Search results for: frequency identification system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22271

Search results for: frequency identification system

8411 Indoor Temperature Estimation with FIR Filter Using R-C Network Model

Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn

Abstract:

In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter

Procedia PDF Downloads 430
8410 EDM for Prediction of Academic Trends and Patterns

Authors: Trupti Diwan

Abstract:

Predicting student failure at school has changed into a difficult challenge due to both the large number of factors that can affect the reduced performance of students and the imbalanced nature of these kinds of data sets. This paper surveys the two elements needed to make prediction on Students’ Academic Performances which are parameters and methods. This paper also proposes a framework for predicting the performance of engineering students. Genetic programming can be used to predict student failure/success. Ranking algorithm is used to rank students according to their credit points. The framework can be used as a basis for the system implementation & prediction of students’ Academic Performance in Higher Learning Institute.

Keywords: classification, educational data mining, student failure, grammar-based genetic programming

Procedia PDF Downloads 409
8409 Learning Resource Management of the Royal Court Courtier in the Reign of King Rama V

Authors: Chanaphop Vannaolarn, Weena Eiamprapai

Abstract:

Thai noblewomen and lady-in-waiting in the era of King Rama V stayed only inside the palace. King Rama V decided to build Dusit Palace in 1897 and another palace called Suan Sunandha in 1900 after his royal visit to Europe. This palace became the residence for noblewomen in the court until the change of political system in 1932. The study about noblewomen in the palace can educate people about how our nation was affected by western civilization in terms of architecture, food, outfit and recreations. It is a way to develop the modern society by studying the great historical value of the past. A learning center about noblewomen will not only provide knowledge but also create bond and patriotic feeling among Thais.

Keywords: noblewomen, palace, management, learning center

Procedia PDF Downloads 350
8408 Object-Oriented Modeling Simulation and Control of Activated Sludge Process

Authors: J. Fernandez de Canete, P. Del Saz Orozco, I. Garcia-Moral, A. Akhrymenka

Abstract:

Object-oriented modeling is spreading in current simulation of wastewater treatments plants through the use of the individual components of the process and its relations to define the underlying dynamic equations. In this paper, we describe the use of the free-software OpenModelica simulation environment for the object-oriented modeling of an activated sludge process under feedback control. The performance of the controlled system was analyzed both under normal conditions and in the presence of disturbances. The object-oriented described approach represents a valuable tool in teaching provides a practical insight in wastewater process control field.

Keywords: object-oriented programming, activated sludge process, OpenModelica, feedback control

Procedia PDF Downloads 372
8407 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment

Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan

Abstract:

MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.

Keywords: bio-electrochemical, nanowires, novel, wastewater

Procedia PDF Downloads 369
8406 Capability of a Single Antigen to Induce Both Protective and Disease Enhancing Antibody: An Obstacle in the Creation of Vaccines and Passive Immunotherapies

Authors: Parul Kulshreshtha, Subrata Sinha, Rakesh Bhatnagar

Abstract:

This study was conducted by taking B. anthracis as a model pathogen. On infecting a host, B. anthracis secretes three proteins, namely, protective antigen (PA, 83kDa), edema factor (EF, 89 kDa) and lethal factor (LF, 90 kDa). These three proteins are the components of two anthrax toxins. PA binds to the cell surface receptors, namely, tumor endothelial marker (TEM) 8 and capillary morphogenesis protein (CMG) 2. TEM8 and CMG2 interact with LDL-receptor related protein (LRP) 6 for endocytosis of EF and LF. On entering the cell, EF acts as a calmodulin-dependent adenylate cyclase that causes a prolonged increase of cytosolic cyclic adenosine monophosphate (cAMP). LF is a metalloprotease that cleaves most isoforms of mitogen-activated protein kinase kinases (MAPKK/MEK) close to their N-terminus. By secreting these two toxins, B.anthracis ascertains death of the host. Once the systemic levels of the toxins rise, antibiotics alone cannot save the host. Therefore, toxin-specific inhibitors have to be developed. In this wake, monoclonal antibodies have been developed for the neutralization of toxic effects of anthrax toxins. We created hybridomas by using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor of B. anthracis) to obtain anti-toxin antibodies. Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immunized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies from all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H8 and H10) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). The protective efficacy of H7, H8, H10 and H11 was investigated. H7, H8 and H10 were found to be protective. H11 was found to have disease enhancing characteristics in-vitro and in mouse model of challenge with B. anthracis. In this study the disease enhancing character of H11 monoclonal antibody and anti-rLFn polyclonal sera was investigated. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature both in-vitro and in-vivo. But combination of H11 with LETscFv (an scFv with VH and VL identical to H10 but lacking Fc region) could not abrogate the disease-enhancing character of H11 mAb. Therefore it was concluded that for suppression of disease enhancement, Fc portion was absolutely essential for interaction of H10 with H11. Our study indicates that the protective potential of an antibody depends equally on its idiotype/ antigen specificity and its isotype. A number of monoclonal and engineered antibodies are being explored as immunotherapeutics but it is absolutely essential to characterize each one for their individual and combined protective potential. Although new in the sphere of toxin-based diseases, it is extremely important to characterize the disease-enhancing nature of polyclonal as well as monoclonal antibodies. This is because several anti-viral therapeutics and vaccines have failed in the face of this phenomenon. The passive –immunotherapy thus needs to be well formulated to avoid any contraindications.

