Search results for: soil microorganisms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3502

Search results for: soil microorganisms

2152 Bioremediation of Phenanthrene by Monocultures and Mixed Culture Bacteria Isolated from Contaminated Soil

Authors: A. Fazilah, I. Darah, I. Noraznawati

Abstract:

Three different bacteria capable of degrading phenanthrene were isolated from hydrocarbon contaminated site. In this study, the phenanthrene-degrading activity by defined monoculture was determined and mixed culture was identified as Acinetobacter sp. P3d, Bacillus sp. P4a and Pseudomonas sp. P6. All bacteria were able to grow in a minimal salt medium saturated with phenanthrene as the sole source of carbon and energy. Phenanthrene degradation efficiencies by different combinations (consortia) of these bacteria were investigated and their phenanthrene degradation was evaluated by gas chromatography. Among the monocultures, Pseudomonas sp. P6 exhibited 58.71% activity compared to Acinetobacter sp. P3d and Bacillus sp. P4a which were 56.97% and 53.05%, respectively after 28 days of cultivation. All consortia showed high phenanthrene elimination which were 95.64, 79.37, 87.19, 79.21% for Consortia A, B, C and D, respectively. The results indicate that all of the bacteria isolated may effectively degrade target chemical and have a promising application in bioremediation of hydrocarbon contaminated soil purposes.

Keywords: phenanthrene, consortia, acinetobacter sp. P3d, bacillus sp. P4a, pseudomonas sp. P6

Procedia PDF Downloads 292
2151 Effects of Long-Term Exposure of Cadmium to the Ovary of Lithobius forficatus (Myriapoda, Chilopoda)

Authors: Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Sebastian Student, Magdalena Rost-Roszkowska

Abstract:

Heavy metals polluting the environment, especially soil, have a harmful effect on organisms, because they can damage the organ structure, disturb their function and cause developmental disorders. They can affect not only the somatic tissues but also the germinal tissues. In the natural environment, plants and animals are exposed to short- and long-term exposure to these stressors, which have a major influence on the functioning of these organisms. Numerous animals have been treated as the bioindicators of the environment. Therefore, studies on any alterations caused by, e.g., heavy metals are in the center of interests of not only environmental but also medical and biological science. Myriapods are invertebrates which are bioindicators of the environment. One of the species which lives in the upper layers of soil, particularly under stones and rocks is Lithobius forficatus (Chilopoda), commonly known as the brown centipede or stone centipede. It is a European species of the family Lithobiidae. This centipede living in the soil is exposed to, e.g., heavy metals such as cadmium, lead, arsenic. The main goal of our project was to analyze the impact of long-term exposure to cadmium on the structure of ovary with the emphasis on the course of oogenesis. As the material for analysis of cadmium exposure to ovaries, we chose the centipede species, L. forficatus. Animals were divided into two experimental groups: C – the control group, the animals cultured in laboratory conditions in a horticultural soil; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2 for 45 days – long-term exposure. Animals were fed with Acheta and Chironomus larvae maintained in tap water. The analyzes were carried out using transmission electron microscopy (TEM), flow cytometry and laser scanning (confocal) microscopy. Here we present the results of long-term exposure to cadmium concentration in soil on the organ responsible for female germ cell formation. Analysis with the use of the transmission electron microscope showed changes in the ultrastructure of both somatic and germ cells in the ovary. Moreover, quantitative analysis revealed the decrease in the percentage of cells viability, the increase in the percentage of cells with depolarized mitochondria and increasing the number of early apoptotic cells. All these changes were statistically significant compared to the control. Additionally, an increase in the ADP/ATP index was recorded. However, changes were not statistically significant to the control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.

Keywords: cadmium, centipede, ovary, ultrastructure

Procedia PDF Downloads 112
2150 Safe Disposal of Processed Industrial Biomass as Alternative Organic Manure in Agriculture

Authors: V. P. Ramani, K. P. Patel, S. B. Patel

Abstract:

It is necessary to dispose of generated industrial wastes in the proper way to overcome the further pollution for a safe environment. Waste can be used in agriculture for good quality higher food production. In order to evaluate the effect and rate of processed industrial biomass on yield, contents, uptake and soil status in maize, a field experiment was conducted during 2009 - 2011 at Anand on loamy sand soil for two years. The treatments of different levels of NPK i.e. 100% RD, 75% RD and 50% RD were kept to study the possibility of reduction in fertilizer application with the use of processed biomass (BM) in different proportion with FYM. (Where, RD= Recommended dose, FYM= Farm Yard Manure, BM= Processed Biomass.) The significantly highest grain yield of maize was recorded under the treatment of 75% NPK + BM application @ 10t ha-1. The higher (10t ha-1) and lower (5t ha-1) application rate of BM with full dose of NPK was found beneficial being at par with the treatment 75% NPK along with BM application @ 10t ha-1. There is saving of 25% recommended dose of NPK when combined with BM application @ 10.0t ha-1 or 50% saving of organics when applied with full dose (100%) of NPK. The highest straw yield (7734 kg ha-1) of maize on pooled basis was observed under the treatment of recommended dose of NPK along with FYM application at 7.5t ha-1 coupled with BM application at 2.5t ha-1. It was also observed that highest straw yield was at par under all the treatments except control and application of 100% recommended dose of NPK coupled with BM application at 7.5t ha-1. The Fe content of maize straw were found altered significantly due to different treatments on pooled basis and it was noticed that biomass application at 7.5t ha-1 along with recommended dose of NPK showed significant enhancement in Fe content of straw over other treatments. Among heavy metals, Co, Pb and Cr contents of grain were found significantly altered due to application of different treatments variably during the pooled. While, Ni content of maize grain was not altered significantly due to application of different organics. However, at higher rate of BM application i.e. of 10t ha-1, there was slight increase in heavy metal content of grain/ straw as well as DTPA heavy metals in soil; although the increase was not alarming Thus, the overall results indicated that the application of BM at 5t ha-1 along with full dose of NPK is beneficial to get higher yield of maize without affecting soil / plant health adversely. It also indicated that the 5t BM ha-1 could be utilized in place of 10t FYM ha-1 where FYM availability is scarce. The 10t BM ha-1 helps to reduce a load of chemical fertilizer up to 25 percent in agriculture. The lower use of agro-chemicals always favors safe environment. However, the continuous use of biomass needs periodical monitoring to check any buildup of heavy metals in soil/ plant over the years.

