, formulation of SeMAR with compositional S12A gave oil recovery 43.94% at 1wt% concentration and maximum percentage of oil recovery 87.3% at 3wt% concentration respectively. In addition, the results for first scenario of core flooding test gave oil recovery 60.32% at 1 wt% concentration S12A and the second scenario gave 96.78% of oil recovery at concentration 3 wt% respectively. The soaking time of chemicals has a significant effect on the recovery and higher chemical concentrations affect larger areas for wettability and therefore, higher oil recovery. The chemical that gives best overall results from laboratory tests study will also be a consideration for Huff and Puff injections trial (pilot project) for increasing oil recovery from Wakamuk Field

Keywords: Wakamuk field, chemical treatment, oil recovery, viscosity

Procedia PDF Downloads 693
1162 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities

Authors: Pedro Esteban

Abstract:

Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.

Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities

Procedia PDF Downloads 112
1161 Achieving Design-Stage Elemental Cost Planning Accuracy: Case Study of New Zealand

Authors: Johnson Adafin, James O. B. Rotimi, Suzanne Wilkinson, Abimbola O. Windapo

Abstract:

An aspect of client expenditure management that requires attention is the level of accuracy achievable in design-stage elemental cost planning. This has been a major concern for construction clients and practitioners in New Zealand (NZ). Pre-tender estimating inaccuracies are significantly influenced by the level of risk information available to estimators. Proper cost planning activities should ensure the production of a project’s likely construction costs (initial and final), and subsequent cost control activities should prevent unpleasant consequences of cost overruns, disputes and project abandonment. If risks were properly identified and priced at the design stage, observed variance between design-stage elemental cost plans (ECPs) and final tender sums (FTS) (initial contract sums) could be reduced. This study investigates the variations between design-stage ECPs and FTS of construction projects, with a view to identifying risk factors that are responsible for the observed variance. Data were sourced through interviews, and risk factors were identified by using thematic analysis. Access was obtained to project files from the records of study participants (consultant quantity surveyors), and document analysis was employed in complementing the responses from the interviews. Study findings revealed the discrepancies between ECPs and FTS in the region of -14% and +16%. It is opined in this study that the identified risk factors were responsible for the variability observed. The values obtained from the analysis would enable greater accuracy in the forecast of FTS by Quantity Surveyors. Further, whilst inherent risks in construction project developments are observed globally, these findings have important ramifications for construction projects by expanding existing knowledge on what is needed for reasonable budgetary performance and successful delivery of construction projects. The findings contribute significantly to the study by providing quantitative confirmation to justify the theoretical conclusions generated in the literature from around the world. This therefore adds to and consolidates existing knowledge.

Keywords: accuracy, design-stage, elemental cost plan, final tender sum

Procedia PDF Downloads 268
1160 Assessment of Incomplete Childhood Immunization Determinants in Ethiopia: A Nationwide Multilevel Study

Authors: Mastewal Endeshaw Getnet

Abstract:

Imunization is one of the most cost-effective and extensively adopted public health strategies for preventing child disability and mortality. Expanded Program on Immunization (EPI) was launched in 1974 with the goal of providing life-saving vaccines to all children in all and building on the success of the global smallpox eradication program. According to World Health Organization report, by 2020, all countries should have achieved 90% vaccination coverage. Many developing countries still have not achieved the goal. Ethiopia is one of Africa's developing countries. The Ethiopian Ministry of health (MoH) launched the EPI program in 1980, with the goal of achieving 90% coverage among children under the age of 1 year by 1990. Among children aged 12-23 months, complete immunization coverage was 47% based on the Ethiopian Demographic and Health Survey (EDAS) 2019 report. The coverage varies depending on the administrative region, ranging from 21% in Afar region to 89% in Amhara region, Ethiopia. Therefore, identifying risk factors for incomplete immunization among children is a key challenge, particularly in Ethiopia, which has a large geographical diversity and a predicted with 119.96 million projected population size in the year 2022. Despite its critical and challenging issue, this issue is still open and has not yet been fully investigated. Recently, a few previous studies have been conducted on the assessment of incomplete children immunization determinants. However, the majority of the studies were cross-sectional surveys that assessed only EPI coverage. Motivated by the above investigation, this study focuses on investigating determinants associated with incomplete immunization among Ethiopian children to facilitate the rate of full immunization coverage. Moreover, we consider both individual immunization and service performance-related factors to investigate incomplete children's determinants. Consequently, we adopted an ecological model in this study. Individual and environmental factors are combined in the Ecological model, which provides multilevel framework for exploring different determinants related with health behaviors. The Ethiopian Demographic and Health Survey will be used as a source of data from 2021 to achieve the objective of this study. The findings of this study will be useful to the Ethiopian government and other public health institutes to improve the coverage score of childhood immunization based on the identified risk determinants.

Keywords: incomplete immunization, children, ethiopia, ecological model

Procedia PDF Downloads 39
1159 Metallic-Diamond Tools with Increased Abrasive Wear Resistance for Grinding Industrial Floor Systems

Authors: Elżbieta Cygan, Bączek, Piotr Wyżga

Abstract:

This paper presents the results of research on the physical, mechanical, and tribological properties of materials constituting the matrix in sintered metallic-diamond tools. The ground powders based on the Fe-Mn-Cu-Sn-C system were modified with micro-sized particles of the ceramic phase: SiC, Al₂O₃ and consolidated using the SPS (spark plasma sintering) method to a relative density of over 98% at 850-950°C, at a pressure of 35 MPa and time 10 min. After sintering, an analysis of the microstructure was conducted using scanning electron microscopy. The resulting materials were tested for the apparent density determined by Archimedes’ method, Rockwell hardness (scale B), Young’s modulus, as well as for technological properties. The performance results of obtained diamond composites were compared with the base material (Fe–Mn–Cu–Sn–C) and the commercial alloy Co-20% WC. The hardness of composites has achieved the maximum at a temperature of 900°C; therefore, it should be considered that at this temperature it was obtained optimal physical and mechanical properties of the subjects' composites were. Research on tribological properties showed that the composites modified with micro-sized particles of the ceramic phase are characterized by more than twice higher wear resistance in comparison with base materials and the commercial alloy Co-20% WC. Composites containing Al₂O₃ phase particles in the matrix material were composites containing Al₂O₃ phase particles in the matrix material were characterized by the lowest abrasion wear resistance. The manufacturing technology presented in the paper is economically justified and can be successfully used in the production process of the matrix in sintered diamond-impregnated tools used for the machining of an industrial floor system. Acknowledgment: The study was performed under LIDER IX Research Project No. LIDER/22/0085/L-9/17/NCBR/2018 entitled “Innovative metal-diamond tools without the addition of critical raw materials for applications in the process of grinding industrial floor systems” funded by the National Centre for Research and Development of Poland, Warsaw.