Keywords: immunotherapy, polyclonal, monoclonal, antibody-dependent disease enhancement

Procedia PDF Downloads 370
8405 Effect of Black Cumin (Nigella sativa) Extract on Damaged Brain Cells

Authors: Batul Kagalwala

Abstract:

The nervous system is made up of complex delicate structures such as the spinal cord, peripheral nerves and the brain. These are prone to various types of injury ranging from neurodegenerative diseases to trauma leading to diseases like Parkinson's, Alzheimer's, multiple sclerosis, amyotrophic lateral sclerosis (ALS), multiple system atrophy etc. Unfortunately, because of the complicated structure of nervous system, spontaneous regeneration, repair and healing is seldom seen due to which brain damage, peripheral nerve damage and paralysis from spinal cord injury are often permanent and incapacitating. Hence, innovative and standardized approach is required for advance treatment of neurological injury. Nigella sativa (N. sativa), an annual flowering plant native to regions of southern Europe and Asia; has been suggested to have neuroprotective and anti-seizures properties. Neuroregeneration is found to occur in damaged cells when treated using extract of N. sativa. Due to its proven health benefits, lots of experiments are being conducted to extract all the benefits from the plant. The flowers are delicate and are usually pale blue and white in color with small black seeds. These seeds are the source of active components such as 30–40% fixed oils, 0.5–1.5% essential oils, pharmacologically active components containing thymoquinone (TQ), ditimoquinone (DTQ) and nigellin. In traditional medicine, this herb was identified to have healing properties and was extensively used Middle East and Far East for treating diseases such as head ache, back pain, asthma, infections, dysentery, hypertension, obesity and gastrointestinal problems. Literature studies have confirmed the extract of N. sativa seeds and TQ have inhibitory effects on inducible nitric oxide synthase and production of nitric oxide as well as anti-inflammatory and anticancer activities. Experimental investigation will be conducted to understand which ingredient of N. sativa causes neuroregeneration and roots to its healing property. An aqueous/ alcoholic extract of N. sativa will be made. Seed oil is also found to have used by researchers to prepare such extracts. For the alcoholic extracts, the seeds need to be powdered and soaked in alcohol for a period of time and the alcohol must be evaporated using rotary evaporator. For aqueous extracts, the powder must be dissolved in distilled water to obtain a pure extract. The mobile phase will be the extract while the suitable stationary phase (substance that is a good adsorbent e.g. silica gels, alumina, cellulose etc.) will be selected. Different ingredients of N. sativa will be separated using High Performance Liquid Chromatography (HPLC) for treating damaged cells. Damaged brain cells will be treated individually and in different combinations of 2 or 3 compounds for different intervals of time. The most suitable compound or a combination of compounds for the regeneration of cells will be determined using DOE methodology. Later the gene will also be determined and using Polymerase Chain Reaction (PCR) it will be replicated in a plasmid vector. This plasmid vector shall be inserted in the brain of the organism used and replicated within. The gene insertion can also be done by the gene gun method. The gene in question can be coated on a micro bullet of tungsten and bombarded in the area of interest and gene replication and coding shall be studied. Investigation on whether the gene replicates in the organism or not will be examined.

Keywords: black cumin, brain cells, damage, extract, neuroregeneration, PCR, plasmids, vectors

Procedia PDF Downloads 642
8404 Advancing UAV Operations with Hybrid Mobile Network and LoRa Communications

Authors: Annika J. Meyer, Tom Piechotta

Abstract:

Unmanned Aerial Vehicles (UAVs) have increasingly become vital tools in various applications, including surveillance, search and rescue, and environmental monitoring. One common approach to ensure redundant communication systems when flying beyond visual line of sight is for UAVs to employ multiple mobile data modems by different providers. Although widely adopted, this approach suffers from several drawbacks, such as high costs, added weight and potential increases in signal interference. In light of these challenges, this paper proposes a communication framework intermeshing mobile networks and LoRa (Long Range) technology—a low-power, long-range communication protocol. LoRaWAN (Long Range Wide Area Network) is commonly used in Internet of Things applications, relying on stationary gateways and Internet connectivity. This paper, however, utilizes the underlying LoRa protocol, taking advantage of the protocol’s low power and long-range capabilities while ensuring efficiency and reliability. Conducted in collaboration with the Potsdam Fire Department, the implementation of mobile network technology in combination with the LoRa protocol in small UAVs (take-off weight < 0.4 kg), specifically designed for search and rescue and area monitoring missions, is explored. This research aims to test the viability of LoRa as an additional redundant communication system during UAV flights as well as its intermeshing with the primary, mobile network-based controller. The methodology focuses on direct UAV-to-UAV and UAV-to-ground communications, employing different spreading factors optimized for specific operational scenarios—short-range for UAV-to-UAV interactions and long-range for UAV-to-ground commands. This explored use case also dramatically reduces one of the major drawbacks of LoRa communication systems, as a line of sight between the modules is necessary for reliable data transfer. Something that UAVs are uniquely suited to provide, especially when deployed as a swarm. Additionally, swarm deployment may enable UAVs that have lost contact with their primary network to reestablish their connection through another, better-situated UAV. The experimental setup involves multiple phases of testing, starting with controlled environments to assess basic communication capabilities and gradually advancing to complex scenarios involving multiple UAVs. Such a staged approach allows for meticulous adjustment of parameters and optimization of the communication protocols to ensure reliability and effectiveness. Furthermore, due to the close partnership with the Fire Department, the real-world applicability of the communication system is assured. The expected outcomes of this paper include a detailed analysis of LoRa's performance as a communication tool for UAVs, focusing on aspects such as signal integrity, range, and reliability under different environmental conditions. Additionally, the paper seeks to demonstrate the cost-effectiveness and operational efficiency of using a single type of communication technology that reduces UAV payload and power consumption. By shifting from traditional cellular network communications to a more robust and versatile cellular and LoRa-based system, this research has the potential to significantly enhance UAV capabilities, especially in critical applications where reliability is paramount. The success of this paper could pave the way for broader adoption of LoRa in UAV communications, setting a new standard for UAV operational communication frameworks.