Keywords: alternate use of industrial waste, heavy metals, maize, processed industrial biomass

Procedia PDF Downloads 318
2149 Static Response of Homogeneous Clay Stratum to Imposed Structural Loads

Authors: Aaron Aboshio

Abstract:

Numerical study of the static response of homogeneous clay stratum considering a wide range of cohesion and subject to foundation loads is presented. The linear elastic–perfectly plastic constitutive relation with the von Mises yield criterion were utilised to develop a numerically cost effective finite element model for the soil while imposing a rigid body constrain to the foundation footing. From the analyses carried out, estimate of the bearing capacity factor, Nc as well as the ultimate load-carrying capacities of these soils, effect of cohesion on foundation settlements, stress fields and failure propagation were obtained. These are consistent with other findings in the literature and hence can be a useful guide in design of safe foundations in clay soils for buildings and other structure.

Keywords: bearing capacity factors, finite element method, safe bearing pressure, structure-soil interaction

Procedia PDF Downloads 298
2148 Identification of Suitable Rainwater Harvesting Sites Using Geospatial Techniques with AHP in Chacha Watershed, Jemma Sub-Basin Upper Blue Nile, Ethiopia

Authors: Abrha Ybeyn Gebremedhn, Yitea Seneshaw Getahun, Alebachew Shumye Moges, Fikrey Tesfay

Abstract:

Rainfed agriculture in Ethiopia has failed to produce enough food, to achieve the increasing demand for food. Pinpointing the appropriate site for rainwater harvesting (RWH) have a substantial contribution to increasing the available water and enhancing agricultural productivity. The current study related to the identification of the potential RWH sites was conducted at the Chacha watershed central highlands of Ethiopia which is endowed with rugged topography. The Geographic Information System with Analytical Hierarchy Process was used to generate the different maps for identifying appropriate sites for RWH. In this study, 11 factors that determine the RWH locations including slope, soil texture, runoff depth, land cover type, annual average rainfall, drainage density, lineament intensity, hydrologic soil group, antecedent moisture content, and distance to the roads were considered. The overall analyzed result shows that 10.50%, 71.10%, 17.90%, and 0.50% of the areas were found under highly, moderately, marginally suitable, and unsuitable areas for RWH, respectively. The RWH site selection was found highly dependent on a slope, soil texture, and runoff depth; moderately dependent on drainage density, annual average rainfall, and land use land cover; but less dependent on the other factors. The highly suitable areas for rainwater harvesting expansion are lands having a flat topography with a soil textural class of high-water holding capacity that can produce high runoff depth. The application of this study could be a baseline for planners and decision-makers and support any strategy adoption for appropriate RWH site selection.

Keywords: runoff depth, antecedent moisture condition, AHP, weighted overlay, water resource

Procedia PDF Downloads 47
2147 Investigation of Linezolid, 127I-Linezolid and 131I-Linezolid Effects on Slime Layer of Staphylococcus with Nuclear Methods

Authors: Hasan Demiroğlu, Uğur Avcıbaşı, Serhan Sakarya, Perihan Ünak

Abstract:

Implanted devices are progressively practiced in innovative medicine to relieve pain or improve a compromised function. Implant-associated infections represent an emerging complication, caused by organisms which adhere to the implant surface and grow embedded in a protective extracellular polymeric matrix, known as a biofilm. In addition, the microorganisms within biofilms enter a stationary growth phase and become phenotypically resistant to most antimicrobials, frequently causing treatment failure. In such cases, surgical removal of the implant is often required, causing high morbidity and substantial healthcare costs. Staphylococcus aureus is the most common pathogen causing implant-associated infections. Successful treatment of these infections includes early surgical intervention and antimicrobial treatment with bactericidal drugs that also act on the surface-adhering microorganisms. Linezolid is a promising anti-microbial with ant-staphylococcal activity, used for the treatment of MRSA infections. Linezolid is a synthetic antimicrobial and member of oxazolidinoni group, with a bacteriostatic or bactericidal dose-dependent antimicrobial mechanism against gram-positive bacteria. Intensive use of antibiotics, have emerged multi-resistant organisms over the years and major problems have begun to be experienced in the treatment of infections occurred with them. While new drugs have been developed worldwide, on the other hand infections formed with microorganisms which gained resistance against these drugs were reported and the scale of the problem increases gradually. Scientific studies about the production of bacterial biofilm increased in recent years. For this purpose, we investigated the activity of Lin, Lin radiolabeled with 131I (131I-Lin) and cold iodinated Lin (127I-Lin) against clinical strains of Staphylococcus aureus DSM 4910 in biofilm. In the first stage, radio and cold labeling studies were performed. Quality-control studies of Lin and iodo (radio and cold) Lin derivatives were carried out by using TLC (Thin Layer Radiochromatography) and HPLC (High Pressure Liquid Chromatography). In this context, it was found that the binding yield was obtained to be about 86±2 % for 131I-Lin. The minimal inhibitory concentration (MIC) of Lin, 127I-Lin and 131I-Lin for Staphylococcus aureus DSM 4910 strain were found to be 1µg/mL. In time-kill studies of Lin, 127I-Lin and 131I-Lin were producing ≥ 3 log10 decreases in viable counts (cfu/ml) within 6 h at 2 and 4 fold of MIC respectively. No viable bacteria were observed within the 24 h of the experiments. Biofilm eradication of S. aureus started with 64 µg/mL of Lin, 127I-Lin and 131I-Lin, and OD630 was 0.507±0.0.092, 0.589±0.058 and 0.266±0.047, respectively. The media control of biofilm producing Staphylococcus was 1.675±0,01 (OD630). 131I and 127I did not have any effects on biofilms. Lin and 127I-Lin were found less effectively than 131I-Lin at killing cells in biofilm and biofilm eradication. Our results demonstrate that the 131I-Lin have potent anti-biofilm activity against S. aureus compare to Lin, 127I-Lin and media control. This is suggested that, 131I may have harmful effect on biofilm structure.