Keywords: abrasive wear resistance, metal matrix composites, sintered diamond tools, Spark Plasma Sintering

Procedia PDF Downloads 77
1158 Design of In-House Test Method for Assuring Packing Quality of Bottled Spirits

Authors: S. Ananthakrishnan, U. H. Acharya

Abstract:

Whether shopping in a retail location or via the internet, consumers expect to receive their products intact. When products arrive damaged or over-packaged, the result can be customer dissatisfaction and increased cost for retailers and manufacturers. The packaging performance depends on both the transport situation and the packaging design. During transportation, the packaged products are subjected to the variation in vibration levels from transport vehicles that vary in frequency and acceleration while moving to their destinations. Spirits manufactured by this Company were being transported to various parts of the country by road. There were instances of package breaking and customer complaints. The vibration experienced on a straight road at some speed may not be same as the vibration experienced by the same vehicle on a curve at the same speed. This vibration may negatively affect the product or packing. Hence, it was necessary to conduct a physical road test to understand the effect of vibration in the packaged products. The field transit trial has to be done before the transportations, which results in high investment. The company management was interested in developing an in-house test environment which would adequately represent the transit conditions. With the objective to develop an in-house test condition that can accurately simulate the mechanical loading scenario prevailing during the storage, handling and transportation of the products a brainstorming was done with the concerned people to identify the critical factors affecting vibration rate. Position of corrugated box, the position of bottle and speed of vehicle were identified as factors affecting the vibration rate. Several packing scenarios were identified by Design of Experiment methodology and simulated in the in-house test facility. Each condition was observed for 30 minutes, which was equivalent to 1000 km. The achieved vibration level was considered as the response. The average achieved in the simulated experiments was near to the third quartile (Q3) of the actual data. Thus, we were able to address around three-fourth of the actual phenomenon. Most of the cases in transit could be reproduced. The recommended test condition could generate a vibration level ranging from 9g to 15g as against a maximum of only 7g that was being generated earlier. Thus, the Company was able to test the packaged cartons satisfactorily in the house itself before transporting to the destinations, assuring itself that the breakages of the bottles will not happen.

Keywords: ANOVA, Corrugated box, DOE, Quartile

Procedia PDF Downloads 125
1157 Evaluation of Nutrient Intake, Body Weight Gain and Carcass Characteristics of Growing Washera Lamb Fed Grass Hay as a Basal Diet with Supplementation of Dried Atella and Niger Seed Cake in Different Combinations

Authors: Fana Woldetsadik

Abstract:

Ethiopia has a huge livestock population, including sheep, that has been contributing a considerable portion to the economy of the country and still promising to rally around the economic advancement of the country. However, feed shortage is a limiting factor in the production and productivity of sheep among Ethiopian smallholder farmers. Therefore, the aim of this study was to prove the role of the locally available brewery by-products called dried Atella as a supplement in feed intake, digestibility, live weight gain, carcass yield, and economic benefit in comparison with commercially purchased supplements known as niger seed cake (NSC). This on-station feeding experiment was conducted on the Zenzelma Campus of Bahir Dar University animal farm. The experimental design used for this research was a completely randomized design (CRD) with five replications. The crude protein (CP) content of dried Atella, wheat bran (WB), natural pasture hay (NPH) and NSC were about 25.07%, 16.57%, 4.48% and 38.04%, respectively, while the neutral detergent fibre (NDF),acid detergent fibre (ADF) and acid detergent lignin (ADL) content of dried Atella, WB, NPH and NSC were around 31.75%, 8.31%, 8.14%; 42.05%, 22.64%, 4.04%; 74.21%, 50.81%, 8.66%; 42.31%, 26.95% and 6.9%, respectively. The result depicted that a higher(P < 0.001) feed intake, nutrient intake, and digestibility for lambs supplemented with Atella than those supplemented with NSC. Furthermore, daily body weight gain and carcass characteristics were better (P < 0.05) for the sheep supplemented with dried Atella than NSC. On the other hand, in terms of profitability, although there was no substantial difference (P > 0.05) between T2 (animals fed NPH,NSC and WB) and T3 (animals fed NPH, Atella and WB), slightly better benefit was recorded in T3 groups. However, loss of money was recorded in T1 (animals fed NPH and WB). Hence, from the biological performance of lambs, it was concluded that Atella could be a potential supplementary feed for sheep fattening among smallholder farmers than NSC despite no profitability difference. Nevertheless, further investigation is recommended to examine the consequence of supplementation of NPH with NSC and NPH with Atella on fatty acid profile analysis, the physicochemical composition of meat, and meat composition.

Keywords: Attela, Bahir Dar university, Carcass yield, digestibility, natural pasture hay, Niger seed cake, smallholder farmers, weight gain, Ethiopia

Procedia PDF Downloads 150
1156 Zooming into the Leadership Behaviours Desired by the 21st Century Workforce: Introduction of the Research Theory and Methods

Authors: Anita Bela, Marta Juhasz

Abstract:

Adapting to the always-changing environment comes with complex determinants. The authors are zooming into one aspect only when the current workforce comes with obstacles by being less keen to stay engaged, even short or mid-term, resulting in additional challenges impacting the business performance. Seeing these occurring in practice made the researchers eager to gain a better understanding of the reasons behind. The paper aims to provide an overview of the theoretical background and research methods planned for the different stages of the research. The theoretical part takes the leadership behaviors under lens while the focus is on finding ways to attract and retain those who prefer working under more flexible employment conditions (e.g. contractor, contingent worker, etc.). These are considered as the organizational values and along with the power of people management are having their engaging relevance. The organizational culture (visible or invisible level) is clearly the mirror of the set of shared values guiding all members of the companies towards acceptable behavior. The applied research method, inductive reasoning was selected since the focus and questions raised in this research are results of specific observations made on the employees (various employment types) and leaders of start-ups and corporates. By comparing the similarities and differences, the researchers are hoping to prove the readiness and agility of the start-up culture for the desired leadership behaviours of the current and future workforce against the corporate culture. While exploring the preferences and engaging factors of the 21st-century workforce the data gathering would happen through website analysis – using ATLAS.ti qualitative software – followed by interview sessions where demographics will be collected and preferred leadership behaviors - using the Critical Incident Technique. Moreover, a short engagement survey will be administered to understand the linkage between the organizational culture type and engagement level. To conclude, after gaining theoretical understanding, we will zoom back to the employees to reveal the behaviors to be followed to achieve engagement in an environment where nothing is stable and where the companies always must keep their agile eyes and reactions vivid.