Keywords: LoRa communication protocol, mobile network communication, UAV communication systems, search and rescue operations

Procedia PDF Downloads 27
8403 Identification and Characterization of Novel Genes Involved in Quinone Synthesis in the Odoriferous Defensive Stink Glands of the Red Flour Beetle, Tribolium castaneum

Authors: B. Atika, S. Lehmann, E. Wimmer

Abstract:

The defense strategy is very common in the insect world. Defensive substances play a wide variety of functions for beetles, such as repellents, toxicants, insecticides, and antimicrobics. Beetles react to predators, invaders, and parasitic microbes with the release of toxic and repellent substances. Defensive substances are directed against a large array of potential target organisms or may function for boiling bombardment or as surfactants. Usually, Coleoptera biosynthesize and store their defensive compounds in a complex secretory organ, known as odoriferous defensive stink glands. The red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), uses these glands to produce antimicrobial p-benzoquinones and 1-alkenes. In the past, the morphology of stink gland has been studied in detail in tenebrionid beetles; however, very little is known about the genes that are involved in the production of gland secretion. In this study, we studied a subset of genes that are essential for the benzoquinone production in red flour beetle. In the first phase, we selected 74 potential candidate genes from a genome-wide RNA interference (RNAi) knockdown screen named 'iBeetle.' All these 74 candidate genes were functionally characterized by RNAi-mediated gene knockdown. Therefore, they were selected for a subsequent gas chromatography-mass spectrometry (GC-MS) analysis of secretion volatiles in respective RNAi knockdown glands. 33 of them were observed to alter the phenotype of stink gland. In the GC-MS analysis, 7 candidate genes were noted to display a strongly altered gland, in terms of secretion color and chemical composition, upon knockdown, showing their key role in the biosynthesis of gland secretion. Morphologically altered stink glands were found for odorant receptor and protein kinase superfamily. Subsequent GC-MS analysis of secretion volatiles revealed reduced benzoquinone levels in LIM domain, PDZ domain, PBP/GOBP family knockdowns and a complete lack of benzoquinones in the knockdown of sulfatase-modifying factor enzyme 1, sulfate transporter family. Based on stink gland transcriptome data, we analyzed the function of sulfatase-modifying factor enzyme 1 and sulfate transporter family via RNAi-mediated gene knockdowns, GC-MS, in situ hybridization, and enzymatic activity assays. Morphologically altered stink glands were noted in knockdown of both these genes. Furthermore, GC-MS analysis of secretion volatiles showed a complete lack of benzoquinones in the knockdown of these two genes. In situ hybridization showed that these two genes are expressed around the vesicle of certain subgroup of secretory stink gland cells. Enzymatic activity assays on stink gland tissue showed that these genes are involved in p-benzoquinone biosynthesis. These results suggest that sulfatase-modifying factor enzyme 1 and sulfate transporter family play a role specifically in benzoquinone biosynthesis in red flour beetles.

Keywords: Red Flour Beetle, defensive stink gland, benzoquinones, sulfate transporter, sulfatase-modifying factor enzyme 1

Procedia PDF Downloads 143
8402 Blended Learning in a Mathematics Classroom: A Focus in Khan Academy

Authors: Sibawu Witness Siyepu

Abstract:

This study explores the effects of instructional design using blended learning in the learning of radian measures among Engineering students. Blended learning is an education programme that combines online digital media with traditional classroom methods. It requires the physical presence of both lecturer and student in a mathematics computer laboratory. Blended learning provides element of class control over time, place, path or pace. The focus was on the use of Khan Academy to supplement traditional classroom interactions. Khan Academy is a non-profit educational organisation created by educator Salman Khan with a goal of creating an accessible place for students to learn through watching videos in a computer assisted computer. The researcher who is an also lecturer in mathematics support programme collected data through instructing students to watch Khan Academy videos on radian measures, and by supplying students with traditional classroom activities. Classroom activities entails radian measure activities extracted from the Internet. Students were given an opportunity to engage in class discussions, social interactions and collaborations. These activities necessitated students to write formative assessments tests. The purpose of formative assessments tests was to find out about the students’ understanding of radian measures, including errors and misconceptions they displayed in their calculations. Identification of errors and misconceptions serve as pointers of students’ weaknesses and strengths in their learning of radian measures. At the end of data collection, semi-structure interviews were administered to a purposefully sampled group to explore their perceptions and feedback regarding the use of blended learning approach in teaching and learning of radian measures. The study employed Algebraic Insight Framework to analyse data collected. Algebraic Insight Framework is a subset of symbol sense which allows a student to correctly enter expressions into a computer assisted systems efficiently. This study offers students opportunities to enter topics and subtopics on radian measures into a computer through the lens of Khan Academy. Khan academy demonstrates procedures followed to reach solutions of mathematical problems. The researcher performed the task of explaining mathematical concepts and facilitated the process of reinvention of rules and formulae in the learning of radian measures. Lastly, activities that reinforce students’ understanding of radian were distributed. Results showed that this study enthused the students in their learning of radian measures. Learning through videos prompted the students to ask questions which brought about clarity and sense making to the classroom discussions. Data revealed that sense making through reinvention of rules and formulae assisted the students in enhancing their learning of radian measures. This study recommends the use of Khan Academy in blended learning to be introduced as a socialisation programme to all first year students. This will prepare students that are computer illiterate to become conversant with the use of Khan Academy as a powerful tool in the learning of mathematics. Khan Academy is a key technological tool that is pivotal for the development of students’ autonomy in the learning of mathematics and that promotes collaboration with lecturers and peers.

Keywords: algebraic insight framework, blended learning, Khan Academy, radian measures

Procedia PDF Downloads 298
8401 Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine

Authors: Volker Landersheim, Daria Manushyna, Thinh Pham, Dai-Duong Tran, Thomas Geury, Omar Hegazy, Steven Wilkins

Abstract:

Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation.

Keywords: bus transport, emissions, hybrid propulsion, pTCO, CNG

Procedia PDF Downloads 132
8400 The New Economy: A Pedagogy for Vocational and Technical Education Programmes in Nigeria

Authors: Sunny Nwakanma

Abstract:

The emergence of the new economy has created a new world order for skill acquisition, economic activities and employment. It has dramatically changed the way we live, learn, work and even think about work. It has also created new opportunities as well as challenges and uncertainty. This paper will not only demystify the new economy and present its instrumentality in the acceleration of skill acquisition in technical education, but will also highlight industrial and occupational changes brought about by the synergy between information and communication technology revolution and the global economic system. It advocates among other things, the use of information and communication technology mediated instruction in technical education as it provides the flexibility to meet diverse learners’ need anytime and anywhere and facilitate skill acquisition.

Keywords: new economy, technical education, skill acquisition, information and communication technology

Procedia PDF Downloads 112
8399 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease

Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly

Abstract:

Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.

Keywords: Parkinson's disease, step method, delay differential equation, two delays

Procedia PDF Downloads 191
8398 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: Belhaj Mohamed, M. Saidi, N. Boucherab, N. Ouertani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS), capillary GC with flame-ionization detection, Compund Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (-198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: biomarkers, oil and gas seeps, organic geochemistry, source rock

Procedia PDF Downloads 431
8397 Speed Control of Hybrid Stepper Motor by Using Adaptive Neuro-Fuzzy Controller

Authors: Talha Ali Khan

Abstract:

This paper presents an adaptive neuro-fuzzy interference system (ANFIS), which is applied to a hybrid stepper motor (HSM) to regulate its speed. The dynamic response of the HSM with the ANFIS controller is studied during the starting process and under different load disturbance. The effectiveness of the proposed controller is compared with that of the conventional PI controller. The proposed method solves the problem of nonlinearities and load changes of the HSM drives. The proposed controller ensures fast and precise dynamic response with an excellent steady state performance. Matlab/Simulink program is used for this dynamic simulation study.

Keywords: stepper motor, hybrid, ANFIS, speed control

Procedia PDF Downloads 533
8396 Performance Analysis of Hybrid Solar Photovoltaic-Thermal Collector with TRANSYS Simulator

Authors: Ashish Lochan, Anil K. Dahiya, Amit Verma

Abstract:

The idea of combining photovoltaic and solar thermal collector to provide electrical and heat energy is not new, however, it is an area of limited attention. Hybrid photovoltaic-thermals have become a focus point of interest in the field of solar energy. Integration of both (photovoltaic and thermal collector) provide greater opportunity for the use of renewable solar energy. This system converts solar energy into electricity and heat energy simultaneously. Theoretical performance analyses of hybrid PV/Ts have been carried out. Also, the temperature of water (as a heat carrier) have been calculated for different seasons with the help of TRANSYS.

Keywords: photovoltaic-thermal, solar energy, seasonal performance analysis, TRANSYS

Procedia PDF Downloads 640
8395 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices

Authors: S. Srinivasan, E. Cretu

Abstract:

The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.

Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape

Procedia PDF Downloads 121
8394 Improving Part-Time Instructors’ Academic Outcomes with Gamification

Authors: Jared R. Chapman

Abstract:

This study introduces a type of motivational information system called an educational engagement information system (EEIS). An EEIS draws on principles of behavioral economics, motivation theory, and learning cognition theory to design information systems that help students want to improve their performance. This study compares academic outcomes for course sections taught by part- and full-time instructors both with and without an EEIS. Without an EEIS, students in the part-time instructor's course sections demonstrated significantly higher failure rates (a 143.8% increase) and dropout rates (a 110.4% increase) with significantly fewer students scoring a B- or higher (39.8% decrease) when compared to students in the course sections taught by a full-time instructor. It is concerning that students in the part-time instructor’s course without an EEIS had significantly lower academic outcomes, suggesting less understanding of the course content. This could impact retention and continuation in a major. With an EEIS, when comparing part- and full-time instructors, there was no significant difference in failure and dropout rates or in the number of students scoring a B- or higher in the course. In fact, with an EEIS, the failure and dropout rates were statistically identical for part- and full-time instructor courses. When using an EEIS (compared with not using an EEIS), the part-time instructor showed a 62.1% decrease in failures, a 61.4% decrease in dropouts, and a 41.7% increase in the number of students scoring a B- or higher in the course. We are unaware of other interventions that yield such large improvements in academic performance. This suggests that using an EEIS such as Delphinium may compensate for part-time instructors’ limitations of expertise, time, or rewards that can have a negative impact on students’ academic outcomes. The EEIS had only a minimal impact on failure rates (7.7% decrease) and dropout rates (18.8% decrease) for the full-time instructor. This suggests there is a ceiling effect for the improvements that an EEIS can make in student performance. This may be because experienced instructors are already doing the kinds of things that an EEIS does, such as motivating students, tracking grades, and providing feedback about progress. Additionally, full-time instructors have more time to dedicate to students outside of class than part-time instructors and more rewards for doing so. Using adjunct and other types of part-time instructors will likely remain a prevalent practice in higher education management courses. Given that using part-time instructors can have a negative impact on student graduation and persistence in a field of study, it is important to identify ways we can augment part-time instructors’ performance. We demonstrated that when part-time instructors use an EEIS, it can result in significantly lower students’ failure and dropout rates and an increase in the rate of students earning a B- or above; and bring their students’ performance to parity with the performance of students taught by a full-time instructor.

Keywords: gamification, engagement, motivation, academic outcomes

Procedia PDF Downloads 59
8393 Infant and Young Child Dietary Diversification Using Locally Available Foods after Nutrition Education in Rural Malawi

Authors: G. C. Phiri, E. A. Heil, A. A. Kalimbira, E. Muehlhoff, C. Masangano, B. M. Mtimuni, J. Herrmann, M. B. Krawinkel, I. Jordan

Abstract:

Background and objectives: High prevalence of undernutrition in Malawi is caused by poor complementary foods. Lack of knowledge of age appropriate food within the household might affect utilization of available resources. FAO-Malawi implemented nutrition education (NE) sessions in 200 villages in Kasungu and Mzimba districts from December 2012 to April 2013 targeting 15 caregivers per village of children aged 6-18 months, grandmothers, spouses and community leaders. Two trained volunteers per village facilitated 10 NE sessions on breastfeeding, food safety and hygiene and complementary feeding using locally available resources. This study assessed the reported dietary diversification practices of infant and young child after nutrition education and the factors that influenced adoption of the practice. Methodology: Questionnaire-based interviews with caregivers were conducted in 16 randomly selected villages (n=108) before training-(t1) and seven months after training-(t2). Knowledge score (KS) was calculated on the indicators breastfeeding, hygiene and complementary feeding. Count regression was performed using SPSS 22. Eight focus group discussions (FGDs) were separately conducted among caregivers and grandmothers in 4 villages. Content analysis was used to analyze FGDs data. Results: Following NE, caregivers' KS significantly increased (p<0.001) between t1 and t2 for breastfeeding (7.7 vs. 9.8, max=18), hygiene (3.8 vs. 5.9, max=7) and complementary feeding (10.2 vs. 16.2, max=26). Caregivers indicated that they stopped preparation of plain-refined maize meal porridge after they gained knowledge on dietary diversification of complementary foods. They learnt mushing and pounding of ingredients for enriched porridge. Whole-maize meal or potatoes were often enriched with vegetables, legumes, small fish or eggs and cooking oil. Children liked the taste of enriched porridge. Amount of enriched porridge consumed at each sitting increase among previously fussy-eater children. Meal frequency increased by including fruits as snacks in child’s diet. Grandmothers observed preparation of enriched porridge among the mothers using locally available foods. Grandmothers liked the taste of enriched porridge and not the greenish color of the porridge. Both grandmothers and mothers reported that children were playing independently after consuming enriched porridge and were strong and healthy. These motivated adoption of the practice. Conclusion: Increased knowledge and skill of preparation and utilisation of locally available foods promoted children’s dietary diversification. Children liking the enriched porridge motivated adoption of dietary diversification.

Keywords: behaviour change, complementary feeding, dietary diversification, IYCN

Procedia PDF Downloads 458
8392 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration

Authors: Damtew Samson Zerihun

Abstract:

This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.

Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller

Procedia PDF Downloads 362
8391 Effect of Minimalist Footwear on Running Economy Following Exercise-Induced Fatigue

Authors: Jason Blair, Adeboye Adebayo, Mohamed Saad, Jeannette M. Byrne, Fabien A. Basset

Abstract:

Running economy is a key physiological parameter of an individual’s running efficacy and a valid tool for predicting performance outcomes. Of the many factors known to influence running economy (RE), footwear certainly plays a role owing to its characteristics that vary substantially from model to model. Although minimalist footwear is believed to enhance RE and thereby endurance performance, conclusive research reports are scarce. Indeed, debates remain as to which footwear characteristics most alter RE. The purposes of this study were, therefore, two-fold: (a) to determine whether wearing minimalist shoes results in better RE compared to shod and to identify relationships with kinematic and muscle activation patterns; (b) to determine whether changes in RE with minimalist shoes are still evident following a fatiguing bout of exercise. Well-trained male distance runners (n=10; 29.0 ± 7.5 yrs; 71.0 ± 4.8 kg; 176.3 ± 6.5 cm) partook first in a maximal O₂ uptake determination test (VO₂ₘₐₓ = 61.6 ± 7.3 ml min⁻¹ kg⁻¹) 7 days prior to the experimental sessions. Second, in a fully randomized fashion, an RE test consisting of three 8-min treadmill runs in shod and minimalist footwear were performed prior to and following exercise induced fatigue (EIF). The minimalist and shod conditions were tested with a minimum of 7-day wash-out period between conditions. The RE bouts, interspaced by 2-min rest periods, were run at 2.79, 3.33, and 3.89 m s⁻¹ with a 1% grade. EIF consisted of 7 times 1000 m at 94-97% VO₂ₘₐₓ interspaced with 3-min recovery. Cardiorespiratory, electromyography (EMG), kinematics, rate of perceived exertion (RPE) and blood lactate were measured throughout the experimental sessions. A significant main speed effect on RE (p=0.001) and stride frequency (SF) (p=0.001) was observed. The pairwise comparisons showed that running at 2.79 m s⁻¹ was less economic compared to 3.33, and 3.89 m s⁻¹ (3.56 ± 0.38, 3.41 ± 0.45, 3.40 ± 0.45 ml O₂ kg⁻¹ km⁻¹; respectively) and that SF increased as a function of speed (79 ± 5, 82 ± 5, 84 ± 5 strides min⁻¹). Further, EMG analyses revealed that root mean square EMG significantly increased as a function of speed for all muscles (Biceps femoris, Gluteus maximus, Gastrocnemius, Tibialis anterior, Vastus lateralis). During EIF, the statistical analysis revealed a significant main effect of time on lactate production (from 2.7 ± 5.7 to 11.2 ± 6.2 mmol L⁻¹), RPE scores (from 7.6 ± 4.0 to 18.4 ± 2.7) and peak HR (from 171 ± 30 to 181 ± 20 bpm), expect for the recovery period. Surprisingly, a significant main footwear effect was observed on running speed during intervals (p=0.041). Participants ran faster with minimalist shoes compared to shod (3:24 ± 0:44 min [95%CI: 3:14-3:34] vs. 3:30 ± 0:47 min [95%CI: 3:19-3:41]). Although EIF altered lactate production and RPE scores, no other effect was noticeable on RE, EMG, and SF pre- and post-EIF, except for the expected speed effect. The significant footwear effect on running speed during EIF was unforeseen but could be due to shoe mass and/or heel-toe-drop differences. We also cannot discard the effect of speed on foot-strike pattern and therefore, running performance.

Keywords: exercise-induced fatigue, interval training, minimalist footwear, running economy

Procedia PDF Downloads 232
8390 Influence of the Nature of Plants on Drainage, Purification Performance and Quality of Biosolids on Faecal Sludge Planted Drying Beds in Sub-Saharan Climate Conditions

Authors: El Hadji Mamadou Sonko, Mbaye Mbéguéré, Cheikh Diop, Linda Strande

Abstract:

In new approaches that are being developed for the treatment of sludge, the valorization of by-product is increasingly encouraged. In this perspective, Echinochloa pyramidalis has been successfully tested in Cameroon. Echinochloa pyramidalis is an efficient forage plant in the treatment of faecal sludge. It provides high removal rates and biosolids of high agronomic value. Thus in order to advise the use of this plant in planted drying beds in Senegal its comparison with the plants long been used in the field deserves to be carried out. That is the aim of this study showing the influence of the nature of the plants on the drainage, the purifying performances and the quality of the biosolids. Echinochloa pyramidalis, Typha australis, and Phragmites australis are the three macrophytes used in this study. The drainage properties of the beds were monitored through the frequency of clogging, the percentage of recovered leachate and the dryness of the accumulated sludge. The development of plants was followed through the measurement of the density. The purification performances were evaluated from the incoming raw sludge flows and the outflows of leachate for parameters such as Total Solids (TS), Total Suspended Solids (TSS), Total Volatile Solids (TVS), Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), Ammonia (NH₄⁺), Nitrate (NO₃⁻), Total Phosphorus (TP), Orthophosphorus (PO₄³⁻) and Ascaris eggs. The quality of the biosolids accumulated on the beds was measured after 3 months of maturation for parameters such as dryness, C/N ratio NH₄⁺/NO₃⁻ ratio, ammonia, Ascaris eggs. The results have shown that the recovered leachate volume is about 40.4%; 45.6% and 47.3%; the dryness about 41.7%; 38.7% and 28.7%, and clogging frequencies about 6.7%; 8.2% and 14.2% on average for the beds planted with Echinochloa pyramidalis, Typha australis and Phragmites australis respectively. The plants of Echinochloa pyramidalis (198.6 plants/m²) and Phragmites australis (138 plants/m²) have higher densities than Typha australis (90.3 plants/m²). The nature of the plants has no influence on the purification performance with reduction percentages around 80% or more for all the parameters followed whatever the nature of the plants. However, the concentrations of these various leachate pollutants are above the limit values of the Senegalese standard NS 05-061 for the release into the environment. The biosolids harvested after 3 months of maturation are all mature with C/N ratios around 10 for all the macrophytes. The NH₄⁺/NO₃⁻ ratio is lower than 1 except for the biosolids originating from the Echinochloa pyramidalis beds. The ammonia is also less than 0.4 g/kg except for biosolids from Typha australis beds. Biosolids are also rich in mineral elements. Their concentrations of Ascaris eggs are higher than the WHO recommendations despite a percentage of inactivation around 80%. These biosolids must be stored for an additional time or composted. From these results, the use of Echinochloa pyramidalis as the main macrophyte can be recommended in the various drying beds planted in sub-Saharan climate conditions.

Keywords: faecal sludge, nature of plants, quality of biosolids, treatment performances

Procedia PDF Downloads 160
8389 Enhancing the Performance of Vapor Compression Refrigeration Systems Using HFC134a by Nanoparticles Suspensions

Authors: Hafsi Khebab, Zirari Mounir, Mohamed Nadjib Bouaziz

Abstract:

High Global Warming Potential refrigerants (HydroFluroCarbons) are one of the worst greenhouse gases used in a wide variety of applications, including refrigeration and air-conditioning. Nanotechnology is a promising field in sustainable energy to reduce energy and ecological resource consumption for HVACR (heat, ventilation, air conditioning, and refrigeration) systems. Most researchers reported an improvement in heat transfer coefficient, Coefficient of performance. In this report, a brief summary has been done on the performance enhancement of the Vapor Compression Refrigeration system using HFC134a with nano refrigerants.

Keywords: nanorefrigerant, HFCs, greenhouse gases, GWP, HVACR systems, energy saving

Procedia PDF Downloads 67
8388 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines

Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay

Abstract:

One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.

Keywords: big data, data analytics, higher education, republic of the philippines, assessment

Procedia PDF Downloads 325
8387 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers

Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken

Abstract:

This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.

Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization

Procedia PDF Downloads 297
8386 Flow Characterization in Complex Terrain for Aviation Safety

Authors: Adil Rasheed, Mandar Tabib

Abstract:

The paper describes the ability of a high-resolution Computational Fluid Dynamics model to predict terrain-induced turbulence and wind shear close to the ground. Various sensitivity studies to choose the optimal simulation setup for modeling the flow characteristics in a complex terrain are presented. The capabilities of the model are demonstrated by applying it to the Sandnessjøen Airport, Stokka in Norway, an airport that is located in a mountainous area. The model is able to forecast turbulence in real time and trigger an alert when atmospheric conditions might result in high wind shear and turbulence.

Keywords: aviation safety, terrain-induced turbulence, atmospheric flow, alert system

Procedia PDF Downloads 397
8385 Methodology to Affirm Driver Engagement in Dynamic Driving Task (DDT) for a Level 2 Adas Feature

Authors: Praneeth Puvvula

Abstract:

Autonomy in has become increasingly common in modern automotive cars. There are 5 levels of autonomy as defined by SAE. This paper focuses on a SAE level 2 feature which, by definition, is able to control the vehicle longitudinally and laterally at the same time. The system keeps the vehicle centred with in the lane by detecting the lane boundaries while maintaining the vehicle speed. As with the features from SAE level 1 to level 3, the primary responsibility of dynamic driving task lies with the driver. This will need monitoring techniques to ensure the driver is always engaged even while the feature is active. This paper focuses on the these techniques, which would help the safe usage of the feature and provide appropriate warnings to the driver.

Keywords: autonomous driving, safety, adas, automotive technology

Procedia PDF Downloads 73
8384 Predicting the Areal Development of the City of Mashhad with the Automaton Fuzzy Cell Method

Authors: Mehran Dizbadi, Daniyal Safarzadeh, Behrooz Arastoo, Ansgar Brunn

Abstract:

Rapid and uncontrolled expansion of cities has led to unplanned aerial development. In this way, modeling and predicting the urban growth of a city helps decision-makers. In this study, the aspect of sustainable urban development has been studied for the city of Mashhad. In general, the prediction of urban aerial development is one of the most important topics of modern town management. In this research, using the Cellular Automaton (CA) model developed for geo data of Geographic Information Systems (GIS) and presenting a simple and powerful model, a simulation of complex urban processes has been done.