Keywords: iodine-131, linezolid, radiolabeling, slime layer, Staphylococcus

Procedia PDF Downloads 554
2146 Variation with Depth of Physico-Chemical, Mineralogical and Physical Properties of Overburden over Gneiss Basement Complex in Minna Metropolis, North Central Nigeria

Authors: M. M. Alhaji, M. Alhassan, A. M. Yahaya

Abstract:

Soil engineers pay very little or no attention to variation in the mineralogical and consequently, the geotechnical properties of overburden with depth on basement complexes, a situation which can lead to sudden failure of civil engineering structures. Soil samples collected at depths ranging from 0.5m to 4.0m at 0.5m intervals, from a trial pit dogged manually to depth of 4.0m on an overburden over gneiss basement complex, was evaluated for physico-chemical, mineralogical and physical properties. This is to determine the variation of these properties with depth within the profile of the strata. Results showed that sodium amphibolite and feldspar, which are both primary minerals dominate the overall profile of the overburden. Carbon which dominates the lower profile of the strata was observed to alter to gregorite at upper section of the profile. Organic matter contents and cation exchange capacity reduces with increase in depth while lost on ignition and pH were relatively constant with depth. The index properties, as well as natural moisture contents, increases from 0.5m to between 1.0m to 1.5m depth after which the values reduced to constant values at 3.0m depth. The grain size analysis shows high composition of sand sized particles with silts of low to non-plasticity. The maximum dry density (MDD) values are generally relatively high and increases from 2.262g/cm³ at 0.5m depth to 2.410g/cm³ at 4.0m depth while the optimum moisture content (OMC) reduced from 9.8% at 0.5m depth to 6.7% at 4.0m depth.

Keywords: Gneiss basement complex, mineralogical properties, North Central Nigeria, physico-chemical properties, physical properties, overburden soil

Procedia PDF Downloads 143
2145 Estimating Evapotranspiration Irrigated Maize in Brazil Using a Hybrid Modelling Approach and Satellite Image Inputs

Authors: Ivo Zution Goncalves, Christopher M. U. Neale, Hiran Medeiros, Everardo Mantovani, Natalia Souza

Abstract:

Multispectral and thermal infrared imagery from satellite sensors coupled with climate and soil datasets were used to estimate evapotranspiration and biomass in center pivots planted to maize in Brazil during the 2016 season. The hybrid remote sensing based model named Spatial EvapoTranspiration Modelling Interface (SETMI) was applied using multispectral and thermal infrared imagery from the Landsat Thematic Mapper instrument. Field data collected by the IRRIGER center pivot management company included daily weather information such as maximum and minimum temperature, precipitation, relative humidity for estimating reference evapotranspiration. In addition, soil water content data were obtained every 0.20 m in the soil profile down to 0.60 m depth throughout the season. Early season soil samples were used to obtain water-holding capacity, wilting point, saturated hydraulic conductivity, initial volumetric soil water content, layer thickness, and saturated volumetric water content. Crop canopy development parameters and irrigation application depths were also inputs of the model. The modeling approach is based on the reflectance-based crop coefficient approach contained within the SETMI hybrid ET model using relationships developed in Nebraska. The model was applied to several fields located in Minas Gerais State in Brazil with approximate latitude: -16.630434 and longitude: -47.192876. The model provides estimates of real crop evapotranspiration (ET), crop irrigation requirements and all soil water balance outputs, including biomass estimation using multi-temporal satellite image inputs. An interpolation scheme based on the growing degree-day concept was used to model the periods between satellite inputs, filling the gaps between image dates and obtaining daily data. Actual and accumulated ET, accumulated cold temperature and water stress and crop water requirements estimated by the model were compared with data measured at the experimental fields. Results indicate that the SETMI modeling approach using data assimilation, showed reliable daily ET and crop water requirements for maize, interpolated between remote sensing observations, confirming the applicability of the SETMI model using new relationships developed in Nebraska for estimating mainly ET and water requirements in Brazil under tropical conditions.

Keywords: basal crop coefficient, irrigation, remote sensing, SETMI

Procedia PDF Downloads 138
2144 Method for Predicting the Deformation of a Swelling Clay of the Region of N’Gaous (Batna, in Algeria)

Authors: Ferrah F., Baheddi M.

Abstract:

This study relates to how water content in some clay soils affects their structure by increasing or decreasing the volume. These cyclic phenomena of swelling-shrinkage cause parasitic stresses in structures and at the foundation. These stresses create damage in buildings, highways, pavements, airports and structures lightly loaded. This study was conducted on soil from a site near the hospital of N'gaous (Batna), whose soil is at the origin of cracks in the filler walls of the hospital. After a few years of exploitation, and according to the findings of experts in subdivision of construction and urbanism (SUCH), cracks appeared just after the heavy rains that the region experienced in 1987. Our study shows the need to become aware of the importance of damages occasioned by swellings by adopting construction techniques to solve this problem. The study is to determine a methodology to take into account the effects of swelling in calculating long-term foundations.

Keywords: clay, swelling, shrinkage, swelling pressure, compressibility

Procedia PDF Downloads 23
2143 A Low-Cost and Easy-To-Operate Remediation Technology of Heavy Metals Contaminated Agricultural Soil

Authors: Xiao-Hua Zhu, Xin Yuan, Yi-Ran Zhao

Abstract:

High-cadmium pollution in rice is a serious problem in many parts of China. Many kinds of remediation technologies have been tested and applied in many farmlands. Because of the productive function of the farmland, most technologies are inappropriate due to their destruction to the tillage soil layer. And the large labours and expensive fees of many technologies are also the restrictive factors for their applications. The conception of 'Root Micro-Geochemical Barrier' was proposed to reduce cadmium (Cd) bioavailability and the concentration of the cadmium in rice. Remediation and mitigation techniques were demonstrated on contaminated farmland in the downstream of some mine. According to the rule of rice growth, Cd would be absorbed by the crops in every growth stage, and the plant-absorb efficiency in the first stage of the tillering stage is almost the highest. We should create a method to protect the crops from heavy metal pollution, which could begin to work from the early growth stage. Many materials with repair property get our attention. The materials will create a barrier preventing Cd from being absorbed by the crops during all the growing process because the material has the ability to adsorb soil-Cd and making it losing its migration activity. And we should choose a good chance to put the materials into the crop-growing system cheaply as soon as early. Per plant, rice has a little root system scope, which makes the roots reach about 15cm deep and 15cm wide. So small root radiation area makes it possible for all the Cd approaching the roots to be adsorbed with a small amount of adsorbent. Mixing the remediation materials with the seed-raising soli and adding them to the tillage soil in the process of transplanting seedlings, we can control the soil-Cd activity in the range of roots to reduce the Cd-amount absorbed by the crops. Of course, the mineral materials must have enough adsorptive capacity and no additional pollution. More than 3000 square meters farmlands have been remediated. And on the application of root micro-geochemical barrier, the Cd-concentration in rice and the remediation-cost have been decreased by 90% and 80%, respectively, with little extra labour brought to the farmers. The Cd-concentrations in rice from remediated farmland have been controlled below 0.1 ppm. The remediation of one acre of contaminated cropland costs less than $100. The concept has its advantage in the remediation of paddy field contaminated by Cd, especially for the field with outside pollution sources.

Keywords: cadmium pollution, growth stage, cost, root micro-geochemistry barrier

Procedia PDF Downloads 80
2142 Application of Microbially Induced Calcite Precipitation Technology in Construction Materials: A Comprehensive Review of Waste Stream Contributions

Authors: Amir Sina Fouladi, Arul Arulrajah, Jian Chu, Suksun Horpibulsuk

Abstract:

Waste generation is a growing concern in many countries across the world, particularly in urban areas with high rates of population growth and industrialization. The increasing amount of waste generated from human activities has led to environmental, economic, and health issues. Improper disposal of waste can result in air and water pollution, land degradation, and the spread of diseases. Waste generation also consumes large amounts of natural resources and energy, leading to the depletion of valuable resources and contributing to greenhouse gas emissions. To address these concerns, there is a need for sustainable waste management practices that reduce waste generation and promote resource recovery and recycling. Amongst these, developing innovative technologies such as Microbially Induced Calcite Precipitation (MICP) in construction materials is an effective approach to transforming waste into valuable and sustainable applications. MICP is an environmentally friendly microbial-chemical technology that applies microorganisms and chemical reagents to biological processes to produce carbonate mineral. This substance can be an energy-efficient, cost-effective, sustainable solution to environmental and engineering challenges. Recent research has shown that waste streams can replace several MICP-chemical components in the cultivation media of microorganisms and cementation reagents (calcium sources and urea). In addition to its effectiveness in treating hazardous waste streams, MICP has been found to be cost-effective and sustainable solution applicable to various waste media. This comprehensive review paper aims to provide a thorough understanding of the environmental advantages and engineering applications of MICP technology, with a focus on the contribution of waste streams. It also provides researchers with guidance on how to identify and overcome the challenges that may arise applying the MICP technology using waste streams.

Keywords: waste stream, microbially induced calcite precipitation, construction materials, sustainability

Procedia PDF Downloads 75
2141 Effect of Cavities on the Behaviour of Strip Footing Subjected to Inclined Load

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

One of the important concerns within the field of geotechnical engineering is the presence of cavities in soils. This present work is an attempt to understand the behaviour of strip footing subjected to inclined load and constructed on cavitied soil. The failure mechanism of strip footing located above such soils was studied analytically. The capability of analytical model to correctly expect the system behaviour is assessed by carrying out verification analysis on available studies. The study was prepared by finite element software (PLAXIS) in which an elastic-perfectly plastic soil model was used. It was indicated, from the results of the study, that the load carrying capacity of foundation constructed on cavity can be analysed well using such analysis. The research covered many foundation cases, and in each foundation case, there occurs a critical depth under which the presence of cavities has shown minimum impact on the foundation performance. When cavities are found above this critical depth, the load carrying capacity of the foundation differs with many influences, such as the location and size of the cavity and footing depth. Figures involving the load carrying capacity with the affecting factors studied are presented. These figures offer information beneficial for the design of strip footings rested on underground cavities. Moreover, the results might be used to design a shallow foundation constructed on cavitied soil, whereas the obtained failure mechanisms may be employed to improve numerical solutions for this kind of problems.

Keywords: axial load, cavity, inclined load, strip footing

Procedia PDF Downloads 252
2140 Measuring the Effect of Co-Composting Oil Sludge with Pig, Cow, Horse And Poultry Manures on the Degradation in Selected Polycyclic Aromatic Hydrocarbons Concentrations

Authors: Ubani Onyedikachi, Atagana Harrison Ifeanyichukwu, Thantsha Mapitsi Silvester

Abstract:

Components of oil sludge (PAHs) are known cytotoxic, mutagenic and potentially carcinogenic compounds also bacteria and fungi have been found to degrade PAHs to innocuous compounds. This study is aimed at measuring the effect of pig, cow, horse and poultry manures on the degradation in selected PAHs present in oil sludge. Soil spiked with oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil: manure and wood-chips in a ratio of 2:1 (w/v) spiked soil: wood-chips. Control was set up similar as the one above but without manure. The mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Highest temperature reached was 27.5 °C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78μg/dwt/day. Microbial growth and activities were enhanced; bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Percentage reduction in PAHs was measured using automated soxhlet extractor with Dichloromethane coupled with gas chromatography/mass spectrometry (GC/MS). Results from PAH measurements showed reduction between 77% and 99%. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs.