Keywords: leadership behaviours, organizational culture, qualitative analysis, workforce engagement

Procedia PDF Downloads 116
1155 Observation of Inverse Blech Length Effect during Electromigration of Cu Thin Film

Authors: Nalla Somaiah, Praveen Kumar

Abstract:

Scaling of transistors and, hence, interconnects is very important for the enhanced performance of microelectronic devices. Scaling of devices creates significant complexity, especially in the multilevel interconnect architectures, wherein current crowding occurs at the corners of interconnects. Such a current crowding creates hot-spots at the respective corners, resulting in non-uniform temperature distribution in the interconnect as well. This non-uniform temperature distribution, which is exuberated with continued scaling of devices, creates a temperature gradient in the interconnect. In particular, the increased current density at corners and the associated temperature rise due to Joule heating accelerate the electromigration induced failures in interconnects, especially at corners. This has been the classic reliability issue associated with metallic interconnects. Herein, it is generally understood that electromigration induced damages can be avoided if the length of interconnect is smaller than a critical length, often termed as Blech length. Interestingly, the effect of non-negligible temperature gradients generated at these corners in terms of thermomigration and electromigration-thermomigration coupling has not attracted enough attention. Accordingly, in this work, the interplay between the electromigration and temperature gradient induced mass transport was studied using standard Blech structure. In this particular sample structure, the majority of the current is forcefully directed into the low resistivity metallic film from a high resistivity underlayer film, resulting in current crowding at the edges of the metallic film. In this study, 150 nm thick Cu metallic film was deposited on 30 nm thick W underlayer film in the configuration of Blech structure. Series of Cu thin strips, with lengths of 10, 20, 50, 100, 150 and 200 μm, were fabricated. Current density of ≈ 4 × 1010 A/m² was passed through Cu and W films at a temperature of 250ºC. Herein, along with expected forward migration of Cu atoms from the cathode to the anode at the cathode end of the Cu film, backward migration from the anode towards the center of Cu film was also observed. Interestingly, smaller length samples consistently showed enhanced migration at the cathode end, thus indicating the existence of inverse Blech length effect in presence of temperature gradient. A finite element based model showing the interplay between electromigration and thermomigration driving forces has been developed to explain this observation.

Keywords: Blech structure, electromigration, temperature gradient, thin films

Procedia PDF Downloads 256
1154 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia

Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo

Abstract:

Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.

Keywords: climate variability, crop income, household, rainfall, temperature

Procedia PDF Downloads 376
1153 A Heteroskedasticity Robust Test for Contemporaneous Correlation in Dynamic Panel Data Models

Authors: Andreea Halunga, Chris D. Orme, Takashi Yamagata

Abstract:

This paper proposes a heteroskedasticity-robust Breusch-Pagan test of the null hypothesis of zero cross-section (or contemporaneous) correlation in linear panel-data models, without necessarily assuming independence of the cross-sections. The procedure allows for either fixed, strictly exogenous and/or lagged dependent regressor variables, as well as quite general forms of both non-normality and heteroskedasticity in the error distribution. The asymptotic validity of the test procedure is predicated on the number of time series observations, T, being large relative to the number of cross-section units, N, in that: (i) either N is fixed as T→∞; or, (ii) N²/T→0, as both T and N diverge, jointly, to infinity. Given this, it is not expected that asymptotic theory would provide an adequate guide to finite sample performance when T/N is "small". Because of this, we also propose and establish asymptotic validity of, a number of wild bootstrap schemes designed to provide improved inference when T/N is small. Across a variety of experimental designs, a Monte Carlo study suggests that the predictions from asymptotic theory do, in fact, provide a good guide to the finite sample behaviour of the test when T is large relative to N. However, when T and N are of similar orders of magnitude, discrepancies between the nominal and empirical significance levels occur as predicted by the first-order asymptotic analysis. On the other hand, for all the experimental designs, the proposed wild bootstrap approximations do improve agreement between nominal and empirical significance levels, when T/N is small, with a recursive-design wild bootstrap scheme performing best, in general, and providing quite close agreement between the nominal and empirical significance levels of the test even when T and N are of similar size. Moreover, in comparison with the wild bootstrap "version" of the original Breusch-Pagan test our experiments indicate that the corresponding version of the heteroskedasticity-robust Breusch-Pagan test appears reliable. As an illustration, the proposed tests are applied to a dynamic growth model for a panel of 20 OECD countries.

Keywords: cross-section correlation, time-series heteroskedasticity, dynamic panel data, heteroskedasticity robust Breusch-Pagan test

Procedia PDF Downloads 432
1152 Predictive Factors of Exercise Behaviors of Junior High School Students in Chonburi Province

Authors: Tanida Julvanichpong

Abstract:

Exercise has been regarded as a necessary and important aspect to enhance physical performance and psychology health. Body weight statistics of students in junior high school students in Chonburi Province beyond a standard risk of obesity. Promoting exercise among Junior high school students in Chonburi Province, essential knowledge concerning factors influencing exercise is needed. Therefore, this study aims to (1) determine the levels of perceived exercise behavior, exercise behavior in the past, perceived barriers to exercise, perceived benefits of exercise, perceived self-efficacy to exercise, feelings associated with exercise behavior, influence of the family to exercise, influence of friends to exercise, and the perceived influence of the environment on exercise. (2) examine the predicting ability of each of the above factors while including personal factors (sex, educational level) for exercise behavior. Pender’s Health Promotion Model was used as a guide for the study. Sample included 652 students in junior high schools, Chonburi Provience. The samples were selected by Multi-Stage Random Sampling. Data Collection has been done by using self-administered questionnaires. Data were analyzed using descriptive statistics, Pearson’s product moment correlation coefficient, Eta, and stepwise multiple regression analysis. The research results showed that: 1. Perceived benefits of exercise, influence of teacher, influence of environmental, feelings associated with exercise behavior were at a high level. Influence of the family to exercise, exercise behavior, exercise behavior in the past, perceived self-efficacy to exercise and influence of friends were at a moderate level. Perceived barriers to exercise were at a low level. 2. Exercise behavior was positively significant related to perceived benefits of exercise, influence of the family to exercise, exercise behavior in the past, perceived self-efficacy to exercise, influence of friends, influence of teacher, influence of environmental and feelings associated with exercise behavior (p < .01, respectively) and was negatively significant related to educational level and perceived barriers to exercise (p < .01, respectively). Exercise behavior was significant related to sex (Eta = 0.243, p=.000). 3. Exercise behavior in the past, influence of the family to exercise significantly contributed 60.10 percent of the variance to the prediction of exercise behavior in male students (p < .01). Exercise behavior in the past, perceived self-efficacy to exercise, perceived barriers to exercise, and educational level significantly contributed 52.60 percent of the variance to the prediction of exercise behavior in female students (p < .01).