Keywords: urban modeling, sustainable development, fuzzy cellular automaton, geo-information system

Procedia PDF Downloads 114
8383 Understanding Neuronal and Glial Cell Behaviour in Multi-Layer Nanofibre Systems to Support the Development of an in vitro Model of Spinal Cord Injury and Personalised Prostheses for Repair

Authors: H. Pegram, R. Stevens, L. De Girolamo

Abstract:

Aligned electrospun nanofibres act as effective neuronal and glial cell scaffolds that can be layered to contain multiple sheets harboring different cell populations. This allows personalised biofunctional prostheses to be manufactured with both acellular and cellularised layers for the treatment of spinal cord injury. Additionally, the manufacturing route may be configured to produce in-vitro 3D cell based model of spinal cord injury to aid drug development and enhance prosthesis performance. The goal of this investigation was to optimise the multi-layer scaffold design parameters for prosthesis manufacture, to enable the development of multi-layer patient specific implant therapies. The work has also focused on the fabricating aligned nanofibre scaffolds that promote in-vitro neuronal and glial cell population growth, cell-to-cell interaction and long-term survival following trauma to mimic an in-vivo spinal cord lesion. The approach has established reproducible lesions and has identified markers of trauma and regeneration marked by effective neuronal migration across the lesion with glial support. The investigation has advanced the development of an in-vitro model of traumatic spinal cord injury and has identified a route to manufacture prostheses which target the repair spinal cord injury. Evidence collated to investigate the multi-layer concept suggests that physical cues provided by nanofibres provide both a natural extra-cellular matrix (ECM) like environment and controls cell proliferation and migration. Specifically, aligned nanofibre layers act as a guidance system for migrating and elongating neurons. On a larger scale, material type in multi-layer systems also has an influence in inter-layer migration as cell types favour different material types. Results have shown that layering nanofibre membranes create a multi-level scaffold system which can enhance or prohibit cell migration between layers. It is hypothesised that modifying nanofibre layer material permits control over neuronal/glial cell migration. Using this concept, layering of neuronal and glial cells has become possible, in the context of tissue engineering and also modelling in-vitro induced lesions.

Keywords: electrospinning, layering, lesion, modeling, nanofibre

Procedia PDF Downloads 121
8382 Young People and Their Parents Accessing Their Digital Health Data via a Patient Portal: The Ethical and Legal Implications

Authors: Pippa Sipanoun, Jo Wray, Kate Oulton, Faith Gibson

Abstract:

Background: With rapidly evolving digital health innovation, there is a need for digital health transformation that is accessible and sustainable, that demonstrates utility for all stakeholders while maintaining data safety. Great Ormond Street Hospital for Children aimed to future-proof the hospital by transitioning to an electronic patient record (EPR) system with a tethered patient portal (MyGOSH) in April 2019. MyGOSH patient portal enables patients 12 years or older (with their parent's consent) to access their digital health data. This includes access to results, documentation, and appointments that facilitate communication with their care team. As part of the Going Digital Study conducted between 2018-2021, data were collected from a sample of all relevant stakeholders before and after EPR and MyGOSH implementation. Data collection reach was wide and included the hospital legal and ethics teams. Aims: This study aims to understand the ethical and legal implications of young people and their parents accessing their digital health data. Methods: A focus group was conducted. Recruited participants were members of the Great Ormond Street Hospital Paediatric Bioethics Centre. Participants included expert and lay members from the Committee from a variety of professional or academic disciplines. Written informed consent was provided by all participants (n=7). The focus group was recorded, transcribed verbatim, and analyzed using thematic analysis. Results: Six themes were identified: access, competence and capacity - granting access to the system; inequalities in access resulting in inequities; burden, uncertainty and responding to change - managing expectations; documenting, risks and data safety; engagement, empowerment and understanding – how to use and manage personal information; legal considerations and obligations. Discussion: If healthcare professionals are to empower young people to be more engaged in their care, the importance of including them in decisions about their health is paramount, especially when they are approaching the age of becoming the consenter for treatment. Complexities exist in assessing competence or capacity when granting system access, when disclosing sensitive information, and maintaining confidentiality. Difficulties are also present in managing clinician burden, managing user expectations whilst providing an equitable service, and data management that meets professional and legal requirements. Conclusion: EPR and tethered-portal implementation at Great Ormond Street Hospital for Children was not only timely, due to the need for a rapid transition to remote consultations during the COVID-19 pandemic, which would not have been possible had EPR/MyGOSH not been implemented, but also integral to the digital health revolution required in healthcare today. This study is highly relevant in understanding the complexities around young people and their parents accessing their digital health data and, although the focus of this research related to portal use and access, the findings translate to young people in the wider digital health context. Ongoing support is required for all relevant stakeholders following MyGOSH patient portal implementation to navigate the ethical and legal complexities. Continued commitment is needed to balance the benefits and burdens, promote inclusion and equity, and ensure portal utility for patient benefit, whilst maintaining an individualized approach to care.

Keywords: patient portal, young people and their parents, ethical, legal

Procedia PDF Downloads 101