Keywords: animal manures, bioremediation, co-composting, oil refinery sludge, PAHs

Procedia PDF Downloads 265
2139 Enhancing Root Canal Therapy with MTA and Tetracycline-Loaded Nanochitosan: An Approach for Infected Root Canal Treatment in Dogs (in-vivo Animal Study)

Authors: Rania Hanafi Mahmoud Said, Rasha Mohamed Taha

Abstract:

Background: A recent study has explored the potential of an approach to treating infected root canals using a combination of Mineral Trioxide Aggregate (MTA) and Tetracycline-loaded Nanochitosan. Material and methods: Forty dogs were included in the study, with infected periapical areas induced by leaving access openings in their teeth for four months. Bacteriological samples from the infected root canals were collected and managed anaerobically to identify and count the different microorganisms present. The most common microorganisms detected were Prevotella oris, Fusobacterium nucleatum, Streptococcus viridans, Enterococcus faecalis, Clostridium subterminale, Porphyromonas gingivalis, and Peptostreptococcus anaerobius. The dogs were divided into four groups based on the sealant used to treat the infected periapical areas: Group I: Negative control (no treatment) Group II: Positive control (MTA only) Group III: MTA + tetracycline Group IV: MTA + tetracycline loaded on nanochitosan Results: Periapical areas in Group IV showed significantly more bone healing than those in Groups I, II, and III. The newly formed bone was evaluated radiographically, histologically, and immunohistochemically using Osteopontin (OSP) antibodies. Data collected was statistically analysed using SPSS software at a 0.05 significance level. Conclusion: The study concluded that the combined use of Tetracycline-loaded Nanochitosan and MTA presents a promising approach for the treatment of infected root canals. The potent antimicrobial activity of Tetracycline-loaded Nanochitosan, along with the biocompatibility and desirable properties of MTA, may synergistically contribute to improved clinical outcomes in endodontic therapy. This study has important implications for the clinical management of infected root canals. The combination of Tetracycline-loaded Nanochitosan and MTA could provide a more effective and efficient means of treating these challenging cases. Further research is needed to confirm these findings in humans and to optimize the treatment protocol.

Keywords: mineral trioxide aggregate, tetracycline-loaded nanochitosan, periapical infection, osteopontine

Procedia PDF Downloads 52
2138 Physico-Chemical and Microbial Changes of Organic Fertilizers after Compositing Processes under Arid Conditions

Authors: Oustani Mabrouka, Halilat Med Tahar

Abstract:

The physico-chemical properties of poultry droppings indicate that this waste can be an excellent way to enrich the soil with low fertility that is the case in arid soils (low organic matter content), but its concentrations in some microbial and chemical components make them potentially dangerous and toxic contaminants if they are used directly in fresh state. On other hand, the accumulation of plant residues in the crop areas can become a source of plant disease and affects the quality of the environment. The biotechnological processes that we have identified appear to alleviate these problems. It leads to the stabilization and processing of wastes into a product of good hygienic quality and high fertilizer value by the composting test. In this context, a trial was conducted in composting operations in the region of Ouargla located in southern Algeria. Composing test was conducted in a completely randomized design experiment. Three mixtures were prepared, in pits of 1 m3 volume for each mixture. Each pit is composed by mixture of poultry droppings and crushed plant residues in amount of 40 and 60% respectively: C1: Droppings + Straw (P.D +S) , C2: Poultry Droppings + Olive Wastes (P.D+O.W) , C3: Poultry Droppings + Date palm residues (P.D+D.P). Before and after the composting process, physico-chemical parameters (temperature, moisture, pH, electrical conductivity, total carbon and total nitrogen) were studied. The stability of the biological system was noticed after 90 days. The results of physico-chemical and microbiological compost obtained from three mixtures: C1: (P.D +S) , C2: (P.D+O.W) and C3: (P.D +D.P) shows at the end of composting process, three composts characterized by the final products were characterized by their high agronomic and environmental interest with a good physico chemical characteristics in particularly a low C/N ratio with 15.15, 10.01 and 15.36 % for (P.D + S), (P.D. + O.W) and (P.D. +D.P), respectively, reflecting a stabilization and maturity of the composts. On the other hand, a significant increase of temperature was recorded at the first days of composting for all treatments, which is correlated with a strong reduction of the pathogenic micro flora contained in poultry dropings.

Keywords: Arid environment, Composting, Date palm residues, Olive wastes, pH, Pathogenic microorganisms, Poultry Droppings, Straw

Procedia PDF Downloads 233
2137 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment

Authors: Temitayo Tosin Alawiye

Abstract:

Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.

Keywords: agricultural waste, climate change, green energy, soil borne plant disease

Procedia PDF Downloads 266
2136 Microalgae for Plant Biostimulants on Whey and Dairy Wastewaters

Authors: Sergejs Kolesovs, Pavels Semjonovs

Abstract:

Whey and dairy wastewaters if disposed in the environment without proper treatment, cause serious environmental risks contributing to overall and particular environmental pollution and climate change. Biological treatment of wastewater is considered to be most eco-friendly approach, as compared to the chemical treatment methods. Research shows, that dairy wastewater can potentially be remediated by use of microalgae thussignificantly reducing the content of carbohydrates, P, N, K and other pollutants. Moreover, it has been shown, that use of dairy wastewaters results in higher microalgae biomass production. In recent decades microalgal biomass has entailed a big interest for its potential applications in pharmaceuticals, biomedicine, health supplementation, cosmetics, animal feed, plant protection, bioremediation and biofuels. It was shown, that lipids productivity on whey and dairy wastewater is higher as compared with standard cultivation media and occurred without the necessity of inducing specific stress conditions such as N starvation. Moreover, microalgae biomass production as usually associated with high production costs may benefit from perspective of both reasons – enhanced microalgae biomass or target substances productivity on cheap growth substrate and effective management of whey and dairy wastewaters, which issignificant for decrease of total production costs in both processes. Obviously, it became especially important when large volume and low cost industrial microalgal biomass production is anticipated for further use in agriculture of crops as plant growth stimulants, biopesticides soil fertilisers or remediating solutions. Environmental load of dairy wastewaters can be significantly decreased when microalgae are grown in coculture with other microorganisms. This enhances the utilisation of lactose, which is main C source in whey and dairy wastewaters when it is not metabolised easily by most microalgal species chosen. Our study showsthat certain microalgae strains can be used in treatment of residual sugars containing industrial wastewaters and decrease of their concentration thus approving that further extensive research on dairy wastewaters pre-treatment optionsfor effective cultivation of microalgae, carbon uptake and metabolism, strain selection and choice of coculture candidates is needed for further optimisation of the process.