Keywords: predictive factors, exercise behaviors, Junior high school, Chonburi Province

Procedia PDF Downloads 616
1151 Effect of Dietary Fortification with Hibiscus Sabdariffa Calyces Meal on Egg Production and Egg Qualiy of Japanese Quail

Authors: Nomagugu Ndlovu, Kennedy H. Erlwanger, Eliton Chivandi

Abstract:

In order to enhance egg production and egg quality from layer poultry, producers use synthetic feed additives that enhance nutrient digestion and absorption in the gut. Synthetic feed additives have negative effects on consumer health hence the need to replace them with natural alternatives which are deemed safer for consumer health. Hibiscus sabdariffa calyces meal has hypolipidemic, probiotic and antioxidant activities; hence we investigated the effect of fortifying Japanese quail pullet diets with its calyces meal on egg production and egg quality. A standard Japanese quail layer diet was supplemented with H. sabdariffa calyces meal at 0%, 5% and 10% in diets 1, 2 and 3, respectively. Ninety, 5-week old Japanese quail hens were randomly allocated to and fed the layer diets for 56 days. Body mass, feed intake and egg mass, width, length, shell mass and thickness, yolk mass, height and diameter, albumen mass, length, width and height, and the proximate content and fatty acid profile of the egg albumen and yolk were determined. Supplemental fortification of the Japanese quail layer diet with H. sabdariffa calyces meal had no effect on growth performance and feed intake and conversion rate of the quail (P>0.05). The meal delayed the onset of laying and reduced (P < 0.0001) the number of eggs laid. It did not affect the external and internal egg quality parameters of Japanese quail (P > 0.05). Dietary fortification with H. sabdariffa calyces meal at 10% significantly increased the dry matter and reduced the fat content of the yolk and albumin of Japanese quail eggs (P < 0.05). Dietary H. sabdariffa calyces meal reduced the total omega 3 fatty acids in the yolk and significantly increased arachidonic acid (P = 0.0019), an omega 6 fatty acid. Inclusion of Hibiscus sabdariffa meal depressed egg production, suppressed omega 3 fatty acids and increased arachidonic acid thus, using it as a dietary supplement may result in losses to producers of Japanese quail eggs and may result in eggs whose fatty acid profile can compromise consumer health.

Keywords: quail, eggs, hibiscus sabdariffa, quality

Procedia PDF Downloads 66
1150 Chinese Early Childhood Parenting Style as a Moderator of the Development of Social Competence Based on Mindreading

Authors: Arkadiusz Gut, Joanna Afek

Abstract:

The first issue that we discuss in this paper is a battery of research demonstrating that culture influences children’s performance in tasks testing their theory of mind, also known as mindreading. We devote special attention to research done within Chinese culture; namely, studies with children speaking Cantonese and Mandarin natively and growing up in an environment dominated by the Chinese model of informal home education. Our attention focuses on the differences in development and functioning of social abilities and competences between children from China and the West. Another matter we turn to is the description of the nature of Chinese early childhood education. We suggest that the differences between the Chinese model and that of the West reveal a set of modifiers responsible for the variation observed in empirical research on children’s theory of mind (mindreading). The modifiers we identify are the following: (1) early socialization – that is, the transformation of the child into a member of the family and society that set special value by the social and physical environment; (2) the Confucian model of education – that is, the Chinese alphabet and tradition that determine a certain way of education in China; (3) the authoritarian style of upbringing – that is, reinforcing conformism, discouraging voicing of private opinions, and respect for elders; (4) the modesty of children and protectiveness of parents – that is, obedience as a desired characteristic in the child, overprotectiveness of parents, especially mothers; and (5) gender differences – that is, different educational styles for girls and boys. In our study, we conduct a thorough meta-analysis of empirical data on the development of mindreading and ToM (children’s theory of mind), as well as a cultural analysis of early childhood education in China. We support our analyses with questionnaire and narrative studies conducted in China that use the ‘Children’s Social Understanding Scale’ questionnaire, conversations based on the so-called ‘Scenarios Presented to Parents’, and questions designed to measure the ‘my child and I’ relation. With our research we aim to identify the factors in early childhood education that serve as moderators explaining the nature of the development and functioning of social cognition based on mind reading in China. Additionally, our study provides a valuable insight for comparative research of social cognition between China and the West.

Keywords: early childhood education, China, mindreading, parenting

Procedia PDF Downloads 386
1149 SUSTAINEXT–Validating a Zero-Waste: Dynamic, Multivalorization Route Biorefinery for Plant Extracts

Authors: Adriana Diaz Triana, Wolfgang Wimmer, Sebastian Glaser, Rainer Pamminger

Abstract:

SUSTAINEXT is a pioneer initiative in Extremadura, Spain under the EU Biobased industries. SUSTANEXT will scale-up and validate an industrial facility to produce botanical extracts, based on three key pillars. First, the whole valorization of bio-based feedstocks with a zero-waste and zero-emissions ambition. SUSTAINEXT will be deployed with six feedstocks. Three medicinal and aromatic plants (Rosemary, Chamomile, and Lemon verbena) will be locally sourced from disused tobacco fields with installed agri-voltaics; and three underexploited agro-industrial side streams will be further valorized (Olive, artichoke-cardoon, and pomegranate). Second, a dynamic, analytical biorefinery (DYANA) will isolate polyphenol and tri-terpenes from feedstocks in a disruptive and circular way. SUSTAINEXT explores 12 valorization routes (VRs) to extract and purify 46 functional ingredients, of which 13 are new in the market and 12 are newly produced in Europe. Third, the integrated and versatile value chain engages all actors, from feedstocks suppliers to extract users in the industries of food, animal feed, nutraceuticals, cosmetics, chemical performance, soil enhancers and fertilizers. This paper addresses SUTAINEXT activities towards zero impacts and full regulatory compliance. A comprehensive Life Cycle Thinking approach is proposed, with four complementary assessments running iteratively along the project duration (4,5 years). These are the Life Cycle Cost (LCCA), Life Cycle (LCA), Social Life Cycle (S-LCA) and Circularity (CA) assessments. The LCA will help evaluate the feedstock suitability parameters and intrinsic characteristics that quantify the feedstock´s grade for a determined use, and the feedstock´s suitability index for a specific VR. The LCA will also study the emissions, land use change, energy generation and consumption, and other environmental aspects and impacts of the VRs, to identify the most resource efficient and less impactful distribution of products from the circular biorefinery model used in SUSTAINEXT. Challenges to complete the LCA include the definition of the system boundaries, carrying out a robust inventory, and the proper allocation of impacts to the different VRs.