Keywords: microalgae, whey, dairy wastewaters, sustainability, plant biostimulants

Procedia PDF Downloads 90
2135 The Effects of Root Zone Supply of Aluminium on Vegetative Growth of 15 Groundnut Cultivars Grown in Solution Culture

Authors: Mosima M. Mabitsela

Abstract:

Groundnut is preferably grown on light textured soils. Most of these light textured soils tend to be highly weathered and characterized by high soil acidity and low nutrient status. One major soil factor associated with infertility of acidic soils that can negatively depress groundnut yield is aluminium (Al) toxicity. In plants Al toxicity damages root cells, leading to inhibition of root growth as a result of the suppression of cell division, cell elongation and cell expansion in the apical meristem cells of the root. The end result is that roots become stunted and brittle, root hair development is poor, and the root apices become swollen. This study was conducted to determine the effects of aluminium (Al) toxicity on a range of groundnut varieties. Fifteen cultivars were tested in incremental aluminum (Al) supply in an ebb and flow solution culture laid out in a randomized complete block design. There were six aluminium (Al) treatments viz. 0 µM, 1 µM, 5.7 µM, 14.14 µM, 53.18 µM, and 200 µM. At 1 µM there was no inhibitory effect on the growth of groundnut. The inhibition of groundnut growth was noticeable from 5.7 µM to 200 µM, where the severe effect of aluminium (Al) stress was observed at 200 µM. The cultivars varied in their response to aluminium (Al) supply in solution culture. Groundnuts are one of the most important food crops in the world, and its supply is on a decline due to the light-textured soils that they thrive under as these soils are acidic and can easily solubilize aluminium (Al) to its toxic form. Consequently, there is a need to develop groundnut cultivars with high tolerance to soil acidity.

Keywords: aluminium toxicity, cultivars, reduction, root growth

Procedia PDF Downloads 147
2134 Delineation of Oil– Polluted Sites in Ibeno LGA, Nigeria

Authors: Ime R. Udotong, Ofonime U. M. John, Justina I. R. Udotong

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other multinational oil companies like Shell Petroleum Development Company Ltd, Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of ENI E&P operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria, respectively. This study was designed to carry out the survey of the oil impacted sites in Ibeno, Nigeria. A combinations of electrical resistivity (ER), ground penetrating radar (GPR) and physico-chemical as well as microbiological characterization of soils and water samples from the area were carried out. Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from significant concentrations of THC, BTEX and heavy metal contents in the environment. Also, high resistivity values and GPR profiles clearly showing the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones corroborates previous significant oil input. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Hydrocarbon pollution of the study area was confirmed by the results of soil and water physico-chemical and microbiological analysis. The levels of THC contamination observed in this study are indicative of high levels of crude oil contamination. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas, the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively as well as the high counts of hydrocarbonoclastic microorganisms in excess of 1% confirmed significant recent pollution of the study area.

Keywords: oil-polluted sites, physico-chemical analyses, microbiological characterization, geotechnical investigations, total hydrocarbon content

Procedia PDF Downloads 387
2133 Agroforestry Systems: A Sustainable Strategy of the Agricultural Systems of Cumaral (Meta), Colombia

Authors: Amanda Silva Parra, Dayra Yisel García Ramirez

Abstract:

In developing countries, agricultural "modernization" has led to a loss of biodiversity and inefficiency of agricultural systems, manifested in increases in Greenhouse Gas Emissions (GHG) and the C footprint, generating the susceptibility of systems agriculture to environmental problems, loss of biodiversity, depletion of natural resources, soil degradation and loss of nutrients, and a decrease in the supply of products that affect food security for peoples and nations. Each year agriculture emits 10 to 12% (5.1 to 6.1 Gt CO2eq per year) of the total estimated GHG emissions (51 Gt CO2 eq per year). The FAO recommends that countries that have not yet done so consider declaring sustainable agriculture as an essential or strategic activity of public interest within the framework of green economies to better face global climate change. The objective of this research was to estimate the balance of GHG in agricultural systems of Cumaral, Meta (Colombia), to contribute to the recovery and sustainable operation of agricultural systems that guarantee food security and face changes generated by the climate in a more intelligent way. To determine the GHG balances, the IPCC methodologies were applied with a Tier 1 and 2 level of use. It was estimated that all the silvopastoral systems evaluated play an important role in this reconversion compared to conventional systems such as improved pastures. and degraded pastures due to their ability to capture C both in soil and in biomass, generating positive GHG balances, guaranteeing greater sustainability of soil and air resources.

Keywords: climate change, carbon capture, environmental sustainability, GHG mitigation, silvopastoral systems

Procedia PDF Downloads 115
2132 Experimental Investigation of the Effect of Material Composition on Landslides

Authors: Mengqi Wu, Haiping Zhu, Chin J. Leo

Abstract:

In this study, six experimental cases with different components (dry and wet soils and rocks) were considered to elucidate the influence of material composition on landslide profiles. The results show that the accumulation zone for all cases considered has a quadrilateral shape with two different bottom angles. The asymmetry of the accumulation zone can be attributed to the fact that soils in different parts of the landslide sliding can produce different speeds and suffer different resistances. The higher soil moisture can generate stronger cohesion between soils to reduce the volume of the sliding body during the landslide. The rock content can increase the accumulation angles to improve slope stability. The interaction between the irregular shapes of rocks and soils provides more resistance than that between spherical rocks and soils, which causes the slope with irregular rocks and soils to have higher stability.

Keywords: landslide, soil moisture, rock content, experimental simulation

Procedia PDF Downloads 95
2131 Effect of Non-Legume Primary Ecological Successor on Nitrogen Content of Soil

Authors: Vikas Baliram Kalyankar

Abstract:

Study of ecology is important as it plays role in development of environment engineering. With the advent of technologies the study of ecosystem structure and changes in it are remaining unnoticed. The ecological succession is the sequential replacement of plant species following changes in the environment. The present study depicts the primary ecological succession in an area leveled up to the height of five feet with no signs of plant life on it. The five quadrates of 1 meter square size were observed during the study period of six months. Rain water being the only source of water in the area increased its ecological importance. The primary successor was non- leguminous plant Balonites roxburgii during the peak drought periods in the region of the summer 2013-14. The increased nitrogen content of soil after the plant implied its role in atmospheric nitrogen fixation.

Keywords: succession, Balonites roxburgii, non-leguminous plant, ecology

Procedia PDF Downloads 485
2130 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: David Koren, Vojko Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction

Procedia PDF Downloads 299
2129 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 25
2128 Assessment of Environmental Impact for Rice Mills in Burdwan District: Special Emphasis on Groundwater, Surface Water, Soil, Vegetation and Human Health

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay

Abstract:

Rice milling is an important activity in agricultural economy of India, particularly the Burdwan district. However, the environmental impact of rice mills is frequently underestimated. The environmental impact of rice mills in the Burdwan district is a major source of concern, given the importance of rice milling in the local economy and food supply. In the Burdwan district, more than fifty (50) rice mills are in operation. The goal of this study is to investigate the effects of rice mills on several environmental components, with a particular emphasis on groundwater, surface water, soil, and vegetation. The research comprises a thorough review of numerous rice mills located around the district, utilising both qualitative and quantitative approaches. Water samples taken from wells near rice mills will be tested for groundwater quality, with an emphasis on factors such as heavy metal pollution and pollutant concentrations. Monitoring rice mill discharge into neighbouring bodies of water and studying the potential impact on aquatic ecosystems will be part of surface water evaluations. Furthermore, soil samples from the surrounding areas will be taken to examine changes in soil characteristics, nutrient content, and potential contamination from milling waste disposal. Vegetation studies will be conducted to investigate the effects of emissions and effluents on plant health and biodiversity in the region. The findings will provide light on the extent of environmental degradation caused by rice mills in the Burdwan district, as well as valuable insight into the effects of such operations on water, soil, and vegetation. The findings will aid in the development of appropriate legislation and regulations to reduce negative environmental repercussions and promote sustainable practises in the rice milling business. In some cases, heavy metals have been related to health problems. Heavy metals (As, Cd, Cu, Pb, Cr, Hg) are linked to skin, lung, brain, kidney, liver, metabolic, spleen, cardiovascular, haematological, immunological, gastrointestinal, testes, pancreatic, metabolic, and bone problems. As a result, this study contributes to a better knowledge of industrial environmental impacts and establishes the framework for future studies aimed at developing a more ecologically balanced and resilient Burdwan district. The following recommendations are offered for reducing the rice mill's environmental impact: To keep untreated effluents out of bodies of water, adequate waste management systems must be established. Use environmentally friendly rice milling processes to reduce pollution. To avoid soil pollution, rice mill by-products should be used as fertiliser in a controlled and appropriate manner. Groundwater, surface water, soil, and vegetation are all regularly monitored in order to study and adapt to environmental changes. By adhering to these principles, the rice milling industry of Burdwan district may achieve long-term growth while lowering its environmental effect and safeguarding the environment for future generations.

Keywords: groundwater, environmental analysis, biodiversity, rice mill, waste management, diseases, industrial impact

Procedia PDF Downloads 87
2127 Geotechnical Properties and Compressibility Behavior of Organic Dredged Soils

Authors: Inci Develioglu, Hasan Firat Pulat

Abstract:

Sustainable development is one of the most important topics in today's world, and it is also an important research topic for geoenvironmental engineering. Dredging process is performed to expand the river and port channel, flood control and accessing harbors. Every year large amount of sediment are dredged for these purposes. Dredged marine soils can be reused as filling materials, road and foundation embankments, construction materials and wildlife habitat developments. In this study, geotechnical engineering properties and compressibility behavior of dredged soil obtained from the Izmir Bay were investigated. The samples with four different organic matter contents were obtained and particle size distributions, consistency limits, pH and specific gravity tests were performed. The consolidation tests were conducted to examine organic matter content (OMC) effects on compressibility behavior of dredged soil. This study has shown that the OMC has an important effect on the engineering properties of dredged soils. The liquid and plastic limits increased with increasing OMC. The lowest specific gravity belonged to sample which has the maximum OMC. The specific gravity values ranged between 2.76 and 2.52. The maximum void ratio difference belongs to sample with the highest OMC (De11% = 0.38). As the organic matter content of the samples increases, the change in the void ratio has also increased. The compression index increases with increasing OMC.

Keywords: compressibility, consolidation, geotechnical properties, organic matter content, dredged soil

Procedia PDF Downloads 251
2126 Earthquake Hazards in Manipur: Casual Factors and Remedial Measures

Authors: Kangujam Monika, Kiranbala Devi Thokchom, Soibam Sandhyarani Devi

Abstract:

Earthquake is a major natural hazard in India. Manipur, located in the North-Eastern Region of India, is one of the most affected location in the region prone to earthquakes since it lies in an area where Indian and Eurasian tectonic plates meet and is in seismic Zone V which is the most severe intensity zone, according to IS Code. Some recent earthquakes recorded in Manipur are M 6.7 epicenter at Tamenglong (January 4, 2016), M 5.2 epicenter at Churachandpur (February 24, 2017) and most recent M 4.4 epicenter at Thoubal (June 19, 2017). In these recent earthquakes, some houses and buildings were damaged, landslides were also occurred. A field study was carried out. An overview of the various causal factors involved in triggering of earthquake in Manipur has been discussed. It is found that improper planning, poor design, negligence, structural irregularities, poor quality materials, construction of foundation without proper site soil investigation and non-implementation of remedial measures, etc., are possibly the main causal factors for damage in Manipur during earthquake. The study also suggests, though the proper design of structure and foundation along with soil investigation, ground improvement methods, use of modern techniques of construction, counseling with engineer, mass awareness, etc., might be effective solution to control the hazard in many locations. An overview on the analysis pertaining to earthquake in Manipur together with on-going detailed site specific geotechnical investigation were presented.