Keywords: biorefinery, botanical extracts, life cycle assessment, valorization routes.

Procedia PDF Downloads 22
1148 The Use of Solar Energy for Cold Production

Authors: Nadia Allouache, Mohamed Belmedani

Abstract:

—It is imperative today to further explore alternatives to fossil fuels by promoting in particular renewable sources such as solar energy to produce cold. It is also important to carefully examine its current state as well as its future prospects in order to identify the best conditions to support its optimal development. Technologies linked to this alternative source fascinate their users because they seem magical in their ability to directly transform solar energy into cooling without resorting to polluting fuels such as those derived from hydrocarbons or other toxic substances. In addition, these not only allow significant savings in electricity, but can also help reduce the costs of electrical energy production when applied on a large scale. In this context, our study aims to analyze the performance of solar adsorption cooling systems by selecting the appropriate pair Adsorbent/Adsorbat. This paper presents a model describing the heat and mass transfer in tubular finned adsorber of solar adsorption refrigerating machine. The modelisation of the solar reactor take into account the heat and mass transfers phenomena. The reactor pressure is assumed to be uniform, the reactive reactor is characterized by an equivalent thermal conductivity and assumed to be at chemical and thermodynamic equilibrium. The numerical model is controlled by heat, mass and sorption equilibrium equations. Under the action of solar radiation, the mixture of adsorbent–adsorbate has a transitory behavior. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analyzed and discussed. The results show that, The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions. For the used working pairs, the increase of the fins number corresponds to the decreasing of the heat losses towards environmental and the increasing of heat transfer inside the adsorber. The system performances are sensitive to the evaporator and condenser temperatures. For the considered data measured for clear type days of may and july 2023 in Algeria and Tunisia, the performances of the cooling system are very significant in Algeria compared to Tunisia.

Keywords: adsorption, adsorbent-adsorbate pair, finned reactor, numerical modeling, solar energy

Procedia PDF Downloads 18
1147 Trajectory Tracking of Fixed-Wing Unmanned Aerial Vehicle Using Fuzzy-Based Sliding Mode Controller

Authors: Feleke Tsegaye

Abstract:

The work in this thesis mainly focuses on trajectory tracking of fixed wing unmanned aerial vehicle (FWUAV) by using fuzzy based sliding mode controller(FSMC) for surveillance applications. Unmanned Aerial Vehicles (UAVs) are general-purpose aircraft built to fly autonomously. This technology is applied in a variety of sectors, including the military, to improve defense, surveillance, and logistics. The model of FWUAV is complex due to its high non-linearity and coupling effect. In this thesis, input decoupling is done through extracting the dominant inputs during the design of the controller and considering the remaining inputs as uncertainty. The proper and steady flight maneuvering of UAVs under uncertain and unstable circumstances is the most critical problem for researchers studying UAVs. A FSMC technique was suggested to tackle the complexity of FWUAV systems. The trajectory tracking control algorithm primarily uses the sliding-mode (SM) variable structure control method to address the system’s control issue. In the SM control, a fuzzy logic control(FLC) algorithm is utilized in place of the discontinuous phase of the SM controller to reduce the chattering impact. In the reaching and sliding stages of SM control, Lyapunov theory is used to assure finite-time convergence. A comparison between the conventional SM controller and the suggested controller is done in relation to the chattering effect as well as tracking performance. It is evident that the chattering is effectively reduced, the suggested controller provides a quick response with a minimum steady-state error, and the controller is robust in the face of unknown disturbances. The designed control strategy is simulated with the nonlinear model of FWUAV using the MATLAB® / Simulink® environments. The simulation result shows the suggested controller operates effectively, maintains an aircraft’s stability, and will hold the aircraft’s targeted flight path despite the presence of uncertainty and disturbances.

Keywords: fixed-wing UAVs, sliding mode controller, fuzzy logic controller, chattering, coupling effect, surveillance, finite-time convergence, Lyapunov theory, flight path

Procedia PDF Downloads 57
1146 Boosting Project Manager Retention: Lessons from the Volunteering Sector

Authors: Julia Wicker, Alexander Lang

Abstract:

The shortage of skilled workers is no longer unique to Europe; Australia now faces similar challenges, particularly in the field of project management. Project managers, essential to the success of a wide range of industries, frequently operate under intense stress and, as a result, may choose to leave their positions before the completion of their projects. This trend poses significant risks to project continuity, budget stability, and the long-term success of organizations. Consequently, it is crucial to explore strategies aimed at improving the retention of project managers, with a specific focus on fostering intrinsic motivation -an essential factor for achieving sustained success and commitment within project-based roles. The aim of this paper is to investigate retention strategies from other industries to identify effective practices that could be adapted to the unique challenges faced by project managers. In particular, the paper draws inspiration from the volunteer sector, an industry also heavily reliant on intrinsic motivation to drive commitment and performance. By examining how the volunteer sector sustains retention through a focus on intrinsic motivation, this paper seeks to highlight potential parallels and offer actionable insights for improving the retention of project managers. The paper includes an overview of the current landscape of retention challenges in project management, highlighting key factors that contribute to early departures and their impacts on organizations. This is followed by an analysis of interviews conducted with both active volunteers and those who have left their roles, leading to the development of a model that categorizes different types of volunteers and explores their behaviours. The model identifies specific reasons for volunteer terminating their assignments and proposes strategies to mitigate these issues. The paper then adapts these volunteer retention strategies to address the challenges faced by project managers, concluding with actionable recommendations for fostering an intrinsically motivated and resilient project management workforce. Ultimately, this research aims to contribute to broader efforts in mitigating skilled workforce shortages by offering sustainable retention strategies.