Keywords: Manipur, earthquake, hazard, structure, soil

Procedia PDF Downloads 207
2125 Phytoremediation of Arsenic-Contaminated Soil and Recovery of Valuable Arsenic Products

Authors: Valentine C. Eze, Adam P. Harvey

Abstract:

Contamination of groundwater and soil by heavy metals and metalloids through anthropogenic activities and natural occurrence poses serious environmental challenges globally. A possible solution to this problem is through phytoremediation of the contaminants using hyper-accumulating plants. Conventional phytoremediation treats the contaminated hyper-accumulator biomass as a waste stream which adds no value to the heavy metal(loid)s decontamination process. This study investigates strategies for remediation of soil contaminated with arsenic and the extractive chemical routes for recovery of arsenic and phosphorus from the hyper-accumulator biomass. Pteris cretica ferns species were investigated for their uptake of arsenic from soil containing 200 ± 3ppm of arsenic. The Pteris cretica ferns were shown to be capable of hyper-accumulation of arsenic, with maximum accumulations of about 4427 ± 79mg to 4875 ± 96mg of As per kg of the dry ferns. The arsenic in the Pteris cretica fronds was extracted into various solvents, with extraction efficiencies of 94.3 ± 2.1% for ethanol-water (1:1 v/v), 81.5 ± 3.2% for 1:1(v/v) methanol-water, and 70.8 ± 2.9% for water alone. The recovery efficiency of arsenic from the molybdic acid complex process 90.8 ± 5.3%. Phosphorus was also recovered from the molybdic acid complex process at 95.1 ± 4.6% efficiency. Quantitative precipitation of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ occurred in the treatment of the aqueous solutions of arsenic and phosphorus after stripping at pH of 8 – 10. The amounts of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ obtained were 96 ± 7.2% for arsenic and 94 ± 3.4% for phosphorus. The arsenic nanoparticles produced from the Mg₃(AsO₄)₂ recovered from the biomass have the average particles diameter of 45.5 ± 11.3nm. A two-stage reduction process – a first step pre-reduction of As(V) to As(III) with L-cysteine, followed by NaBH₄ reduction of the As(III) to As(0), was required to produced arsenic nanoparticles from the Mg₃(AsO₄)₂. The arsenic nanoparticles obtained are potentially valuable for medical applications, while the Mg₃(AsO₄)₂ could be used as an insecticide. The phosphorus contents of the Pteris cretica biomass was recovered as phosphomolybdic acid complex and converted to Mg₃(PO₄)₂, which could be useful in productions of fertilizer. Recovery of these valuable products from phytoremediation biomass would incentivize and drive commercial industries’ participation in remediation of contaminated lands.

Keywords: phytoremediation, Pteris cretica, hyper-accumulator, solvent extraction, molybdic acid process, arsenic nanoparticles

Procedia PDF Downloads 314
2124 Settlement Performance of Granular Column Reinforced Soil

Authors: Muneerah Jeludin

Abstract:

The vibrated column has been widely used over the last three decades to improve the performance of soft ground and engineered compacted fill. The main reason for adopting this technique is that it is economically viable and environmental friendly. The performance of granular column with regards to bearing capacity has been well documented; however, information regarding the settlement behavior of granular columns is still limited. This paper aims to address the findings from a laboratory model study in terms of its settlement improvement. A 300 mm diameter and 400 mm high kaolin clay model was used in this investigation. Columns of various heights were installed in the clay bed using replacement method. The results in relation to load sharing mechanism between the column and surrounding clay just under the footing indicated that in short column, the available shaft resistance was not significant and introduces a potential for end braing failure as opposed to bulging failure in long columns. The settlement improvement factor corroborates well with field observations.

Keywords: ground improvement, model test, reinforced soil, foundation

Procedia PDF Downloads 264
2123 Assessment of Bisphenol A and 17 α-Ethinyl Estradiol Bioavailability in Soils Treated with Biosolids

Authors: I. Ahumada, L. Ascar, C. Pedraza, J. Montecino

Abstract:

It has been found that the addition of biosolids to soil is beneficial to soil health, enriching soil with essential nutrient elements. Although this sludge has properties that allow for the improvement of the physical features and productivity of agricultural and forest soils and the recovery of degraded soils, they also contain trace elements, organic trace and pathogens that can cause damage to the environment. The application of these biosolids to land without the total reclamation and the treated wastewater can transfer these compounds into terrestrial and aquatic environments, giving rise to potential accumulation in plants. The general aim of this study was to evaluate the bioavailability of bisphenol A (BPA), and 17 α-ethynyl estradiol (EE2) in a soil-biosolid system using wheat (Triticum aestivum) plant assays and a predictive extraction method using a solution of hydroxypropyl-β-cyclodextrin (HPCD) to determine if it is a reliable surrogate for this bioassay. Two soils were obtained from the central region of Chile (Lo Prado and Chicauma). Biosolids were obtained from a regional wastewater treatment plant. The soils were amended with biosolids at 90 Mg ha-1. Soils treated with biosolids, spiked with 10 mgkg-1 of the EE2 and 15 mgkg-1 and 30 mgkg-1of BPA were also included. The BPA, and EE2 concentration were determined in biosolids, soils and plant samples through ultrasound assisted extraction, solid phase extraction (SPE) and gas chromatography coupled to mass spectrometry determination (GC/MS). The bioavailable fraction found of each one of soils cultivated with wheat plants was compared with results obtained through a cyclodextrin biosimulator method. The total concentration found in biosolid from a treatment plant was 0.150 ± 0.064 mgkg-1 and 12.8±2.9 mgkg-1 of EE2 and BPA respectively. BPA and EE2 bioavailability is affected by the organic matter content and the physical and chemical properties of the soil. The bioavailability response of both compounds in the two soils varied with the EE2 and BPA concentration. It was observed in the case of EE2, the bioavailability in wheat plant crops contained higher concentrations in the roots than in the shoots. The concentration of EE2 increased with increasing biosolids rate. On the other hand, for BPA, a higher concentration was found in the shoot than the roots of the plants. The predictive capability the HPCD extraction was assessed using a simple linear correlation test, for both compounds in wheat plants. The correlation coefficients for the EE2 obtained from the HPCD extraction with those obtained from the wheat plants were r= 0.99 and p-value ≤ 0.05. On the other hand, in the case of BPA a correlation was not found. Therefore, the methodology was validated with respect to wheat plants bioassays, only in the EE2 case. Acknowledgments: The authors thank FONDECYT 1150502.

Keywords: emerging compounds, bioavailability, biosolids, endocrine disruptors

Procedia PDF Downloads 139