Keywords: skilled workforce shortages, retention challenges in project management, retention strategies in the volunteering sector, retention strategies for project managers

Procedia PDF Downloads 6
1145 Influence of Initial Curing Time, Water Content and Apparent Water Content on Geopolymer Modified Sludge Generated in Landslide Area

Authors: Minh Chien Vu, Tomoaki Satomi, Hiroshi Takahashi

Abstract:

As being lack of sufficient strength to support the loading of construction as well as service life cause the clay content and clay mineralogy, soft and highly compressible soils (sludge) constitute a major problem in geotechnical engineering projects. Geopolymer, a kind of inorganic polymer, is a promising material with a wide range of applications and offers a lower level of CO₂ emissions than conventional Portland cement. However, the feasibility of geopolymer in term of modified the soft and highly compressible soil has not been received much attention due to the requirement of heat treatment for activating the fly ash component and the existence of high content of clay-size particles in the composition of sludge that affected on the efficiency of the reaction. On the other hand, the geopolymer modified sludge could be affected by other important factors such as initial curing time, initial water content and apparent water content. Therefore, this paper describes a different potential application of geopolymer: soil stabilization in landslide areas to adapt to the technical properties of sludge so that heavy machines can move on. Sludge condition process is utilized to demonstrate the possibility for stabilizing sludge using fly ash-based geopolymer at ambient curing condition ( ± 20 °C) in term of failure strength, strain and bulk density. Sludge conditioning is a process whereby sludge is treated with chemicals or various other means to improve the dewatering characteristics of sludge before applying in the construction area. The effect of initial curing time, water content and apparent water content on the modification of sludge are the main focus of this study. Test results indicate that the initial curing time has potential for improving failure strain and strength of modified sludge with the specific condition of soft soil. The result further shows that the initial water content over than 50% total mass of sludge could significantly lead to a decrease of strength performance of geopolymer-based modified sludge. The optimum apparent water content of geopolymer modified sludge is strongly influenced by the amount of geopolymer content and initial water content of sludge. The solution to minimize the effect of high initial water content will be considered deeper in the future.

Keywords: landslide, sludge, fly ash, geopolymer, sludge conditioning

Procedia PDF Downloads 116
1144 Detecting Tomato Flowers in Greenhouses Using Computer Vision

Authors: Dor Oppenheim, Yael Edan, Guy Shani

Abstract:

This paper presents an image analysis algorithm to detect and count yellow tomato flowers in a greenhouse with uneven illumination conditions, complex growth conditions and different flower sizes. The algorithm is designed to be employed on a drone that flies in greenhouses to accomplish several tasks such as pollination and yield estimation. Detecting the flowers can provide useful information for the farmer, such as the number of flowers in a row, and the number of flowers that were pollinated since the last visit to the row. The developed algorithm is designed to handle the real world difficulties in a greenhouse which include varying lighting conditions, shadowing, and occlusion, while considering the computational limitations of the simple processor in the drone. The algorithm identifies flowers using an adaptive global threshold, segmentation over the HSV color space, and morphological cues. The adaptive threshold divides the images into darker and lighter images. Then, segmentation on the hue, saturation and volume is performed accordingly, and classification is done according to size and location of the flowers. 1069 images of greenhouse tomato flowers were acquired in a commercial greenhouse in Israel, using two different RGB Cameras – an LG G4 smartphone and a Canon PowerShot A590. The images were acquired from multiple angles and distances and were sampled manually at various periods along the day to obtain varying lighting conditions. Ground truth was created by manually tagging approximately 25,000 individual flowers in the images. Sensitivity analyses on the acquisition angle of the images, periods throughout the day, different cameras and thresholding types were performed. Precision, recall and their derived F1 score were calculated. Results indicate better performance for the view angle facing the flowers than any other angle. Acquiring images in the afternoon resulted with the best precision and recall results. Applying a global adaptive threshold improved the median F1 score by 3%. Results showed no difference between the two cameras used. Using hue values of 0.12-0.18 in the segmentation process provided the best results in precision and recall, and the best F1 score. The precision and recall average for all the images when using these values was 74% and 75% respectively with an F1 score of 0.73. Further analysis showed a 5% increase in precision and recall when analyzing images acquired in the afternoon and from the front viewpoint.

Keywords: agricultural engineering, image processing, computer vision, flower detection

Procedia PDF Downloads 329
1143 Study of Growth Behavior of Some Bacterial Fish Pathogens to Combined Selected Herbal Essential Oil

Authors: Ashkan Zargar, Ali Taheri Mirghaed, Zein Talal Barakat, Alireza Khosravi, Hamed Paknejad

Abstract:

With the increase of bacterial resistance to the chemical antibiotics, replacing it with ecofriendly herbal materials and with no adverse effects in the host body is very important. Therefore, in this study, the effect of combined essential oil (Thymus vulgaris-Origanum magorana and Ziziphora clinopodioides) on the growth behavior of Yersinia ruckeri, Aeromonas hydrophila and Lactococcus garvieae was evaluated. The compositions of the herbal essential oils used in this study were determined by gas chromatography-mass spectrometry (GC-MS) while, the investigating of antimicrobial effects was conducted by the agar-disc diffusion method, determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and bacterial growth curves determination relied on optical density (OD) at 630 nm. The main compounds were thymol (40.60 %) and limonene (15.98 %) for Thymus vulgaris while carvacrol (57.86 %) and thymol (13.54 %) were the major compounds in Origanum magorana. As regards Ziziphora clinopodiodes, α-pinene (22.6 %) and carvacrol (21.1 %) represented the major constituents. Concerning Yersinia ruckeri, disc-diffusion results showed that t.O.z (50 % Origanum majorana) combined essential oil was presented the best inhibition zone (30.66 mm) but it was exhibited no significant differences with other tested commercial antibiotics except oxytetracycline (P <0/05). The inhibitory activity and the bactericidal effect of the t.O.z, unveiled by the MIC= 0.2 μL /mL and MBC= 1.6 μL /mL values, were clearly the best between all combined oils. The growth behaviour of Yersinia ruckeri was affected by this combined essential oil and changes in temperature and pH conditions affected herbal oil performance. As regard Aeromonas hydrophila, its results were so similar to Yersinia ruckeri results and t.O.z (50 % Origanum majorana) was the best between all combined oils (inhibition zone= 26 mm, MIC= 0.4 μL /mL and MBC= 3.2 μL /mL, combined essential oil was affected bacterial growth behavior). Also for Lactococcus garvieae, t.O.z (50 % Origanum majorana) was the best between all combined oils having the best inhibition zone= 20.66 mm, MIC= 0.8 μL /mL and MBC= 1.6 μL /mL and best effect on inhibiting bacterial growth. Combined herbal essential oils have a good and noticeable effect on the growth behavior of pathogenic bacteria in the laboratory, and by continuing research in the host, they may be a suitable alternative to control, prevent and treat diseases caused by these bacteria.

Keywords: bacterial pathogen, herbal medicine, growth behavior, fish

Procedia PDF Downloads 71
1142 Role of NaOH in the Synthesis of Waste-derived Solid Hydroxy Sodalite Catalyst for the Transesterification of Waste Animal Fat to Biodiesel

Authors: Thomas Chinedu Aniokete, Gordian Onyebuchukwu Mbah, Michael Daramola

Abstract:

A sustainable NaOH integrated hydrothermal protocol was developed for the synthesis of waste-derived hydroxy sodalite catalysts for transesterification of waste animal fat (WAF) with a high per cent free fatty acid (FFA) to biodiesel. In this work, hydroxy sodalite catalyst was synthesized from two complex waste materials namely coal fly ash (CFA) and waste industrial brine (WIB). Measured amounts of South African CFA and WIB obtained from a coal mine field were mixed with NaOH solution at different concentrations contained in secured glass vessels equipped with magnetic stirrers and formed consistent slurries after aging condition at 47 oC for 48 h. The slurries were then subjected to hydrothermal treatments at 140 oC for 48 h, washed thoroughly and separated by the action of a centrifuge on the mixture. The resulting catalysts were calcined in a muffle furnace for 2 h at 200 oC and subsequently characterized for different effects using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and Bennett Emmet Teller (BET) adsorption-desorption techniques. The produced animal fat methyl ester (AFME) was analyzed using the gas chromatography-mass spectrometry (GC-MS) method. Results of the investigation indicate profoundly an enhanced catalyst purity, textural property and desired morphology due to the action of NaOH. Similarly, the performance evaluation with respect to catalyst activity reveals a high catalytic conversion efficiency of 98 % of the high FFA WAF to biodiesel under the following reaction conditions; a methanol-to-WAF ratio of 15:1, amount of SOD catalyst of 3 wt % with a stirring speed of 300-500 rpm, a reaction temperature of 60 oC and a reaction time of 8 h. There was a recovered 96 % stable catalyst after reactions and potentially recyclable, thus contributing to the economic savings to the process that had been a major bottleneck to the production of biodiesel. This NaOH route for synthesizing waste-derived hydroxy sodalite (SOD) catalyst is a sustainable and eco-friendly technology that speaks directly to the global quest for renewable-fossil fuel controversy enforcing sustainable development goal 7.

Keywords: coal fly ash, waste industrial brine, waste-derived hydroxy sodalite catalyst, sodium hydroxide, biodiesel, transesterification, biomass conversion

Procedia PDF Downloads 34
1141 Nanofiltration Membranes with Deposyted Polyelectrolytes: Caracterisation and Antifouling Potential

Authors: Viktor Kochkodan

Abstract:

The main problem arising upon water treatment and desalination using pressure driven membrane processes such as microfiltration, ultrafiltration, nanofiltration and reverse osmosis is membrane fouling that seriously hampers the application of the membrane technologies. One of the main approaches to mitigate membrane fouling is to minimize adhesion interactions between a foulant and a membrane and the surface coating of the membranes with polyelectrolytes seems to be a simple and flexible technique to improve the membrane fouling resistance. In this study composite polyamide membranes NF-90, NF-270, and BW-30 were modified using electrostatic deposition of polyelectrolyte multilayers made from various polycationic and polyanionic polymers of different molecular weights. Different anionic polyelectrolytes such as: poly(sodium 4-styrene sulfonate), poly(vinyl sulfonic acid, sodium salt), poly(4-styrene sulfonic acid-co-maleic acid) sodium salt, poly(acrylic acid) sodium salt (PA) and cationic polyelectrolytes such as poly(diallyldimethylammonium chloride), poly(ethylenimine) and poly(hexamethylene biguanide were used for membrane modification. An effect of deposition time and a number of polyelectrolyte layers on the membrane modification has been evaluated. It was found that degree of membrane modification depends on chemical nature and molecular weight of polyelectrolytes used. The surface morphology of the prepared composite membranes was studied using atomic force microscopy. It was shown that the surface membrane roughness decreases significantly as a number of the polyelectrolyte layers on the membrane surface increases. This smoothening of the membrane surface might contribute to the reduction of membrane fouling as lower roughness most often associated with a decrease in surface fouling. Zeta potentials and water contact angles on the membrane surface before and after modification have also been evaluated to provide addition information regarding membrane fouling issues. It was shown that the surface charge of the membranes modified with polyelectrolytes could be switched between positive and negative after coating with a cationic or an anionic polyelectrolyte. On the other hand, the water contact angle was strongly affected when the outermost polyelectrolyte layer was changed. Finally, a distinct difference in the performance of the noncoated membranes and the polyelectrolyte modified membranes was found during treatment of seawater in the non-continuous regime. A possible mechanism of the higher fouling resistance of the modified membranes has been discussed.

Keywords: contact angle, membrane fouling, polyelectrolytes, surface modification

Procedia PDF Downloads 251
1140 Effects of Front Porch and Loft on Indoor Ventilation in the Renewal of Beijing Courtyard

Authors: Zhongzhong Zeng, Zichen Liang

Abstract:

In recent years, Beijing courtyards have been facing the problem of renewal and renovation, and the residents are faced with the problems of small house areas, large household sizes, old and dangerous houses, etc. Among the many renovation methods, the authors note two more common practices of using the front porch to expand the floor area and adding a loft. Residents and architects, however, did not give the ventilation performance of the significant interior consideration before beginning the remodeling. The aim of this article is to explore the good or negative impacts of both front porch and loft structures on the manner of interior ventilation in the courtyard. Ventilation, in turn, is crucial to the indoor environmental quality of a home. The major method utilized in this study is the comparative analysis method, in which the authors create four alternative house models with or without a front porch and an attic as two variables and examine internal ventilation using the CFD(Computational Fluid Dynamics) technique. The authors compare the indoor ventilation of four different architectural models with or without front porches and lofts as two variables. The results obtained from the analysis of the sectional airflow and the plane 1.5m height cloud are the existence of the loft, to a certain extent, disrupts the airflow organization of the building and makes the rear wall high windows of the building less effective. Occupying the front porch to become the area of the house has no significant effect on ventilation, but try not to occupy the front porch and add the loft at the same time in the building renovation. The findings of this study led to the following recommendations: strive to preserve the courtyard building's original architectural design and make adjustments to only the inappropriate elements or constructions. The ventilation in the loft portion is inadequate, and the inhabitants typically use the loft as a living area. This may lead to the building relying more on air conditioning in the summer, which would raise energy demand. The front porch serves as a transition place as well as a source of shade, weather protection, and inside ventilation. In conclusion, the examination of interior environments in upcoming studies should concentrate on cross-disciplinary, multi-angle, and multi-level research topics.

Keywords: Beijing courtyard renewal, CFD, indoor environment, ventilation analysis

Procedia PDF Downloads 81
1139 Development of Ferric Citrate Complex Draw Solute and Its Application for Liquid Product Enrichment through Forward Osmosis

Authors: H. Li, L. Ji, J. Su

Abstract:

Forward osmosis is an emerging technology for separation and has great potential in the concentration of liquid products such as protein, pharmaceutical, and natural products. In pharmacy industry, one of the very tough talks is to concentrate the product in a gentle way since some of the key components may lose bioactivity when exposed to heating or pressurization. Therefore, forward osmosis (FO), which uses inherently existed osmosis pressure instead of externally applied hydraulic pressure, is attractive for pharmaceutical enrichments in a much efficient and energy-saving way. Recently, coordination complexes have been explored as the new class of draw solutes in FO processes due to their bulky configuration and excellent performance in terms of high water flux and low reverse solute flux. Among these coordination complexes, ferric citrate complex with lots of hydrophilic groups and ionic species which make them good solubility and high osmotic pressure in aqueous solution, as well as its low toxicity, has received much attention. However, the chemistry of ferric complexation by citrate is complicated, and disagreement prevails in the literature, especially for the structure of the ferric citrate. In this study, we investigated the chemical reaction with various molar ratio of iron and citrate. It was observed that the ferric citrate complex (Fe-CA2) with molar ratio of 1:1 for iron and citrate formed at the beginning of the reaction, then Fecit would convert to ferric citrate complex at the molar ratio of 1:2 with the proper excess of citrate in the base solution. The structures of the ferric citrate complexes synthesized were systematically characterized by X-ray diffraction (XRD), UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Thermogravimetric analysis (TGA). Fe-CA2 solutions exhibit osmotic pressures more than twice of that for NaCl solutions at the same concentrations. Higher osmotic pressure means higher driving force, and this is preferable for the FO process. Fe-CA2 and NaCl draw solutions were prepared with the same osmotic pressure and used in FO process for BSA protein concentration. Within 180 min, BSA concentration was enriched from 0.2 to 0.27 L using Fe-CA draw solutions. However, it was only increased from 0.20 to 0.22 g/L using NaCl draw solutions. A reverse flux of 11 g/m²h was observed for NaCl draw solutes while it was only 0.1 g/m²h for Fe-CA2 draw solutes. It is safe to conclude that Fe-CA2 is much better than NaCl as draw solute and it is suitable for the enrichment of liquid product.

Keywords: draw solutes, ferric citrate complex, forward osmosis, protein enrichment

Procedia PDF Downloads 153
1138 Simulated Translator-Client Relations in Translator Training: Translator Behavior around Risk Management

Authors: Maggie Hui

Abstract:

Risk management is not a new concept; however, it is an uncharted area as applied to the translation process and translator training. Risk managers are responsible for managing risk, i.e. adopting strategies with the intention to minimize loss and maximize gains in spite of uncertainty. Which risk strategy to use often depends on the frequency of an event (i.e. probability) and the severity of its outcomes (i.e. impact). This is basically the way translation/localization project managers handle risk management. Although risk management could involve both positive and negative impacts, impact seems to be always negative in professional translators’ management models, e.g. how many days of project time are lost or how many clients are lost. However, for analysis of translation performance, the impact should be possibly positive (e.g. increased readability of the translation) or negative (e.g. loss of source-text information). In other words, the straight business model of risk management is not directly applicable to the study of risk management in the rendition process. This research aims to explore trainee translators’ risk managing while translating in a simulated setting that involves translator-client relations. A two-cycle experiment involving two roles, the translator and the simulated client, was carried out with a class of translation students to test the effects of the main variable of peer-group interaction. The researcher made use of a user-friendly screen-voice recording freeware to record subjects’ screen activities, including every word the translator typed and every change they made to the rendition, the websites they browsed and the reference tools they used, in addition to the verbalization of their thoughts throughout the process. The research observes the translation procedures subjects considered and finally adopted, and looks into the justifications for their procedures, in order to interpret their risk management. The qualitative and quantitative results of this study have some implications for translator training: (a) the experience of being a client seems to reinforce the translator’s risk aversion; (b) there is a wide gap between the translator’s internal risk management and their external presentation of risk; and (c) the use of role-playing simulation can empower students’ learning by enhancing their attitudinal or psycho-physiological competence, interpersonal competence and strategic competence.

Keywords: risk management, role-playing simulation, translation pedagogy, translator-client relations

Procedia PDF Downloads 261
1137 Understanding Complexity at Pre-Construction Stage in Project Planning of Construction Projects

Authors: Mehran Barani Shikhrobat, Roger Flanagan

Abstract:

The construction planning and scheduling based on using the current tools and techniques is resulted deterministic in nature (Gantt chart, CPM) or applying a very little probability of completion (PERT) for each task. However, every project embodies assumptions and influences and should start with a complete set of clearly defined goals and constraints that remain constant throughout the duration of the project. Construction planners continue to apply the traditional methods and tools of “hard” project management that were developed for “ideal projects,” neglecting the potential influence of complexity on the design and construction process. The aim of this research is to investigate the emergence and growth of complexity in project planning and to provide a model to consider the influence of complexity on the total project duration at the post-contract award pre-construction stage of a project. The literature review showed that complexity originates from different sources of environment, technical, and workflow interactions. They can be divided into two categories of complexity factors, first, project tasks, and second, project organisation management. Project tasks may originate from performance, lack of resources, or environmental changes for a specific task. Complexity factors that relate to organisation and management refer to workflow and interdependence of different parts. The literature review highlighted the ineffectiveness of traditional tools and techniques in planning for complexity. However, this research focus on understanding the fundamental causes of the complexity of construction projects were investigated through a questionnaire with industry experts. The results were used to develop a model that considers the core complexity factors and their interactions. System dynamics were used to investigate the model to consider the influence of complexity on project planning. Feedback from experts revealed 20 major complexity factors that impact project planning. The factors are divided into five categories known as core complexity factors. To understand the weight of each factor in comparison, the Analytical Hierarchy Process (AHP) analysis method is used. The comparison showed that externalities are ranked as the biggest influence across the complexity factors. The research underlines that there are many internal and external factors that impact project activities and the project overall. This research shows the importance of considering the influence of complexity on the project master plan undertaken at the post-contract award pre-construction phase of a project.

Keywords: project planning, project complexity measurement, planning uncertainty management, project risk management, strategic project scheduling

Procedia PDF Downloads 138